
http://www.aimspress.com/journal/MBE

MBE, 19(12): 13114–13136.
DOI: 10.3934/mbe.2022613
Received: 30 May 2022
Accepted: 28 August 2022
Revised: 23 August 2022
Published: 06 September 2022

Research article

Unravelling the dynamics of Lassa fever transmission with differential
infectivity: Modeling analysis and control strategies

Salihu S. Musa1,2,*, Abdullahi Yusuf3, Emmanuel A. Bakare4,5, Zainab U. Abdullahi6, Lukman
Adamu7, Umar T. Mustapha8 and Daihai He1,*

1 Department of Applied Mathematics, Hong Kong Polytechnic University, Hong Kong, China
2 Department of Mathematics, Kano University of Science and Technology, Wudil, Kano, Nigeria
3 Department of Computer Engineering, Biruni University, Istanbul, Turkey
4 Department of Mathematics, Federal University Oye Ekiti, Ekiti, Nigeria
5 Biomathematics and Applied Mathematical Modelling Research Group, Federal University Oye

Ekiti, Ekiti, Nigeria
6 Department of Biological Sciences, Federal University Dutsin-Ma, Katsina, Nigeria
7 Department of Mathematical Sciences, Faculty of Science, University of Maiduguri, Nigeria
8 Department of Mathematics, Science Faculty, Federal University Dutse, Jigawa, Nigeria

* Correspondence: Email: salihu-sabiu.musa@connect.polyu.hk, daihai.he@polyu.edu.hk.

Abstract: Epidemic models have been broadly used to comprehend the dynamic behaviour of
emerging and re-emerging infectious diseases, predict future trends, and assess intervention strategies.
The symptomatic and asymptomatic features and environmental factors for Lassa fever (LF)
transmission illustrate the need for sophisticated epidemic models to capture more vital dynamics and
forecast trends of LF outbreaks within countries or sub-regions on various geographic scales. This
study proposes a dynamic model to examine the transmission of LF infection, a deadly disease
transmitted mainly by rodents through environment. We extend prior LF models by including an
infectious stage to mild and severe as well as incorporating environmental contributions from infected
humans and rodents. For model calibration and prediction, we show that the model fits well with the
LF scenario in Nigeria and yields remarkable prediction results. Rigorous mathematical computation
divulges that the model comprises two equilibria. That is disease-free equilibrium, which is
locally-asymptotically stable (LAS) when the basic reproduction number, R0, is < 1; and endemic
equilibrium, which is globally-asymptotically stable (GAS) when R0 is > 1. We use time-dependent
control strategy by employing Pontryagin’s Maximum Principle to derive conditions for optimal LF
control. Furthermore, a partial rank correlation coefficient is adopted for the sensitivity analysis to
obtain the model’s top rank parameters requiring precise attention for efficacious LF prevention and
control.
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1. Introduction

Lassa fever (LF), also referred to as Lassa haemorrhagic fever, is a severe viral haemorrhagic
infection that presents severe public health threats to sub-Saharan African countries [1–10]. The virus
that causes LF comes from the family of arenaviradae and is known as the Lassa virus
(LASV) [4, 10]. LASV was first discovered in Lassa town of Borno state of the northern part of
Nigeria in 1969 [11, 12]. LASV infection in humans can occur following effective contact with
excreta or secrete of rodent that is contaminated with the faeces or urine of an infected animal
reservoir host [13]. Human-to-human transmission is acquired due to exposure to the virus in the
blood, tissue, secretions, or excretions of a Lassa virus-infected individual [1, 14]. It is worth noting
that casual contact such as skin-to-skin contact without transfer of body fluids does not spread LASV.
However, human-to-human transmission is common in health care settings and is also known as
nosocomial infection when personal protective equipment (PPE) is not properly used. LASV could
also be transmitted through contaminated medical equipment, such as reused needles [14]. Moreover,
laboratory or hospitals associated infection of the LASV was reported [2]. LASV is zoonotic (i.e.,
humans become infected when in contact with an infected animal), and the host of the virus is a
multimammate rat (Mastomys natalensis), a rodent species that is widespread in West Africa [3, 15].
Ecological factors (such as flooded agricultural activities and rainfall) enhances the transmission of
LV by providing favourable condition for rodents population growth [1, 2, 14].

