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Abstract: In this paper, the reachability of dimension-bounded linear systems is investigated.
Since state dimensions of dimension-bounded linear systems vary with time, the expression of state
dimension at each time is provided. A method for judging the reachability of a given vector space
Vr is proposed. In addition, this paper proves that the t-step reachable subset is a linear space, and
gives a computing method. The t-step reachability of a given state is verified via a rank condition.
Furthermore, annihilator polynomials are discussed and employed to illustrate the relationship between
the invariant space and the reachable subset after the invariant time point t∗. The inclusion relation
between reachable subsets at times t∗ + i and t∗ + j is shown via an example.
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1. Introduction

Cross-dimensional systems are also called dimension-varying systems or dimension free
systems [1]. Some mathematical models with different dimensions can be described as
cross-dimensional systems, such as biological systems [2], electric power generators [3] and vehicle
clutch systems [4]. Four phenomena appearing in a spacecraft formation [5], docking, undocking,
departure and participation, are also practical examples of cross-dimensional systems. Take
participation as an example. Some new spacecrafts join in the formation, or departed spacecrafts
come back. In these cases, their states are treated as new ones and considered in the next mode. Thus,
state dimensions increase in the next mode. For simulating the whole flying process of a spacecraft
formation, a switched system approach was used to handle dimension-varying systems [6]. In the
spacecraft formation, it is important to guarantee a smooth transition from one mode to another,
which requires that the system is continuous at the mode conversion time. However, the continuity of
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switched systems at the switching time cannot be determined. Hence, it is necessary to find more
ideal models for modeling spacecraft formation.

Hybrid systems, reflecting the interaction of continuous- and discrete-time dynamics [7], can also
be applied to study dimension-varying systems. From the evolution of hybrid systems, there are at
least two subsystems in a hybrid system. When an event occurs, the hybrid system switches from the
current discrete mode to a new discrete mode. The switching rule is provided via a given reset map [8].
Consider a discrete dynamic model generating a sequence of modes as a switching signal defined in a
switched system. Hybrid systems can be viewed as switched systems [9]. Thus, the most basic way to
deal with dimension-varying systems is to switch. Thus, the continuity at the dimension change time is
also not determined via the hybrid system method. To solve this problem, a unified form model should
be established for dimension-varying systems. Motivated by this, cross-dimensional linear systems
were presented by Cheng [10].

The difficulty of giving a unified form model for dimension-varying systems is how to connect
spaces with different dimensions together. Thanks to Cheng operations, this difficulty was solved, and
cross-dimensional linear systems were established. The Cheng operations include semi-tensor
product of matrices, M-addition of matrices, V-addition of vectors and V-product of matrices and
vectors [11]. Using these operations, cross-dimensional linear systems can go a cross spaces with
different dimensions [10]. The next problem is how to apply cross-dimension systems to handle the
dynamics of the transient process of practical examples, most of which have invariant dimensions
except the transient period. In the light of the proposed projection among spaces with different
dimensions [12], the dynamic of the transient process was modeled, and the control of the transient
dynamic of clutch systems was discussed [4]. Thus, the problem of how to determine the continuity at
the dimension change time is solved preliminarily.

The reachability analysis of a dynamical system refers to computing a reachable set, which
contains the entire state trajectories of the system starting from uncertain initial conditions and driven
by uncertain inputs. Up to now, there are many references concerning the reachability analysis of
dynamical systems, such as linear systems [13–15], switched systems [16–18], logical control
networks [19–21] and other systems [22–24]. An event-triggered impulsive control problem was
investigated in [25, 26]. In [27], several reachability analysis techniques, used in the tools
SpaceEx [28], Flow* [29] and CORA [30], were summarized. These reachability analysis techniques
relied on ellipsoids [31], intervals [32], polytopes [33], zonotopes [14, 34, 35], support functions [36]
and so on. Notably, [37, 38] analyzed the observability and optimal control problems via the
reachability approach. In addition, the reachability shows its strong applicability in studying formal
and compositional analysis of power systems [35], fault diagnosis system verification [39] and safety
verification [40]. Since the reachability of dynamical systems occupies a significant position in both
theoretical developments and practical applications, it is meaningful to study the reachability of
cross-dimensional linear systems.

Because state dimensions of cross-dimensional linear systems vary with time, the first step of taking
the reachability into account is to discuss state dimensions of the system. [10] pointed out that cross-
dimensional linear systems are classified into two cases: dimension-unbounded linear systems and
dimension-bounded linear ones. For the former one, after a certain time, state dimensions not only
increase with time but also go to infinity [10]. Thus, state dimensions of dimension-unbounded linear
systems were studied in [41]. For the latter one, state dimensions are invariant after a certain time t∗,
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which is called the invariant time point. This means that the trajectory of the system enters an invariant
space. A recursive formula was proposed to compute the dimension of state at each time [10]. However,
using this recursive formula, the dimension of a state at time t is obtained when all dimensions of states
before time t are calculated. Hence, giving an approach to computing state dimensions directly draws
our attention. The expression of state dimension after time t∗ was provided by [42]. However, the
invariant time point t∗ and state dimensions before time t∗ are not researched. Furthermore, to the best
of our knowledge, there is no result on reachable subsets of dimension-bounded linear systems.

Although switched systems and hybrid systems can be used to model some dynamics with
different dimensions, the continuity at the dimension change time cannot be determined. Thus, this
paper focuses on a unified form model for dimension-varying linear systems. Since the method for
analyzing the reachability of dimension-bounded linear systems can be employed to handle
dimension-unbounded linear systems, this paper only discusses the reachability of
dimension-bounded linear systems. Because state dimensions of dimension-bounded linear systems
vary with time before the invariant time point t∗, this paper studies state dimensions first, and then
computes the t-step reachable subset. The main contributions of this paper are as follows.

