Research article Special Issues

Unravelling the dynamics of Lassa fever transmission with differential infectivity: Modeling analysis and control strategies


  • Received: 30 May 2022 Revised: 23 August 2022 Accepted: 28 August 2022 Published: 06 September 2022
  • Epidemic models have been broadly used to comprehend the dynamic behaviour of emerging and re-emerging infectious diseases, predict future trends, and assess intervention strategies. The symptomatic and asymptomatic features and environmental factors for Lassa fever (LF) transmission illustrate the need for sophisticated epidemic models to capture more vital dynamics and forecast trends of LF outbreaks within countries or sub-regions on various geographic scales. This study proposes a dynamic model to examine the transmission of LF infection, a deadly disease transmitted mainly by rodents through environment. We extend prior LF models by including an infectious stage to mild and severe as well as incorporating environmental contributions from infected humans and rodents. For model calibration and prediction, we show that the model fits well with the LF scenario in Nigeria and yields remarkable prediction results. Rigorous mathematical computation divulges that the model comprises two equilibria. That is disease-free equilibrium, which is locally-asymptotically stable (LAS) when the basic reproduction number, $ {\mathcal{R}}_{0} $, is $ < 1 $; and endemic equilibrium, which is globally-asymptotically stable (GAS) when $ {\mathcal{R}}_{0} $ is $ > 1 $. We use time-dependent control strategy by employing Pontryagin's Maximum Principle to derive conditions for optimal LF control. Furthermore, a partial rank correlation coefficient is adopted for the sensitivity analysis to obtain the model's top rank parameters requiring precise attention for efficacious LF prevention and control.

    Citation: Salihu S. Musa, Abdullahi Yusuf, Emmanuel A. Bakare, Zainab U. Abdullahi, Lukman Adamu, Umar T. Mustapha, Daihai He. Unravelling the dynamics of Lassa fever transmission with differential infectivity: Modeling analysis and control strategies[J]. Mathematical Biosciences and Engineering, 2022, 19(12): 13114-13136. doi: 10.3934/mbe.2022613

    Related Papers:

  • Epidemic models have been broadly used to comprehend the dynamic behaviour of emerging and re-emerging infectious diseases, predict future trends, and assess intervention strategies. The symptomatic and asymptomatic features and environmental factors for Lassa fever (LF) transmission illustrate the need for sophisticated epidemic models to capture more vital dynamics and forecast trends of LF outbreaks within countries or sub-regions on various geographic scales. This study proposes a dynamic model to examine the transmission of LF infection, a deadly disease transmitted mainly by rodents through environment. We extend prior LF models by including an infectious stage to mild and severe as well as incorporating environmental contributions from infected humans and rodents. For model calibration and prediction, we show that the model fits well with the LF scenario in Nigeria and yields remarkable prediction results. Rigorous mathematical computation divulges that the model comprises two equilibria. That is disease-free equilibrium, which is locally-asymptotically stable (LAS) when the basic reproduction number, $ {\mathcal{R}}_{0} $, is $ < 1 $; and endemic equilibrium, which is globally-asymptotically stable (GAS) when $ {\mathcal{R}}_{0} $ is $ > 1 $. We use time-dependent control strategy by employing Pontryagin's Maximum Principle to derive conditions for optimal LF control. Furthermore, a partial rank correlation coefficient is adopted for the sensitivity analysis to obtain the model's top rank parameters requiring precise attention for efficacious LF prevention and control.