Since its emergence, LASV has caused significant health obstruction in sub-Saharan Africa,
particularly the West African region [13]. For instance, the risk areas cover approximately 80, 50 and
40% of Sierra Leone, Liberia, Guinea, and Nigeria, respectively [16]. The yearly prevalence of LF
was estimated at 100,000 to 300,000 cases, and approximately 5000 deaths, indicating high morbidity
and mortality cases [1, 15]. The epidemics of LF classically last for around seven months. It usually
begins in November and ends around May of the subsequent year, with most cases occurring in the
first three months of the following year, in addition to sporadic cases reported throughout the
year [1, 13].

Approximately, it takes 6–21 days for the symptoms of LF to be apparent. Numerous LF infections
(roughly 80%) begin with mild symptoms and, thus, are undetectable. Mild symptoms of LF include
moderate fever, weakness and malaise; if untreated, muscle pain, headache, chest pain, and sore throat
follows in a few days. In 20% infected individuals, the disease may progress to severe symptoms
including haemorrhage (i.e., mouth, nose, and uncontrolled vaginal bleeding or gastrointestinal tract),
facial swelling, fluid in the lung cavity, and low blood pressure may be developed [11,13,15,17]. There
are currently no approved effective and safe vaccines against LF. However, the antiviral drug ribavirin is
an effective treatment for LASV if administered early in the initial phase of the disease [1,13,15,18,19].

Numerous epidemiological models have been generated and used to gain an understanding of the
LF transmission, see for instance [1, 2, 9, 10, 12, 15, 20–23], and the references therein. In particular,
an epidemic model of the large-scale LF outbreaks in Nigeria was designed by [1] to examine the
interaction between the human (host) and rodent (vector) populations, coupling quarantine, isolation,
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and hospitalization. Their study suggests that the initial susceptibility could enlarge for the outbreaks
from 2016 to 2019. It also highlighted the similarities in the transmission dynamics driving the three
major LF outbreaks in the endemic areas. Onah et al. [15] developed a mathematical model for LF
transmission. Their study revealed some basic factors influencing the transmission of LF. They
employed the optimal control theory to determine how to reduce the spread of LF with minimum cost.
A non-autonomous system of nonlinear ordinary differential equations which revealed the dynamics
of LF transmission considering seasonal variation in the birth of mastomys was investigated by [12].

Furthermore, the dynamics of LF incorporating the effect of quarantine (as a control strategy),
reinfection and environmental transmission were investigated by [9]. Their model was rigorously
analyzed and showed the existence of backward bifurcation, which causes difficulty for LF control
and suggested the need to manage the rodent vector in the community to control LF transmission
effectively. Akhmetzhanov et al. [2] examined the two key seasonal factors fueling the transmission
of LF in Nigeria. Their results showed that the seasonal migratory dynamics of rodents play a vital
role in regulating the cyclical pattern of LF epidemics. Further simulations of the model revealed that
the first nine weeks of the season are considered the high-risk period for LF infection. Moreover,
the relationships between disease reproduction number and local rainfall on the dynamics of LF were
studied by [21]. Their findings showed significant spatial heterogeneity in the LF outbreaks in different
Nigerian regions, indicating clear evidence of the impact of rainfall on LF epidemics in Nigeria.

Thus, in this research, we developed a more sophisticated model for the LF dynamics
incorporating environmental transmission as well as differential infectivity. It is worth stating that
environmental factors are among the most crucial epidemiological factors affecting LF transmission.
We extend previous model proposed in [1] by incorporating various transmission modes, i.e.,
environmental-to-human transmission and environment-to-rodent transmission route. Furthermore,
we also aim to extend previous studies of LF [2,11,12,15,22] by incorporating environmental factors,
hospitalization, symptomatically mild infectious and symptomatically severe infectious stages.

The organization of this work is as follows: In Section 2, an epidemic model is presented and
qualitatively analyzed in Section 3. We give numerical results in Section 4 and end the paper with a
brief discussion and conclusions in Section 5.

2. Materials and methods

2.1. Epidemic data

Following laboratory confirmation and case definition of LF, we routinely retrieved the weekly
epidemiological case data of the LF outbreak for Nigeria reported by the Nigeria Center for Disease
Control (NCDC) [24] from January 1 through December 31, 2021. We calculated the weekly
cumulative incidence from the data and analyzed the incidence scenario for Nigeria.