• For a given dimension-bounded linear system, the expression of state dimension at each time
is provided. Compared with the recursive formula proposed by [10], it is easier to determine
whether a given integer is a reachable dimension. It also reveals the dimension variation law of
dimension-bounded linear systems clearly.
• By proving that the t-step reachable subset is a linear space, this paper concludes that the t-step

reachable subset equals the span of a list of specific vectors. A rank condition is presented to
verify the t-step reachability of a given state. It is worth noting that these results also hold for
dimension-unbounded linear systems.
• To illustrate the relationship between the invariant space and the reachable subset after the

invariant time point t∗, annihilator polynomials are discussed. The obtained results show that an
A-annihilator of vector space Vn is the generalization of a conventional annihilator polynomial,
where A is a given matrix.
• An example is studied to explain the inclusion relation between reachable subsets at times t∗ + i

and t∗ + j. This example makes the discussion of reachable subsets more perfect.

The rest of this paper is organized as follows. Preliminaries and the problem formulation are
provided in Sections 2 and 3, respectively. Section 4 gives the main results of this paper, including the
discussion of state dimension and the analysis of reachable subsets. Section 5 gives some concluding
remarks.

2. Preliminaries

This section reviews some necessary preliminaries, and it proposes some results about annihilator
polynomials.

2.1. Notations

In this subsection, we provide a list of notations and some results about V-product and V-addition.
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• Mm×n is the set of all m × n real matrices. DefineM :=
∞⋃

m=1

∞⋃
n=1
Mm×n.

• Vn is the set of all n real column vectors. DefineV :=
∞⋃

n=1
Vn.

• N is the set of all non-negative integers.
• R is the set of all real numbers.
• lcm(m, n) represents the least common multiple of m and n.
• a | b means that integer a is a divisor of integer b.
• 0 is a null matrix.
• δi

n is the ith column of identity matrix In.

• 1m×n = [1m · · · 1m] ∈ Mm×n, where 1m :=
m∑

i=1
δi

m.

• span{α1, α2, . . . , αs} = {k1α1 + k2α2 + · · · + ksαs|αi ∈ Vn, ∀ki ∈ R, i = 1, 2, . . . , s}.
• For two given matrices P ∈ Mm×n and Q ∈ Mp×q, the semi-tensor product of P and Q is defined

as
P ⋉ Q := (P ⊗ It/n)(Q ⊗ It/p),

where t = lcm(n, p), ⊗ is the Kronecker product.
As main tools for addressing cross-dimensional linear systems, definitions of V-product and V-

addition are reviewed.

Definition 2.1. [1] (1) Let A ∈ Mm×n, x ∈ Vr and s = lcm(n, r). The V-product of A and x, denoted
by ⋉⃗, is defined as

A⋉⃗x := (A ⊗ Is/n)(x ⊗ 1s/r).

(2) Let x ∈ Vn, y ∈ Vr and s = lcm(n, r). The V-addition of x and y, denoted by ⃗ ∓, is defined as

x⃗ ∓y := (x ⊗ 1s/n) + (y ⊗ 1s/r).

If n = r, then A⋉⃗x = Ax, and x⃗ ∓y = x + y. That is, V-addition and V-product are generalizations
of conventional vector addition and conventional vector product, respectively. The following lemmas
were proven in [1].

Lemma 2.2. [1] Consider V-product ⋉⃗ :M×V → V. It is linear with respect to the second variable;
precisely,

A⋉⃗(ax⃗ ∓by) = aA⋉⃗x⃗ ∓bA⋉⃗y, a, b ∈ R.

Lemma 2.3. [1] For any two matrices A, B ∈ M and any vector x ∈ V, it holds that

(A ⋉ B)⋉⃗x = A⋉⃗(B⋉⃗x).

Moreover, we have
Ai⋉⃗x = (A ⋉ · · · ⋉ A)⋉⃗x = A⋉⃗(A⋉⃗ · · · ⋉⃗(A⋉⃗x)).

The definition of invariant space is given in the following.

Definition 2.4. [1] For a given matrix A ∈ Mm×n, vector space Vr is called an A-invariant space if
A⋉⃗x ∈ Vr for any x ∈ Vr.
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2.2. Annihilator polynomial

For the purpose of investigating the reachability of dimension-bounded linear systems, this
subsection discusses annihilator polynomials. To begin with, the definition of annihilator polynomial
is provided.

Definition 2.5. [1] Given a matrix A ∈ M, a vector x ∈ V and a polynomial

q(z) = zn + cn−1zn−1 + · · · + c1z + c0, (2.1)

(1) q(z) is called an A-annihilator of x if

q(A)⋉⃗x := An⋉⃗x⃗ ∓cn−1An−1⋉⃗x⃗ ∓ · · ·⃗ ∓c1A⋉⃗x⃗ ∓c0x = 0.

(2) If q(z) is the A-annihilator of x with minimum degree, then q(z) is called the minimum A-annihilator
of x.

Remark 1. Consider polynomial (2.1). The positive integer n is called the degree of polynomial (2.1).
For a given matrix A ∈ M and a vector x ∈ V, if q(z) is the A-annihilator of x with minimum degree,
then q(z) is an A-annihilator of x, and each polynomial with degree less than n is not an A-annihilator
of x.

For a given matrix A ∈ Mm×km and each vector x ∈ V, Corollary 256 of [1] pointed out that there
exists at least one A-annihilator of x. Based on Example 260 of [1], we present a constructive proof of
this result, which is shown in the following proposition.

Proposition 2.6. Given a matrix A ∈ Mm×km, for each vector x ∈ V, there exists an integer i ∈ N and a
set of coefficients c0, c1, . . . , ci−1 such that polynomial q(z) = zi + ci−1zi−1 + · · ·+ c1z+ c0 is the minimal
A-annihilator of x.