    加载中


    [1] S. S. Musa, S. Zhao, D. Gao, Q. Lin, G. Chowell, D. He, Mechanistic modelling of the large-scale Lassa fever epidemics in Nigeria from 2016 to 2019, J. Theoret. Biol., 493 (2020), 110209. https://doi.org/10.1016/j.jtbi.2020.110209 doi: 10.1016/j.jtbi.2020.110209
    [2] A. R. Akhmetzhanov, Y. Asai, H. Nishiura, Quantifying the seasonal drivers of transmission for Lassa fever in Nigeria, Philos. Trans. R. Soc. B, 374 (2019), 20180268. https://doi.org/10.1098/rstb.2018.0268 doi: 10.1098/rstb.2018.0268
    [3] S. Kenmoe, S. Tchatchouang, J. T. Ebogo-Belobo, A. C. Ka'e, G. Mahamat, R. E. Guiamdjo Simo, et al., Systematic review and meta-analysis of the epidemiology of Lassa virus in humans, rodents and other mammals in sub-Saharan Africa, PLoS Negl. Trop. Dis., 14 (2020), e0008589. https://doi.org/10.1371/journal.pntd.0008589 doi: 10.1371/journal.pntd.0008589
    [4] D. W. Redding, R. Gibb, C. C. Dan-Nwafor, E. A. Ilori, R. U. Yashe, S. H. Oladele, et al., Geographical drivers and climate-linked dynamics of Lassa fever in Nigeria, Nat. Commun., 12 (2021), 5759, https://doi.org/10.1038/s41467-021-25910-y doi: 10.1038/s41467-021-25910-y
    [5] R. Gibb, L. M. Moses, D. W. Redding, K. E. Jones, Understanding the cryptic nature of Lassa fever in West Africa, Pathog. Glob. Health, 111 (2017), 276–288. https://doi.org/10.1080/20477724.2017.1369643 doi: 10.1080/20477724.2017.1369643
    [6] A. N. Happi, C. T. Happi, R. J. Schoepp, Lassa fever diagnostics: past, present, and future, Curr Opin Virol., 37 (2019), 132–138. https://doi.org/10.1016/j.coviro.2019.08.002 doi: 10.1016/j.coviro.2019.08.002
    [7] K. D. Min, J. H wang, M. C. Schneider, Y. So, J. Y. Lee, S. I. Cho, An exploration of the protective effect of rodent species richness on the geographical expansion of Lassa fever in West Africa, PLoS Negl. Trop. Dis., 15 (2021), e0009108. https://doi.org/10.1371/journal.pntd.0009108 doi: 10.1371/journal.pntd.0009108
    [8] S. S. Musa, S. Zhao, Z. U. Abdullahi, A. G. Habib, D. He, COVID-19 and Lassa fever in Nigeria: A deadly alliance?, Int. J. Infect. Dis., 117 (2022), 45–47. https://doi.org/10.1016/j.ijid.2022.01.058 doi: 10.1016/j.ijid.2022.01.058
    [9] A. Abdulhamid, N. Hussaini, S. S. Musa, D. He, Mathematical analysis of Lassa fever epidemic with effects of environmental transmission, Results Phys., 35 (2022), 105335. https://doi.org/10.1016/j.rinp.2022.105335 doi: 10.1016/j.rinp.2022.105335
    [10] A. Thielebein, Y. Ighodalo, Taju A, T. Olokor, R. Omiunu, R. Esumeh, et al., Virus persistence after recovery from acute Lassa fever in Nigeria: a 2-year interim analysis of a prospective longitudinal cohort study, Lancet Microb., 3 (2022), e32–40. https://doi.org/10.1016/S2666-5247(21)00178-6 doi: 10.1016/S2666-5247(21)00178-6
    [11] O. J. Peter, A. I. Abioye, F. A. Oguntolu, T. A. Owolabi, M. O. Ajisope, A. G. Zakari, et al., Modelling and optimal control analysis of Lassa fever disease, Inform. Med. Unlocked, 20 (2020), 100419. https://doi.org/10.1016/j.imu.2020.100419 doi: 10.1016/j.imu.2020.100419