2.2. Epidemic model

The model to be designed in this study describes the epidemiological dynamics of LF transmission
by utilizing a conventional SEIR-typed model to analyze the transmission dynamics and control
strategies of the LF outbreak in Nigeria, taking into account mild and severe cases as well as
environmental transmission. Our model distinguishes the different stages of disease progression from
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mild to severe symptoms [13]. A proportion of initially mild LF patients remaining at home or in an
isolation unit may further generate severe symptoms and be forced to a restricted hospital for proper
isolation and better treatment. Many modelling investigations revealed the effect of isolation on the
LF infection (where people in this stage can still get LF infection), which greatly impacts the
transmission and control of LF; for instance, [25, 26].

We divided the total human population at time t, represented by Nh(t), into sub-populations of
susceptible, S h(t), exposed, E(t), symptomatically mild infectious individuals, Im(t), symptomatically
severe infectious individuals, Is(t), hospitalized, H(t) and recovered, Rh(t), individuals, so that

Nh(t) = S h(t) + E(t) + Im(t) + Is(t) + H(t) + Rh(t).

The total rodent (reservoir) population at time t, denoted by Nr(t), is divided into two sub-compartments
of susceptible and infectious rodents. Hence, we have

Nr(t) = S r(t) + Ir(t).

Also, let V represent the Concentration of the LASV present in the environment, such that both humans
and rodents can get infected with LF when in contact with contaminated environment. The infection
of LF is largely driven by the prevalence of the disease, reservoir population, human behaviour, and
seasonality [1, 2, 21].

We depicted the LF model in Figure 1; the state variables and model parameters (Table 1) fulfil the
successive systems of non-linear ordinary differential equations given by,
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Figure 1. Diagrammatical representation of system (1). Solid arrows designate transitions
and expressions next to arrows show the per ca-pita flow rate between compartments.
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dS h

dt
= πh + ψR − λhS h − µhS h,

dE
dt
= λhS h − (σ + µh)E,

dIm

dt
= σE − (τ + ϕIm + γIm + µh)Im,

dIs

dt
= τIm − (ϕIs + γIs + δIs + µh)Is,

dH
dt
= ϕIm Im + ϕIs Is − (γh + δh + µh)H,

dR
dt
= γIm Im + γIs Is + γhH − (ψ + µh)R,

dV
dt
= ωh(Im + Is) + ωrIr − θV,

dS r

dt
= πr − λrS r − µrS r,

dIr

dt
= λrS r − µrIr.

(1)

Here, the forces of infection for humans and rodents from the model (1) are respectively given by

λh =
βIm Im + βIs Is

Nh
+ βvh

V
k + V

and λr =
βrIr

Nr
+ βvr

V
k + V

. (2)

where, βIm Im+βIs Is

Nh
, βvh

V
k+V , βr Ir

Nr
, and βvr

V
k+V represent human-to-human transmission, environment-to-

human transmission, rodent-to-rodent transmission, and environment-to-rodent transmission.

2.2.1. The model’s elementary characteristics

Since model (1) investigates the dynamics of LF in human and rodent populations, all its state
variables and parameters are considered positive. To examine the elementary qualitative features of
model (1), we, first of all, consider the rate of change of the total humans N′h(t) and rodents N′r(t)
populations, which are respectively evaluated as

dNh

dt
= πh − µhNh − δIs I2 − δhH ⩽ πh − µhNh, (3)

and

dNr

dt
= πr − µrNr, (4)

Furthermore, considering the region,

Ω =

{
(S h, E, Im, Is,H,R,V, S r, Ir) ∈ R9

+ : Nh ⩽
πh

µh
,Nr ⩽

πr

µr

}
.

So that simplifying Nh and Nr given in Eqs (3)–(4) ensure that all solutions of the system that begins in
the region Ω will stay in Ω for all non-negative time t (i.e., t ⩾ 0). Hitherto, the region Ω is positively-
invariant, and it is enough to examine solutions restricted to Ω. Hence, according to previous works
[27, 28], the results for usual existence, uniqueness and continuation will be satisfied for model (1).
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Table 1. Epidemiological description of the state variables and parameters of model (1)

Variable Description
Nh Total humans population
S h Susceptible individuals
E Exposed individuals
Im Symptomatically mild infectious individuals
Is Symptomatically severe infectious individuals
H Hospitalized individuals
R Recovered individuals
V Concentration of LASV in contaminated environment
Nr Total rodent population
S r Susceptible rodents
Ir Infectious rodents