Proof. If x = 0, then the minimal A-annihilator of x is q(z) = 1. Otherwise, the minimal A-annihilator
of x is obtained by the following steps.

Let x0 = x ∈ Vr0 and x1 = A⋉⃗x0 ∈ Vr1 . Then, we calculate y0 = x0 ⊗ 1t1/r0 and y1 = x1 ⊗ 1t1/r1 ,
where t1 = lcm(r0, r1). If there exist c′0, c

′
1 ∈ R and c′1 , 0 such that c′1A⋉⃗x0⃗ ∓c′0x0 = c′1x1⃗ ∓c′0x0 =

c′1y1 + c′0y0 = 0, then the minimal A-annihilator of x0 is q(z) = z + c0, where c0 =
c′0
c′1

. Otherwise, repeat

this process until coefficients c′0, c
′
1, . . . , c

′
i , c
′
i , 0 satisfying c′i A

i⋉⃗x0⃗ ∓c′i−1Ai−1⋉⃗x0⃗ ∓ · · ·⃗ ∓c′1A⋉⃗x0⃗ ∓c′0x0 =

0 are derived. Since [1] proved that x0, A⋉⃗x0, . . . , Ai⋉⃗x0 enter an A-invariant space at finite steps,
{c′0, c

′
1, . . . , c

′
i} is a finite set. Therefore, the minimal A-annihilator of x0 is q(z) = zi + ci−1zi−1 + · · · +

c1z + c0, where c j =
c′j
c′i
, j = 0, 1, . . . , i − 1. □

From the proof of Proposition 2.6, for any x, y ∈ V satisfying x , y, the annihilator polynomials of
x and y may be different. Thus, we define the annihilator polynomial of subset U ⊂ V, which is the
generalization of a conventional annihilator polynomial.

Definition 2.7. Given a matrix A ∈ Mm×km, a subset U ⊂ V and a polynomial

q(z) = zn + cn−1zn−1 + · · · + c1z + c0,

(1) q(z) is called an A-annihilator of U, if q(z) is an A-annihilator of each vector x ∈ U.
(2) If q(z) is the A-annihilator of U with minimum degree, then q(z) is called the minimum A-

annihilator of U.
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Given a matrix A ∈ Mn×n, if q(z) is an A-annihilator of Vn, then q(z) is an A-annihilator of
δi

n, i = 1, 2, . . . , n, i.e., q(A)δi
n = 0, i = 1, 2, . . . , n. q(z) is a conventional annihilator polynomial

because 0 = [q(A)δ1
n q(A)δ2

n · · · q(A)δn
n] = q(A)In = q(A). This implies that an A-annihilator of Vn is

the generalization of a conventional annihilator polynomial. The following proposition proposes an
approach to computing the minimal annihilator polynomial ofVn.

Proposition 2.8. Given a matrix A ∈ Mm×km, if qi(z) is the minimum A-annihilator of δi
n, i = 1, 2, . . . , n,

then q(z) = lcm(q1(z), q2(z), . . . , qn(z)) is the minimum A-annihilator ofVn.

Proof. Obviously, q(z) is an A-annihilator of δi
n, i = 1, 2, . . . , n. For each x ∈ Vn, define x = k1δ

1
n +

k2δ
2
n + · · · + knδ

n
n. Then, q(A)⋉⃗x = q(A)⋉⃗(k1δ

1
n + k2δ

2
n + · · · + knδ

n
n) = k1q(A)⋉⃗δ1

n + k2q(A)⋉⃗δ2
n + · · · +

knq(A)⋉⃗δn
n = 0. Hence, q(z) is an A-annihilator of x. Due to the arbitrariness of x, q(z) is an A-

annihilator ofVn.
Assume f (z) is the minimum A-annihilator of Vn. It is obvious that f (z) | q(z). Since qi(z) is the

minimum A-annihilator of δi
n, i = 1, 2, . . . , n, one sees qi(z) | f (z), i = 1, 2, . . . , n. That is, f (z) is a

common multiple of qi(z), i = 1, 2, . . . , n. Thus, we have q(z) | f (z), which means f (z) = aq(z), a ∈
R, a , 0. From the proof above, we find that q(z) is the minimum A-annihilator ofVn. □

Remark 2. For linear space U = span{x1, x2, . . . , xn}, if qi(z) is the minimal A-annihilator of xi, i =
1, 2, . . . , n, then q(z) = lcm(q1(z), . . . , qn(z)) is the minimal A-annihilator of U.

3. Problem formulation

Consider a cross-dimensional linear system

x(t + 1) = A⋉⃗x(t), x(0) = x0, (3.1)

where A ∈ Mm×n. According to Definition 2.1, system (3.1) can be rewritten as

x(t + 1) = (A ⊗ Is(t)/n)(x(t) ⊗ 1s(t)/r(t)), x(0) = x0,

where r(t) is the dimension of state x(t), s(t) = lcm(n, r(t)). It is a linear difference equation. If
m = n = r(0), then system (3.1) is a conventional linear system. It is seen that r(t) varies with time. If
there exists a time t∗ and a dimension r∗ such that r(t) = r∗ holds for t ≥ t∗, then system (3.1) becomes
a dimension-bounded linear system, which is defined as follows.

Definition 3.1. [10] Consider system (3.1). A is called a dimension-bounded operator, if for any
x(0) = x0 ∈ Vp, there exists a t∗ > 0 and an r∗ such that x(t) ∈ Vr∗ holds for any t ≥ t∗, where Vr∗

is called the invariant space of system (3.1). Additionally, system (3.1) is called a dimension-bounded
linear system.