    [12] E. A. Bakare, E. B. Are, O. E. Abolarin, S. A. Osanyinlusi, B. Ngwu, O. N. Ubaka, Mathematical modelling and analysis of transmission dynamics of Lassa fever, J. Appl. Math., 2020 (2020), 6131708, https://doi.org/10.1155/2020/6131708 doi: 10.1155/2020/6131708
    [13] World Health Organization, Lassa fever Key Facts, 2017. Available from: https://www.who.int/news-room/fact-sheets/detail/lassa-fever.
    [14] Centers for Disease Control and Prevention, Lassa fever, 2022. Available from: https://www.cdc.gov/vhf/lassa/transmission/index.html.
    [15] I. S. Onah, O. C. Collins, P. G. Madueme, G. C. Mbah, Dynamical system analysis and optimal control measures of Lassa fever disease model, Int. J. Math. Sci., 2020 (2020). https://doi.org/10.1155/2020/7923125 doi: 10.1155/2020/7923125
    [16] E. Fichet-Calvet, D. J. Rogers, Risk maps of Lassa fever in West Africa, PLoS Negl. Trop. Dis., 3 (2009), e388. https://doi.org/10.1371/journal.pntd.0000388 doi: 10.1371/journal.pntd.0000388
    [17] I. S. Abdulraheem, Public health importance of Lassa fever epidemiology, clinical features and current management review of literature, Afr. J. Clin. Exper. Micro., 3 (2002), 33–37. https://doi.org/10.4314/ajcem.v3i1.7349 doi: 10.4314/ajcem.v3i1.7349
    [18] J. Wang, S. Zhao, X. Chen, Z. Huang, M. K. Chong, Z. Guo, et al., The reproductive number of Lassa fever: a systematic review, J. Trav. Med., 28 (2021), taab029. https://doi.org/10.1093/jtm/taab029 doi: 10.1093/jtm/taab029
    [19] A. P. Salam, A. Duvignaud, M. Jaspard, D. Malvy, M. Carroll, J. Tarning, et al., Ribavirin for treating Lassa fever: A systematic review of pre-clinical studies and implications for human dosing, PLoS Negl. Trop. Dis., 16 (2022), e0010289. https://doi.org/10.1371/journal.pntd.0010289 doi: 10.1371/journal.pntd.0010289
    [20] A. Abdullahi, Modelling of transmission and control of Lassa fever via Caputo fractional-order derivative, Chaos Solit. Fract., 151 (2021), 111271. https://doi.org/10.1016/j.chaos.2021.111271 doi: 10.1016/j.chaos.2021.111271
    [21] S. Zhao, S. S. Musa, H. Fu, D. He, J. Qin, Large-scale Lassa fever outbreaks in Nigeria: quantifying the association between disease reproduction number and local rainfall, Epidem. Infect., 148 (2020), e4. https://doi.org/10.1017/S0950268819002267 doi: 10.1017/S0950268819002267
    [22] A. Abdulhamid, N. Hussaini, Effects of quarantine on transmission dynamics of Lassa fever, Bayero J. Pure Appl. Sci., 11 (2018), 397–407. https://doi.org/10.4314/bajopas.v11i1.64S doi: 10.4314/bajopas.v11i1.64S
    [23] A. Abidemi, K. M. Owolabi, E. Pindza, Modelling the transmission dynamics of Lassa fever with nonlinear incidence rate and vertical transmission, Phys. A Stat. Mech. Appl., 597 (2022), 127259. https://doi.org/10.1016/j.physa.2022.127259 doi: 10.1016/j.physa.2022.127259
    [24] Nigeria Centre for Disease Control, Disease Situation Report, 2022. Available from: https://ncdc.gov.ng/diseases/sitreps.
    [25] A. Denes, A. B. Gumel, Modeling the impact of quarantine during an outbreak of Ebola virus disease, Infect. Dis. Model., 4 (2019), 12–27. https://doi.org/10.1016/j.idm.2019.01.003 doi: 10.1016/j.idm.2019.01.003