Parameter
βi(i = Im, Is, vh, r, vr) Transmission rates
σ Progression rate
τ Rate LF progression from Im to Is

γ j( j = Im, Is, h) Recovery rates period
ϕIm (ϕIs ) Rate of hospitalization from Im (Is)
ψ Rate of relapse from R to S h

δIs (δh) LF induced death rates
ωh(ωr) Rate at which the virus is released to the environment
k Concentration of LASV pathogens in the contaminated environment
θ Maximum growth rate of the rodents
πh Recruitment rate of humans
πr Decay rate of LASV pathogens present in the environment
µh(µr) Natural death rate of humans (rodents)

3. Analytical results

3.1. Disease-free equilibrium

Disease-free equilibrium (DFE) of model (1) is obtained by setting all the equations of the right-
hand side of model (1) to zero, that is dS h

dt =
dE
dt =

dIm
dt =

dIs
dt =

dH
dt =

dV
dt =

dR
dt =

dS r
dt =

dIr
dt = 0. This

yields S 0
h =

πh
µh

, E0 = I0
m = I0

s = H0 = V0 = R0 = 0, S 0
r =

πr
µr

, and I0
r = 0. The DFE point for the

proposed model is given by

Γ0 = {S 0
h, E

0, I0
m, I

0
s ,H

0,R0,V0, S 0
r , I

0
r } = {

πh

µh
, 0, 0, 0, 0, 0, 0,

πr

µr
, 0}.

3.2. Basic reproduction number

Here, we computed a basic reproduction number (R0) of the basic model (1) by adopting the next-
generation matrix (NGM) technique as demonstrated in [29]. R0 represents the number of secondary
cases that a typical primary case would cause during the infectious period in a wholly susceptible
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population [1, 29–32]. We obtained the linear stability of Γ0 by implanting similar technique of the
NGM on the proposed model (1), with matrices F, which represent the new infection terms, and V ,
which denote the other transfer terms and are given respectively by

F =



λhS h

0

0

0

0

λrS r


and V =



Z1E

−σE + Z2Im

−τIm + Z3Is

−ϕIm Im − ϕIs Is + Z4H

−ωIm − ωhIs − ωrIr + θV

µrIr


,

where Z1 = σ+ µh, Z2 = τ+ ϕIm + γIm + µh, Z3 = ϕIs + γIs + δIs + µh, Z4 = γh + δh + µh, and Z5 = ψ+ µh.
Hence, the LF infection and transition matrices are defined respectively by

F =



0 C1 C2 0 C3 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 C4 C5


and V =



Z1 0 0 0 0 0

−σ Z2 0 0 0 0

0 −τ Z3 0 0 0

0 −ϕm −ϕs Z4 0 0

0 −ωh −ωh 0 θ −ωr

0 0 0 0 0 µr


.

Direct calculation yields

V−1 =



Z1
−1 0 0 0 0 0

σ1
Z1Z2

Z2
−1 0 0 0 0

τσ
Z3Z1Z2

τ
Z2Z3

Z3
−1 0 0 0

σ(τ ϕs+Z3ϕm)
Z3Z1Z2Z4

τ ϕs+Z3ϕm
Z2Z3Z4

ϕs
Z3Z4

Z4
−1 0 0

ωhσ(τ+Z3)
Z3Z1Z2θ

ωh(τ+Z3)
Z2Z3θ

ωh
Z3θ

0 θ−1 ωr
µrθ

0 0 0 0 0 µr
−1


.

and

F · V−1 =



C1σ
Z1Z2
+ τC2σ

Z3Z1Z2
+

C3ωhσ(τ+Z3)
Z3Z1Z2θ

C1
Z2
+ τC2

Z2Z3
+

C3ωh(τ+Z3)
Z2Z3θ

C2
Z3
+ C3ωh

Z3θ
0 C3

θ
C3ωr
µrθ

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
C4ωhσ(τ+Z3)

Z3Z1Z2θ
C4ωh(τ+Z3)

Z2Z3θ
C4ωh
Z3θ

0 C4
θ

C4ωr
µrθ
+

C5
µr


.
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Therefore, the R0 is now given by

R0 = ρ(FV−1) = R1 + R2 + R3, (2)

where
R1 = (Z2 (C5θ +C4ωr) Z1 + µrσ (θC1 +C3ωh)) Z3 + τ µr (C2θ +C3ωh)σ,

R2 =
√
R2a + R2b + R2c, and

R3 =
1

2 ∗ µrθ Z3Z2Z1
,

with ρ characterising the spectral radius of the NGM, C1 =
βmµh
πh

, C2 =
βsµh
πh

, C3 =
βvh
k , C4 =

βvr
k ,

C5 =
βrµr
πr

, R2a = (−Z3Z1Z2C5 + µrσ (τC2 +C1Z3))2 θ2,
R2b = 2 (µrσC3 (τ + Z3)ωh −C4Z1Z2Z3ωr) (−Z3Z1Z2C5 + µrσ (τC2 +C1Z3)) θ, and
R2c = (µrσC3 (τ + Z3)ωh +C4Z1Z2Z3ωr)2.

Following [29], and reference to the local stability of the DFE of model (1), we assert the following
result.

Theorem 3.1. The disease-free equilibrium of model (1) is locally-asymptotically stable whenever
R0 < 1 and unstable if R0 > 1.

3.3. Endemic equilibrium

When the LF raids community, it implies that at least one of the infectious classes will be non-
empty. Thus, by setting the vector field of the system (1) to zero, we get an endemic equilibrium (EE)
state following some algebraic calculation. Thus, the equilibrium point

Γ∗ = {S ∗h, E
∗, I∗m, I

∗
s ,H

∗,R∗,V∗, S ∗r , I
∗
r }.

In terms of E∗, λ∗h and λ∗r , the EE points are given by the following equations

S ∗h =
((E∗Ψσγm + πhz2z5) z4 + E∗ϕmγhΨσ) z3 + E∗Ψ τσ (γhϕs + γsz4)

z3z2z4z5

(
λ∗h + µh

)
I∗m =

σ E∗

z2

I∗s =
στ E∗

z2z3

H∗ = (ϕIm + ϕIs

τ

Z3
)
σE∗

Z2Z4

R∗ =
σ E∗ (τ γhϕs + τ γsz4 + γhϕmz3 + γmz3z4)

z3z2z4z5

V∗ =
E∗σωh (τ + z3) µr

2 + E∗λrσωh (τ + z3) µr + ωrπrλ
∗
rz2z3

z2z3µr
(
λ∗r + µr

)
θ

S ∗r =
πr

λ∗r + µr
, and

I∗r =
πrλ

∗
r

µr
(
λ∗r + µr

) .

(8)
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Where

λ∗h =
βIm I∗m + βIs I

∗
s

N∗h
+ βvh

V∗

k + V∗
and λ∗r =

βrI∗r
N∗r
+ βvr

V∗

k + V∗
.

Epidemiologically, the existence of EE indicates that at least one of the model’s infected classes is
non-empty, which means that the LF circulates and persists in a community.

3.4. Stability analysis of the endemic equilibrium

In this sub-section, we analysed the model’s solutions in the interior of the feasible region, which
converge to the unique EE, given by Γ∗, whenever R0 > 1. Thus, at Γ∗, the LF will spread and persist in
a community. To prove the global stability of the EE, we employed a Lyapunov function technique [33],
which is attainable by constructing the Lyapunov function from the model. This method has been used
largely in previous studies; for instance, [33–37].

Theorem 3.2. Under certain conditions (given below), the EE, Γ∗, is globally-asymptotically stable

(GAS) in the region Ω whenever R0 > 1. The conditions are
(
2 + λh

λ∗h

)
≤

S ∗h
S h
+ E

E∗ +
E∗λhS h
Eλ∗hS ∗h

,
(
2 + E

E∗

)
≤

I∗mE
ImE∗ +

H
H∗ +

H∗Im
HI∗m

,
(
2 + Im

I∗m

)
≤

I∗s Im

IsI∗m
+ H

H∗ +
H∗Is
HI∗s

, and
(

Im
I∗m
− ln Im

I∗m
+ Is

I∗s
− ln Is

I∗s
+ Ir

I∗r
− ln Ir

I∗r

)
≤ 3

(
V
V∗ − ln V

V∗

)
.

The proof of the above Theorem 3.2 is given in Appendix A1.