In this paper, system (3.1) is a dimension-bounded linear system unless otherwise specified.
According to Lemma 3.2, it is reasonable to assume A ∈ Mm×km.

Lemma 3.2. [1] A ∈ Mm×n is dimension-bounded if and only if m | n.

To analyze the reachability of dimension-bounded linear systems, the following definition is
introduced.
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Definition 3.3. Consider dimension-bounded linear system (3.1) with initial spaceVp.
(1) A state x is said to be t-step reachable, if there exists an initial value x(0) ∈ Vp such that the

trajectory of the system reaches x from x(0) at time t.
(2) x is said to be reachable, if there exists an integer t such that x is t-step reachable.
(3) R ⊂ V is called a reachable subset, if each state x ∈ R is reachable.
(4) r is called a reachable dimension of system (3.1), if there exists a state x ∈ Vr such that it is

reachable.

Obviously, there is a difference in the definition of reachability between dimension-bounded linear
systems and conventional linear systems. That is, the reachable dimension is defined for dimension-
bounded linear systems, but needs not to be considered in conventional linear systems. It is necessary to
compute the reachable dimension when studying the reachability of dimension-bounded linear systems.
For example, consider dimension-bounded linear system (3.1) with initial spaceV8, where

A =
[

1 0 1 1
0 1 0 1

]
.

1) How to determine the reachability of a given state x = [2 3 1 2 1]T ?
By computing directly, one sees

x(1) = A⋉⃗x(0) = (A ⊗ I2)x(0) ∈ V4,

x(2) = A⋉⃗x(1) ∈ V2,

x(t) = A⋉⃗x(t − 1) = A(x(t − 1) ⊗ 12) ∈ V2, t ≥ 3.

Thus, x is not a reachable state. This means that discussing the reachable dimension is helpful
in excluding some unreachable states. Although the reachable dimension can be obtained via the
recursive approach [10], the difficulty is providing formulas for computing the reachable dimension
directly.

2) How to determine the reachability of a given state x = [6 4]T ?
It is obvious that the dimension of x is reachable. Taking x(0) = [1 0 0 0 0 0 0 1]T and calculating
step by step, one concludes that x is 3-step reachable. However, there is a difficulty, i.e., how to
determine the corresponding initial state x(0). In fact, it is not necessary to find the corresponding
initial state x(0). The purpose for determining the reachability of a given state can be achieved if
the reachable set of dimension-bounded linear systems is obtained. Thus, this paper focuses on the
computation of the reachable set. Delicate differences between the V-product and the conventional
matrix product increase the difficulty in determining the reachable set.

Based on the analysis above, this paper investigates the reachability of dimension-bounded linear
systems via the following two steps. The first one is to compute all possible reachable dimensions. The
second one is to determine the reachable set.

4. Reachability analysis

This section studies the reachability of dimension-bounded linear systems from four aspects: state
dimension at each time, the t-step reachable subset, the relationship between the invariant space and the
reachable subset after the invariant time point t∗ and the inclusion relation between reachable subsets
at times t∗ + i and t∗ + j.
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4.1. The discussion of state dimension

This subsection proposes a method for determining whether a given integer is a reachable
dimension. To this end, an example is provided to show the relationship between reachable
dimensions and dimensions of system matrix A and initial spaceVp.

Example 4.1. Consider a dimension-bounded linear system x(t + 1) = A⋉⃗x(t) with A ∈ Mm×km and
initial value x(0) ∈ Vp. Denote the dimension of state x(t) by r(t). According to Definition 2.1,
r(t + 1) = s(t)

k can be obtained via x(t + 1) = (A ⊗ Is(t)/km)(x(t) ⊗ 1s(t)/r(t)) ∈ Vs(t)/k, where s(t) =
lcm(km, r(t)). Taking three different values of k,m, p, the change of r(t) is shown in Table 1.

Table 1. The change of state dimension r(t).

state dimension
m = 10
k = 6
p = 68040

m = 6
k = 20
p = 30

m = 48
k = 1715
p = 18900

r(0) 23 × 35 × 5 × 7 2 × 3 × 5 22 × 33 × 52 × 7
r(1) 22 × 34 × 5 × 7 2 × 3 24 × 33 × 5
r(2) 2 × 33 × 5 × 7 2 × 3 24 × 33

r(3) 2 × 32 × 5 × 7 2 × 3 24 × 33

r(4) 2 × 3 × 5 × 7 2 × 3 24 × 33

r(5) 2 × 5 × 7 2 × 3 24 × 33

r(6) 2 × 5 × 7 2 × 3 24 × 33

r(7) 2 × 5 × 7 2 × 3 24 × 33

· · · · · · · · · · · ·

From Table 1, the following conclusions are derived.
(1) State dimensions before the invariant time point t∗ decrease with time.
(2) One obtains m | r(t).
(3) There may be a factor m1 of m such that mm1 | r(t) holds.
(4) Comparing r(t) with r(t−1), t ≤ t∗, it is easy to see that r(t−1) = k1lr(t), where k1 | k, l ∈ N, l , 0.
(5) If kak1 | r(t), where k1 | k, k1 ∤ m, a ∈ N, then ka−1k1 | r(t + 1), . . . , k1 | r(t + a), k ∤ r(t + a), k1 ∤

r(t + a + 1).

Example 4.1 shows the necessity of factorizing dimensions of system matrix A and initial space
Vp before computing state dimensions of system (3.1). Assume k = kµ1

1 kµ2
2 · · · k

µϖ
ϖ ,m = mν11 mν22 · · ·m

νω
ω ,

where ki,m j, i = 1, 2, . . . , ϖ, j = 1, 2, . . . , ω are prime numbers. p is factorized according to the
following steps.

(1) Write p in the form of p = kαp′, where k ∤ p′.
(2) Write p′ in the form of p′ = kβ1

1 kβ2
2 · · · k

βϖ
ϖ p′′, where ki ∤ p′′, i = 1, . . . , ϖ. Due to k ∤ p′, there is

at least one positive integer l such that βl < µl holds.
(3) Write p′′ in the form of p′′ = mθ11 mθ22 · · ·m

θω
ω p1, where mi ∤ p1, i = 1, . . . , ω. If ki = m j, then

θ j = 0, i.e., mθ j

j = 1. Hence, we assume (mi, k) = 1, i = 1, . . . , ω.
To give the expression of state dimension r(t) better, some assumptions are presented.

Assumption 1. Assume k = kµ1
1 kµ2

2 · · · k
µϖ
ϖ , m = mν11 mν22 · · · mνωω , where ki,m j, i = 1, 2, . . . , ϖ, j =

1, 2, . . . , ω are prime numbers. Write p in form of p = kαkβ1
1 kβ2

2 · · · k
βϖ
ϖ mθ11 mθ22 · · ·m

θω
ω p1, where
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0 < d ≤ ϖ, βi < µi, i ≤ d;
βi = τiµi + ηi, ηi < µi, i > d, τi ≤ τ j, i < j;
0 < l ≤ ω; νi > θi, i ≤ l; νi ≤ θi, i > l;
(p1, km) = 1, (mi, k) = 1, i = 1, 2, . . . , ω;
{µi, ν j, α, βi, θ j, i = 1, 2, . . . , ϖ, j = 1, 2, . . . , ω} ⊂ N.

Theorem 4.2. Consider dimension-bounded linear system (3.1) with initial space Vp. Under
Assumption 1, state dimension r(t) can be computed directly.

(1) If t ≤ α, then state dimension r(t) is

r(t) = mkα−t
ϖ∏

i=1

kβi
i

ω∏
j=l

mθ j−ν j

j p1.

(2) Let τd = 0. If α + τk < t ≤ α + τk+1, k = d, d + 1, . . . , ϖ − 1, then state dimension r(t) is

r(t) = m
ϖ∏

i=k+1

k(τi+α−t)µi+ηi
i

ω∏
j=l

mθ j−ν j

j p1.

(3) If t ≥ α + τϖ + 1, then state dimension r(t) is

r(t) = m
ω∏
j=l

mθ j−ν j

j p1.

Proof. According to Definition 2.1, r(t + 1) =
s(t)
k can be obtained via x(t + 1) =

(A ⊗ Is(t)/km)(x(t) ⊗ 1s(t)/r(t)) ∈ Vs(t)/k, where s(t) = lcm(km, r(t)). Due to r(0) = p = kα
ϖ∏

i=1
kβi

i

ω∏
j=l

mθ j

j p1,

one sees s(0) = mkα
ϖ∏

i=1
kβi

i

ω∏
j=l

mθ j−ν j

j p1. Thus, r(1) = mkα−1
ϖ∏

i=1
kβi

i

ω∏
j=l

mθ j−ν j

j p1. It is easy to see that

s(t) = mkα−t
ϖ∏

i=1
kβi

i

ω∏
j=l

mθ j−ν j

j p1 holds for t ≤ α − 1, which means r(t + 1) = mkα−t−1
ϖ∏

i=1
kβi

i

ω∏
j=l

mθ j−ν j

j p1.

Similarly, we have s(t) = km
ϖ∏

i=k+1
k(τi+α−t)µi+ηi

i

ω∏
j=l

mθ j−ν j

j p1 for α + τk < t ≤ α + τk+1, k = d, d + 1,

. . . , ϖ − 1. Hence, r(t + 1) = m
ϖ∏

i=k+1
k(τi+α−t−1)µi+ηi

i

ω∏
j=l

mθ j−ν j

j p1 holds. When t ≥ α + τω, it is seen that

s(t) = km
ω∏
j=l

mθ j−ν j

j p1 and r(t + 1) = m
ω∏
j=l

mθ j−ν j

j p1. □

Remark 3. It is worth noting that the number of multiplication operations of state dimension r(t) is not
more than α +ϖβ + ωγ + 3, where β = max{β1, . . . , βϖ} and γ = max{θ1 − ν1, . . . , θω − νω}.

Consider system (3.1) with A ∈ M2×6. when x(0) ∈ V5, the invariant time point of system (3.1) is
t∗ = 1. The invariant time point of system (3.1) is t∗ = 2 if x(0) ∈ V18. This shows that the invariant
time point t∗ of system (3.1) depends on the dimension of the initial value. Hence, we denote the
invariant time point t∗ as t∗(p) with p being the dimension of the initial value.

Remark 4. From Theorem 4.2, the invariant time point t∗ of system (3.1) can be calculated via the
formula t∗(p) = α + τϖ + 1.
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Based on Theorem 4.2, a method is given to determine whether r is a reachable dimension of system
(3.1).

Corollary 4.3. Consider dimension-bounded linear system (3.1) with initial space Vp. For a given
vector spaceVr, r is a reachable dimension of system (3.1), if one of the following conditions holds.

(1) r = r∗ = m
ω∏
j=l

mθ j−ν j

j p1.

(2) r
r∗ = kα−t

ϖ∏
i=1

kβi
i , t ≤ α.

(3) r
r∗ =

ϖ∏
i=k+1

k(τi+α−t)µi+ηi
i , α + τk < t ≤ α + τk+1, k = d, d + 1, . . . , ϖ − 1.

4.2. Reachable subsets

Reachable subsets are computed in this subsection. Since V-product is linear with respect to the
second variable, it is easy to prove that the t-step reachable subset is a linear space.

Theorem 4.4. Consider dimension-bounded linear system (3.1) with initial space Vp. The t-step
reachable subset of the system is a linear space. Moreover, the t-step reachable subset is called the
t-step reachable subspace and calculated via

Rt = span{At⋉⃗δ1
p, A

t⋉⃗δ2
p, . . . , A

t⋉⃗δp
p}.

Remark 5. For a given time t, to derive the t-step reachable subspace of dimension-bounded linear
systems, up to pt matrix multiplications are required according to Theorem 4.4. For each matrix
multiplication, the number of multiplication operations is not more than max{2m3k2t−1, 3a2

kt }, where
a = lcm(ktm, p). Thus, the computational complexity of obtaining the t-step reachable subspace is
O(p2tm3k2t).

On the basis of Theorem 4.4, a necessary and sufficient condition about x ∈ Rt is provided.

Theorem 4.5. Consider dimension-bounded linear system (3.1) with initial space Vp. A state x is
t-step reachable if and only if

rank(x, At⋉⃗δ1
p, A

t⋉⃗δ2
p, . . . , A

t⋉⃗δp
p) = dim Rt,

where dim Rt is the dimension of the t-step reachable subspace.

Remark 6. For a dimension-unbounded linear system, results about the t-step reachable subspace also
hold.

Suppose system (3.1) reaches the invariant spaceVr∗ at the invariant time point t∗. Then,
⋃

t≥t∗ Rt ⊂

Vr∗ is the reachable subset of system (3.1) after time t∗. Our concern is whether
⋃

t≥t∗ Rt equals Vr∗ .
Annihilator polynomials are used to answer this question. To this end, an approach to obtaining the
minimum A-annihilator of

⋃
t≥t∗ Rt is given.

Theorem 4.6. Consider dimension-bounded linear system (3.1) with initial space Vp. If qi(z) is the
minimum A-annihilator of At∗⋉⃗δi

p, i = 1, 2, . . . , p, then q(z) = lcm(q1(z), q2(z), . . . , qp(z)) is the
minimum A-annihilator of

⋃
t≥t∗ Rt.
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Proof. The proof is obvious according to Proposition 2.8. □

Remark 7. qi(z) in Proposition 2.8 stands for the minimum annihilator of δi
n, while qi(z) in Theorem

4.6 represents the minimum annihilator of At∗⋉⃗δi
p. It is easy to see Vn = span{δ1

n, . . . , δ
n
n}. However,⋃

t≥t∗ Rt = span{At∗⋉⃗δ1
p, . . . , A

t∗⋉⃗δp
p} does not hold. Assume qi(z) is the minimum A-annihilator of

At∗⋉⃗δi
p, i = 1, 2, . . . , p. Using Proposition 2.8, one sees that q(z) = lcm(q1(z), . . . , qp(z)) is the

minimum A-annihilator of Rt∗ . However, the conclusion that q(z) = lcm(q1(z), . . . , qp(z)) is the
minimum A-annihilator of

⋃
t≥t∗ Rt cannot be obtained according to Proposition 2.8. Thus, Theorem

4.6 is presented to show that q(z) = lcm(q1, . . . , qp(z)) is the minimum A-annihilator of
⋃

t≥t∗ Rt. Since
the proof of Theorem 4.6 is similar to Proposition 2.8, it is omitted.

According to the definition of annihilator polynomial of a given subset, a sufficient condition of⋃
t≥t∗ Rt , Vr∗ is proposed.

Theorem 4.7. Consider dimension-bounded linear system (3.1). Suppose q(z) is the minimum A-
annihilator of

⋃
t≥t∗ Rt. If q(z) is not the minimum A-annihilator ofVr∗ , then

⋃
t≥t∗ Rt , Vr∗ .

Proof. Since q(z) is not the minimum A-annihilator of Vr∗ , there exists an x ∈ Vr∗ such that q(z) is
not an A-annihilator of x. Thus, x <

⋃
t≥t∗ Rt because q(z) is the minimum A-annihilator of

⋃
t≥t∗ Rt.

Therefore, we conclude
⋃

t≥t∗ Rt , Vr∗ . □

From Theorem 4.7, a necessary condition of x ∈
⋃

t≥t∗ Rt is presented.

Corollary 4.8. Consider dimension-bounded linear system (3.1). Suppose q(z) is the minimum A-
annihilator of

⋃
t≥t∗ Rt. If state x is reachable after time t∗, then q(z) is the minimum A-annihilator of

x.

Remark 8. Based on the obtained results, a procedure is given to compute the reachable set of
dimension-bounded linear system (3.1) and determine whether a given state is reachable. Consider
dimension-bounded linear system (3.1) with initial spaceVp.

1) Compute all possible reachable dimensions according to Theorem 4.2. Denote these reachable
dimensions by Θ = {r1, . . . , rt∗}, where t∗ is the invariant time point.

2) Compute the t-step reachable subspace via Rt = span{At⋉⃗δ1
p, A

t⋉⃗δ2
p, . . . , A

t⋉⃗δp
p}. Then, the reachable

set is
∞⋃

t=0
Rt.

3) Compute the minimum A-annihilator of
⋃

t≥t∗ Rt according to Theorem 4.6, denoted by q(z).

4) For a given state x ∈ Vr, if r < Θ, then r is not a reachable dimension. Thus, x is not a reachable
state of system (3.1). Otherwise, go to the next step.

5) If r = rt, t < t∗, then compute rank(x, At⋉⃗δ1
p, A

t⋉⃗δ2
p, . . . , A

t⋉⃗δp
p). If rank(x, At⋉⃗δ1

p, A
t⋉⃗δ2

p, . . . ,

At⋉⃗δp
p) = dim Rt, then x is a t-step reachable state. Otherwise, x is not a t-step reachable state.

6) If r = rt∗ , then compute the minimum A-annihilator of x, denoted by qx(z). If qx(z) , q(z), then x is
not a reachable state. Otherwise, go to the next step.

7) For t ≥ t∗, compute rank(x, At⋉⃗δ1
p, A

t⋉⃗δ2
p, . . . , A

t⋉⃗δp
p). If a time t satisfying rank(x, At⋉⃗δ1

p, A
t⋉⃗δ2

p,

. . . , At⋉⃗δp
p) = dim Rt can be found, then x is a reachable state. Otherwise, x is not a reachable state.

Mathematical Biosciences and Engineering Volume 20, Issue 1, 489–504.



500

Before ending this subsection, an example is employed to show how to use the minimum annihilator
polynomial to discuss reachability of dimension-bounded linear systems. In addition, this example
also illustrates that there is not an inclusion relation between reachable subspaces at times t∗ + i and
t∗ + j, i , j. Furthermore, the intersection of Rt∗+i and Rt∗+ j may not be an empty set.

Example 4.9. Consider dimension-bounded linear system (3.1) with initial spaceV3, where

A =
[

1 0 1 1
0 1 0 1

]
.

From subsection 4.1, one sees that the system reaches the invariant space V6 after the invariant time
point t∗ = 1.

(1) We calculate the minimum A-annihilator of
⋃

t≥1 Rt. To begin with, A j⋉⃗δi
3, i = 1, 2, 3,

j = 1, 2, 3, 4, 5, can be computed. Because rank(A⋉⃗δ2
3, A

2⋉⃗δ2
3, A3⋉⃗δ2

3) = 3, and rank(A⋉⃗δi
3, A

2⋉⃗δi
3,

A3⋉⃗δi
3, A

4⋉⃗δi
3) = 4, i = 1, 3, one obtains

A5⋉⃗δ1
3 = 2A4⋉⃗δ1

3 + 2A3⋉⃗δ1
3 − 2A2⋉⃗δ1

3 − A⋉⃗δ1
3,

A4⋉⃗δ2
3 = A3⋉⃗δ2

3 + 3A2⋉⃗δ2
3 + A⋉⃗δ2

3,

A5⋉⃗δ3
3 = 2A4⋉⃗δ3

3 + 2A3⋉⃗δ3
3 − 2A2⋉⃗δ3

3 − A⋉⃗δ3
3.

Denote the minimum A-annihilator of A⋉⃗δi
3 by qi(z), i = 1, 2, 3. It is easy to see that

q1(z) = z4 − 2z3 − 2z2 + 2z + 1,
q2(z) = z3 − z2 − 3z − 1,
q3(z) = z4 − 2z3 − 2z2 + 2z + 1.

According to Theorem 4.6, the minimum A-annihilator of
⋃

t≥1 Rt is

q(z) = lcm(q1(z), q2(z), q3(z)) = z4 − 2z3 − 2z2 + 2z + 1.

(2) From Proposition 2.8, we derive that the minimum A-annihilator ofV6 is f (z) = z6 − 2z5 − 2z4 +

2z3 + z2. Because f (z) = z2q(z), we have
⋃

t≥1 Rt , V6.
(3) Take a subset U = span{A⋉⃗δ1

3, A⋉⃗δ
2
3}. The minimum A-annihilator of U is q(z). In addition, q(z)

is also the minimum A-annihilator of A⋉⃗δ3
3. Since rank(A⋉⃗δ1

3, A⋉⃗δ
2
3, A⋉⃗δ

3
3) = 3 > dim U, one knows

A⋉⃗δ3
3 < U, which implies that the condition that q(z) is the minimum A-annihilator of A⋉⃗δ3

3 is not a
sufficient condition of A⋉⃗δ3

3 ∈ U. Furthermore, for any x ∈ V6, the condition that q(z) is the minimum
A-annihilator of x is a necessary but not sufficient condition of x ∈

⋃
t≥1 Rt.

(4) Take y1 = [2 2 3 2 1 1]T . y1 = A2⋉⃗δ2
3 implies y1 ∈ R2. In addition, one has y1 = A⋉⃗δ1

3 + A⋉⃗δ3
3,

which means y1 ∈ R1. Thus, we conclude R1∩R2 , ∅. Take y2 = [3 3 3 2 3 3]T and y3 = [0 0 1 1 −1 −
1]T . Because y2 = A2⋉⃗δ3

3 and y3 = A⋉⃗δ1
3 − A⋉⃗δ2

3, one sees y2 ∈ R2 and y3 ∈ R1. In addition, y2 < R1 and
y3 < R2 hold because rank(y2, A⋉⃗δ1

3, A⋉⃗δ
2
3, A⋉⃗δ

3
3) = 4 and rank(y3, A2⋉⃗δ1

3, A
2⋉⃗δ2

3, A
2⋉⃗δ3

3) = 4. Based on
the analysis above, we conclude R1 1 R2 and R2 1 R1.

5. Conclusions

The reachability of dimension-bounded linear systems has been studied in this paper. Based on the
expression of state dimension at each time, a method for judging the reachability of a given vector space
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Vr has been proposed. Since the t-step reachable subset is a linear space, the t-step reachable subset has
been calculated via the span of vectors At⋉⃗δ1

p, . . . , A
t⋉⃗δp

p, where A is a system matrix. A rank condition
has been given to verify the t-step reachability of a given state. To illustrate the relationship between
the invariant space and the reachable subset after the invariant time point t∗, annihilator polynomials
have been discussed. The obtained results have shown that A-annihilator of vector space Vn is the
generalization of conventional annihilator polynomial, where A is a given matrix. This paper has
provided an example to explain the inclusion relation between reachable subsets at times t∗ + i and
t∗ + j.

There is no evidence to prove that the existing reachability analysis techniques are not suitable for
dimension-bounded linear systems. It is worth noting that dimension-bounded linear systems are
modelled via one of the Cheng operations, i.e., V-product, while the existing techniques are based on
the conventional matrix product. Thus, the effectiveness of the existing reachability analysis
techniques in studying dimension-bounded linear systems should be studied further. This is one of our
future works. In addition, reachability and controllability of dimension-varying control systems will
be focused on. A dimension-varying control system is described as

x(t + 1) = A⋉⃗x(t)⃗ ∓B⋉⃗u(t), x(0) = x0, (5.1)

where A ∈ Mm×n and B ∈ Mp×q. Due to the influence of control input, it is not clear that the results
about the reachability of system (5.1) are the same as dimension-bounded linear systems. Thus, the
reachability of a dimension-varying control system needs to be investigated. Based on the existing
results, the reachability of dimension-varying control systems is summarized into two problems. For
a given vector space Vr, are there a time t and control inputs such that state dimension r(t) of system
(5.1) is r? For a given state x ∈ Vr, are there a time t and control inputs such that the trajectory of
system (5.1) can reach x(t) = 0 from x(0) = x?
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32. M. Maı̈ga, N. Ramdani, L. Travé-Massuyès, C. Combastel, A comprehensive method for
reachability analysis of uncertain nonlinear hybrid systems, IEEE Trans. Autom. Control, 61
(2015), 2341–2356. https://doi.org/10.1109/TAC.2015.2491740

33. A. Chutinan, B. Krough, Conputational techniques for hybrid system verification, IEEE Trans.
Autom. Control, 48 (2003), 64–75. https://doi.org/10.1109/TAC.2002.806655

34. M. Althoff, C. Le Guerinic, B. Krogh, Reachable set computation for uncertain time-varying linear
systems, in The 14th International Conference on Hybrid Systems: Computation and Control,
(2011), 93–102. https://doi.org/10.1145/1967701.1967717

35. M. Althoff, Formal and compositional analysis of power systems using reachable sets, IEEE Trans.
Power Syst., 29 (2014), 2270–2280. https://doi.org/10.1109/TPWRS.2014.2306731

36. C. Le Guernic, A. Girard, Reachbility analysis of linear systems using support functions,
Nonlinear Anal. Hybrid Syst., 4 (2010), 250–260. https://doi.org/10.1016/j.nahs.2009.03.002

Mathematical Biosciences and Engineering Volume 20, Issue 1, 489–504.

http://dx.doi.org/https://doi.org/10.1007/s11432-018-9575-4
http://dx.doi.org/https://doi.org/10.1016/j.amc.2016.04.013
http://dx.doi.org/https://doi.org/10.1080/00207179.2013.827798
http://dx.doi.org/https://doi.org/10.1016/j.automatica.2014.11.007
http://dx.doi.org/https://doi.org/10.1080/00207179.2018.1479076
http://dx.doi.org/https://doi.org/10.1109/TAC.2020.2964558
http://dx.doi.org/https://doi.org/10.1016/j.automatica.2020.108981
http://dx.doi.org/https://dx.doi.org/10.1146/annurev-control-071420-081941
http://dx.doi.org/https://doi.org/10.1007/978-3-642-39799-8_18
http://dx.doi.org/https://doi.org/10.1109/TAC.2006.887900
http://dx.doi.org/https://doi.org/10.1109/TAC.2015.2491740
http://dx.doi.org/https://doi.org/10.1109/TAC.2002.806655
http://dx.doi.org/https://doi.org/10.1145/1967701.1967717
http://dx.doi.org/https://doi.org/10.1109/TPWRS.2014.2306731
http://dx.doi.org/https://doi.org/10.1016/j.nahs.2009.03.002


504

37. Y. Guo, Observability of Boolean control networks using parallel extension and
set reachability, IEEE Trans. Neural Netw. Learn. Syst., 29 (2018), 6402–6408.
https://doi.org/10.1109/TNNLS.2018.2826075

38. O. Bokanowski, A. Picarelli H. Zidani, State-constrained stochastic optimal control
problems via reachability approach, SIAM J. Control Optim., 54 (2016), 2568–2593.
https://doi.org/10.1137/15M1023737

39. J. Su, W. Chen, Model-based fault diagnosis system verification using
reachability analysis, IEEE Trans. Syst. Man Cybern. Syst., 49 (2019), 742–751.
https://doi.org/10.1109/TSMC.2017.2710132

40. W. Xiang, H. Tran, T. Johnson, Output reachable set estimation for switched linear systems
and its application in safety verification, IEEE Trans. Autom. Control, 62 (2017), 5380–5387.
https://doi.org/10.1109/TAC.2017.2692100

41. J. Feng, B. Wang, Y. Yu, On dimensions of linear discrete dimension-unbounded systems, Int. J.
Control Autom. Syst., 19 (2021), 471–477. https://doi.org/10.1007/s12555-019-0147-9

42. P. Zhao, H. Guo, Y. Yu, J. Feng, On dimensions of dimension-bounded linear systems, Sci. China
Inf. Sci., 64 (2021), 159202:1–159202:3. https://doi.org/10.1007/s11432-018-9819-8

© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 20, Issue 1, 489–504.

http://dx.doi.org/https://doi.org/10.1109/TNNLS.2018.2826075
http://dx.doi.org/https://doi.org/10.1137/15M1023737
http://dx.doi.org/https://doi.org/10.1109/TSMC.2017.2710132
http://dx.doi.org/https://doi.org/10.1109/TAC.2017.2692100
http://dx.doi.org/https://doi.org/10.1007/s12555-019-0147-9
http://dx.doi.org/https://doi.org/10.1007/s11432-018-9819-8
http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Notations
	Annihilator polynomial

	Problem formulation
	Reachability analysis
	The discussion of state dimension
	Reachable subsets

	Conclusions