    [26] M. A. Safi, A. B. Gumel, Qualitative study of a quarantine/isolation model with multiple disease stages, Appl. Math. Comput., 218 (2011), 1941–1961. https://doi.org/10.1016/j.amc.2011.07.007 doi: 10.1016/j.amc.2011.07.007
    [27] K. Okuneye, A. B. Gumel, Analysis of a temperature- and rainfall-dependent model for malaria transmission dynamics, Math. Biosci., 287 (2017), 72–92. http://dx.doi.org/10.1016/j.mbs.2016.03.013 doi: 10.1016/j.mbs.2016.03.013
    [28] N. Hussaini, K. Okuneye, A. B. Gumel, Mathematical analysis of a model for zoonotic visceral leishmaniasis, Infect. Dis. Model., 2 (2017), 455–474. https://doi.org/10.1016/j.idm.2017.12.002 doi: 10.1016/j.idm.2017.12.002
    [29] P. Van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/s0025-5564(02)00108-6 doi: 10.1016/s0025-5564(02)00108-6
    [30] F. B. Agusto, M. I. Teboh-Ewungkem, A. B. Gumel, Mathematical assessment of the effect of traditional beliefs and customs on the transmission dynamics of the 2014 Ebola outbreaks, BMC Med., 13 (2015), 96. https://doi.org/10.1186/s12916-015-0318-3 doi: 10.1186/s12916-015-0318-3
    [31] P. Van den Driessche P, Reproduction numbers of infectious disease models, Infect. Dis. Model., 2 (2017), 288–303. https://doi.org/10.1016/j.idm.2017.06.002 doi: 10.1016/j.idm.2017.06.002
    [32] O. Diekmann, J. A. Heesterbeek, J. A. Metz, On the definition and the computation of the basic reproduction ratio R 0 in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365–382. https://doi.org/10.1007/BF00178324 doi: 10.1007/BF00178324
    [33] J. P. LaSalle, The stability of dynamical systems, regional conference series in applied mathematics, Society for Industrial and Applied Mathematics, 1976.
    [34] C. Yang, X. Wang, D. Gao, J. Wang, Impact of awareness programs on cholera dynamics: Two modeling approaches, Bull. Math. Biol., 79 (2017), 2109–2131. https://doi.org/10.1007/s11538-017-0322-1 doi: 10.1007/s11538-017-0322-1
    [35] S. S. Musa, S. Zhao, N. Hussaini, A. G. Habib, D. He, Mathematical modeling and analysis of meningococcal meningitis transmission dynamics. Intl. J. Biomath., 13 (2020), 2050006. https://doi.org/10.1142/S1793524520500060 doi: 10.1142/S1793524520500060
    [36] P. Roop-O, W. Chinviriyasit, S. Chinviriyasit, The effect of incidence function in backward bifurcation for malaria model with temporary immunity, Math. Biosci., 265 (2015), 47–64, https://doi.org/10.1016/j.mbs.2015.04.008 doi: 10.1016/j.mbs.2015.04.008
    [37] S. S. Musa, S. Zhao, H. S. Chan, Z. Jin, D. He, A mathematical model to study the 2014-2015 large-scale dengue epidemics in Kaohsiung and Tainan cities in Taiwan, China, Math. Biosci. Eng., 16 (2019), 3841–3863. https://doi.org/10.3934/mbe.2019190 doi: 10.3934/mbe.2019190
    [38] T. S. Farouk, H. Evren, An optimal control approach for the interaction of immune checkpoints, immune system, and BCG in the treatment of superficial bladder cancer, Eur. Phys. J. Plus, 133 (2018), 241. https://doi.org/10.1140/EPJP/I2018-12092-0 doi: 10.1140/EPJP/I2018-12092-0
    [39] S. S. Musa, N. Hussaini, S. Zhao, D. He, Dynamical analysis of chikungunya and dengue co-infection model, Dis. Cont. Dyn. Syst. B., 25 (2020), 1907. http://doi.org/10.3934/dcdsb.2020009 doi: 10.3934/dcdsb.2020009