3.5. Analysis of optimal control

This section employed two control strategies on the proposed LF transmission model, considering
u1(t) as proper sanitation and personal hygiene for the exposed compartment, such as keeping the
environment tidy to avert rodents from entering homes as well as using shielding apparatus such as
gloves, face masks, goggles and gowns. u2(t) is considered as the provision of adequate health
resources for the mild infectious class, such as providing sufficient antiviral drug ribavirin, which
provides effective treatment for LF patients if given early. We aspire to find the optimal controls
(u1(t), u2(t)) required to minimize the number of exposed and mild infectious people together with the
cost of controls. So, the control system is given by
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dS h

dt
= πh + ψR − u1λhS h − µhS h,

dE
dt
= u1λhS h − (u2 + µh)E,

dIm

dt
= u2E − (τ + ϕIm + γIm + µh)Im,

dIs

dt
= τIm − (ϕIs + γIs + δIs + µh)Is,

dH
dt
= ϕIm Im + ϕIs Is − (γh + δh + µh)H,

dR
dt
= γIm Im + γIs Is + γhH − (ψ + µh)R,

dV
dt
= ωh(Im + Is) + ωrIr − θV,

dS r

dt
= πr − λrS r − µrS r,

dIr

dt
= λrS r − µrIr.

(9)

Where S h(0) = S h0, E(0) = E0, Im(0) = Im0, Is(0) = Is0,R(0) = R0,V(0) = V0, S r(0) = Lr0, Ir(0) = Ir0.
Thus, the objective function required to minimise our problem is defined below

J(u1, u2) =
∫ t f

0

(
r1E + r2Im +

1
2

w1u2
1 +

1
2

w2u2
2

)
dt, (10)

with, w1 and w2 are defined as weight factors. With u1, u2 ∈ U where U = {(u1, u2) : u1, u2, are
piecewise continuous and 0 ≤ u1, u2 ≤ 1} is the set of permissible controls. It is worth noting that the
primary goal is to find the optimal levels of the control functions to converge all the relevant variables
that will minimize the objective function.
Thus, we find u1, u2, such that J(u∗1, u

∗
2) = min

(u1,u2)∈U
J(u1, u2), is the set of control functions, and the

coefficients of the state variables r1, r2 and w1,w2 are considered to be positive. Since the condition
related to the cost is nonlinear, we assume the cost expression to be a quadratic function given by
( 1

2wiu2
i ).

3.5.1. Existence of optimal control

Following [38], we established the existence of optimal controls for the LF epidemic. The
boundedness of the solution of model 1 ascertained in section two guarantees the existence of the
model’s solution. For thorough verification, see Theorem 6 of [38].

3.5.2. Hamiltonian and optimality system

Owing to the existence of the optimal controls for LF infection, we employed Pontryagin’s
Maximum Principle to evaluate the expression of the control functions. To attain this, we first need to
define the Hamiltonian ((Hm)), which is described as follows.

Hm = L + λ1
dS h

dt
+ λ2

dE
dt
+ λ3

dIm

dt
+ λ4

dIs

dt
+ λ5

dH
dt
+ λ6

dR
dt
+ λ7

dV
dt
+ λ8

dS r

dt
+ λ9

dIr

dt
(11)
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where L is the Lagrangian acquired from the objective function. Accordingly, the Hamiltonian is now
given by

Hm =r1E + r2Im +
1
2

w1u2
1 +

1
2

w2u2
2

+ λ1 (πh + ψR − u1λhS h − µhS h) + λ2 (u1λhS h − (u2 + µh)E)

+ λ3
(
u2E − (τ + ϕIm + γIm + µh)Im

)
+ λ4

(
τIm − (ϕIs + γIs + δIs + µh)Is

)
+ λ5

(
ϕIm Im + ϕIs Is − (γh + δh + µh)H

)
+ λ6

(
γIm Im + γIs Is + γhH − (ψ + µh)R

)
+ λ7 (ωh(Im + Is) + ωrIr − θV) + λ8 (πr − λrS r − µrS r) + λ9 (λrS r − µrIr)

(12)

where λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8 and λ9 are named the adjoint variables to be expressed. Hence, the
following theorem is ascertained.

Theorem 3.3. Given an optimal control set of u1 and u2 together with the corresponding solution,
S h, E, Im, Is,H,R,V, S r and Ir which minimize J(u1, u2) over U, then there exist adjoint variables
λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8 and λ9 such that

dλ1

dt
= λ1u1λh + λ1µh − λ2u1λh

dλ2

dt
= −r1 + λ2 (u2 + µh) − λ3u2

dλ3

dt
= −r2 + λ3

(
τ + ϕIm + γIm + µh

)
− λ4τ − λ5ϕIm − λ6γIm − λ7ωh

dλ4

dt
= λ4

(
τ + ϕIs + γIs + δIs + µh

)
− λ5ϕIs − λ6γIs − λ7ωh

dλ5

dt
= λ5 (γh + δh + µh) − λ6γh

dλ6

dt
= λ6 (ψ + µh)

dλ7

dt
= λ6θ

dλ8

dt
= λ8 (λr + µr) − λ9λr

dλ9

dt
= λ7ωr + λ9µr

(13)

with transversality conditions λi(t f ) = 0, i = 1, ...., 9. Moreover,

u∗1 = min
(
max

(
λhS h(λ1 − λ2)

w1
, 0

)
, 1

)
u∗2 = min

(
max

(
(λ3 − λ5)E

w2
, 0

)
, 1

)
.

(14)

Proof. Considering the existence of the control functions, we employed Pontraygin’s Maximum
Principle to find the adjoint variables and the expressions of the control functions. Then, we proceed
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as follows:

dλ1

dt
= −

∂Hm

∂S h
= λ1u1λh + λ1µh − λ2u1λh

dλ2

dt
= −

∂Hm

∂E
= −r1 + λ2 (u2 + µh) − λ3u2

dλ3

dt
= −

∂Hm

∂Im
= −r2 + λ3

(
τ + ϕIm + γIm + µh

)
− λ4τ − λ5ϕIm − λ6γIm − λ7ωh

dλ4

dt
= −

∂Hm

∂Is
= λ4

(
τ + ϕIs + γIs + δIs + µh

)
− λ5ϕIs − λ6γIs − λ7ωh

dλ5

dt
= −

∂Hm

∂H
= λ5 (γh + δh + µh) − λ6γh

dλ6

dt
= −

∂Hm

∂R
= λ6 (ψ + µh)

dλ7

dt
= −

∂Hm

∂V
= λ6θ

dλ8

dt
= −

∂Hm

∂S r
= λ8 (λr + µr) − λ9λr

dλ9

dt
= −

∂Hm

∂Ir
= λ7ωr + λ9µr

(15)

Given the representations of the control functions ∂H
∂ui
= 0 at ui = u∗i for i = 1, 2, ....8, and following the

standard optimality arguments, we have

u∗1 = min
(
max

(
λhS h(λ1 − λ2)

w1
, 0

)
, 1

)
u∗2 = min

(
max

(
(λ3 − λ5)E

w2
, 0

)
, 1

)
.

(16)

□

Hence, having determined the representations of the control functions u∗1, u
∗
2 and the adjoint equations

with their transversality conditions. We ensured the existence of the optimal levels needed to minimize
the spread of LF infection.

4. Numerical results

4.1. Model prediction

In this part, we employed the previous approach described in [35,39] to validate/fit the model using
the LF surveillance data compiled and published by the NCDC [24]. Pearson’s Chi-square and the
least square scheme are adopted for the data fitting process using the R statistical software (version
4.1.2). The weekly LF morbidity cases for January through December 2021 (i.e., 52 epidemiological
weeks) are used to fit the model to the actual LF scenario. The result shows that the model fitted the
LF situation report in Nigeria well with reasonable parameter settings. Figure 2 illustrates the fitting
results of LF confirmed cases using the cumulative number of cases for 52 epidemiological weeks.
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Figure 2. Model fittings result for LF outbreak in Nigeria. Black dots denote actual LF
scenario, and the purple curve denote LF model prediction.

Demographic time-series scenarios for LF in Nigeria were obtained from
https://www.statista.com/ [42]. And we calculated other related demographic parameters, including π
and µ as follows. π is calculated as 9585 per day. Also, since the life expectancy at birth in Nigeria
was estimated at 60.87 years in 2021, indicating that µ = 1

60.87×365 per day= 4.5 × 10−5 per day. All
other parameters are fixed as in Table 2. It is paramount to note that Edo, Ondo, Ebonyi, and Bauchi
established more than 60% of all the LF cases in Nigeria [24]. Figure 2 show the model fitting result
for 52 epidemiological weeks (i.e., January to December, 2021). The initial conditions used are given
as follows: S h(0) = 2.13 × 108, E(0) = 164, Im(0) = 20, Is(0) = 9, H(0) = 6, R(0) = 2,
V(0) = 10 × 103, S r(0) = S h(0) × 10−2 and Ir(0) = 76. Furthermore, from the prediction result, we
observed an immediate increase in the number of LF morbidity for the first three months of 2021,
which is consistent with prior LF outbreaks in Nigeria [1, 8, 24].

4.2. Numerical simulations

This part presents various numerical findings for the proposed LF model using parameters from
Table 2. To simulate the model (1), we utilized the classical Euler numerical technique as described and
discussed in [40, 41]. We simulated the presented model using the numerical solver defined above to
observe the dynamics of each compartment and several crucial parameters of the model. In particular,
in Figure 3(a)–(i), we show the time-series simulation results for the model showing the dynamics
features of the state variables using the epidemiological parameter values given in Table 2. Also, in
Figure 4(a)–(f), additional simulation results were provided to show the effect of varying the model’s
key parameters on the overall dynamics of the model.
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Figure 3. Time-series plots for the state variables of the model showing the dynamical
behaviour while using the parameters’ values given in Table 2.
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Table 2. Summary table for parameters values of model (1)
Parameter Baseline (Range) Units Sources
Nh 2.13 × 108 (1.8 × 108– 2.2 × 108) Persons Estimated by [42]
Nr 0.01 × Nh Rodents Assumed
µh 0.000045 (0.00003–0.00006) Per day Estimated by [42]
µr 0.002 (0.001–0.006) Per day [43]
πh 2500 (1000–5000) Persons per day [1, 44]
πr 0.1 (0– 1) Rodents per day Estimated by [45]
k 4000 (2000–10000) Rodents [1]
σ 0.52 (0.1–1) Per day [1]
τ 0.32 (0.01–0.95) Per day Assumed
γIm 0.0517 (0–1) Per day [1]
γIs 0.031 (0–1) Per day Estimated by [1]
γh 0.035 (0–1) Per day Estimated by [1]
ϕIm 0.0123 (0.001–0.025) Per day [1]
ϕIs 0.012 (0.0015–0.025) Per day Estimated by [1]
ψ 0.0067 (0.0035–0.03) Per day [1]
δIs 0.2 (0.1–0.5) Per day Estimated by [1]
δh 0.19 (0.1–0.5) Per day [1]
ωh 102 − 104 (TCID)50/ml Estimated by [46]
ωr 103 − 105 (TCID)50/ml [46]
θ 0.033 Per day [47]
βIm 0.22 (0.03–0.5) Per day [1]
βIs 0.19 (0.03–0.5) Per day Estimated by [1]
βvh 0.12 (0.01–0.7) Per day Assumed
βr 0.142 (0.05–0.4) Per day [1]
βvr 0.15 (0.01–0.75) Per day Assumed
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Figure 4. Model simulation results. (a) Increasing and decreasing values for βr, (b)
Increasing and decreasing values for βvr; (c) Increasing and decreasing values for βvh, (d)
Increasing and decreasing values for ωh; (e) Increasing and decreasing values for βr, (f)
Increasing and decreasing values for βvr.
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4.3. Sensitivity analysis

In this sub-section, we investigated sensitivity analysis to uncover the robust effect and influence of
the different model parameters on LF transmission in Nigeria. We adopted the partial rank correlation
coefficient (PRCC) to unveil sensitivity analysis of model (1) with consideration of R0 and infection
attack rate as response functions [48]. Our analysis results show that the parameters µr, θ and βr are
the most sensitive parameters of the model requiring high observation to mitigate the LF transmission
in Nigeria and beyond. The diagrammatic presentation of the PRCC with respect to R0 and infection
attack rate is portrayed in Figure 5. We utilized parameter values given in Table 1 for sensitivity
analysis.

Figure 5. Partial rank correlation coefficient of R0 and infection attack rate with respect to
model parameters. The dots are the estimated correlation, and the bars designate the 95%
confidence interval. The parameter values utilised for sensitivity analysis are summarised in
Table 2.

5. Discussion and conclusions

Lassa fever is a dominant public health problem in West Africa [4]. It is a distinct viral
hemorrhagic fever that affects many sub-Saharan African countries, with