    [40] S. S. Musa, I. A. Baba, A. Yusuf, A. S. Tukur, A. I. Aliyu, S. Zhao, et al., Transmission dynamics of SARS-CoV-2: A modeling analysis with high-and-moderate risk populations, Results Phys., 26 (2021), 104290. http://doi.org/10.1016/j.rinp.2021.104290 doi: 10.1016/j.rinp.2021.104290
    [41] I. A. Baba, A. Yusuf, K. S. Nisar, A. H. Abdel-Atye, T. A. Nofal, Mathematical model to assess the imposition of lockdown during COVID-19 pandemic, Results Phys., 20 (2021), 103716. http://doi.org/10.1016/j.rinp.2020.103716 doi: 10.1016/j.rinp.2020.103716
    [42] Statista, Global No.1 Data Platform, 2022. Available from: https://www.statista.com/.
    [43] P. Sengupta, The laboratory rat: relating its age with humans, Int. J. Prev. Med., 4 (2013), 624–630.
    [44] World Bank, Data, Population website, 2019. Available from: https://data.worldbank.org/indicator/SP.POP.TOTL?locations=NG.
    [45] M. M. Jo, B. Gbadamosi, T. O. Benson, O. Adebimpe, A. L. Georgina, Modeling the dynamics of Lassa fever in Nigeria, J. Egyptian Math. Soc., 29 (2021), 1185, https://doi.org/10.1186/s42787-021-00124-9 doi: 10.1186/s42787-021-00124-9
    [46] J. B. McCormick, Epidemiology and control of Lassa fever, Arenaviruses, (1987), 69–78, https://doi.org/10.1007/978-3-642-71726-0_3 doi: 10.1007/978-3-642-71726-0_3
    [47] E. H. Stephenson, E. W. Larson, J. W. Dominik, Effect of environmental factors on aerosol‐induced Lassa virus infection, J. Med. Virol., 14 (1984), 295–303, https://doi.org/10.1002/jmv.1890140402 doi: 10.1002/jmv.1890140402
    [48] D. Gao, Y. Lou, D. He, T. C. Porco, Y. Kuang, G. Chowell, et al., Prevention and control of Zika as a mosquito-borne and sexually transmitted disease: A mathematical modeling analysis, Sci. Rep., 6 (2016), 28070. https://doi.org/10.1038/srep28070 doi: 10.1038/srep28070
    [49] Q. Lin, S. S. Musa, S. Zhao, D. He, Modeling the 2014–2015 Ebola virus disease outbreaks in Sierra Leone, Guinea, and Liberia with effect of high-and low-risk susceptible individuals, Bull. Math. Biol., 82 (2020), 82. https://doi.org/10.1007/s11538-020-00779-y doi: 10.1007/s11538-020-00779-y
    [50] Z. Shuai, P. van den Driessche, Global stability of infectious disease models using Lyapunov functions, SIAM J. Appl. Math., 73 (2013), 1513–1532. https://doi.org/10.1137/120876642 doi: 10.1137/120876642
    [51] G. Q. Sun, J. H. Xie, S. H. Huang, Z. Jin, M. T. Li, L. Liu, Transmission dynamics of cholera: Mathematical modeling and control strategies, Commun Nonl. Sci. Numer. Simul., 45 (2017), 235–244. https://doi.org/10.1016/J.CNSNS.2016.10.007 doi: 10.1016/J.CNSNS.2016.10.007
    [52] S. S. Musa, S. Zhao, N. Hussaini, S. Usaini, D. He, Dynamics analysis of typhoid fever with public health education programs and final epidemic size relation, Results Appl. Math., 10 (2021), 100153. https://doi.org/10.1016/j.rinam.2021.100153 doi: 10.1016/j.rinam.2021.100153
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2250) PDF downloads(134) Cited by(2)

Article outline

Figures and Tables

Figures(5)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog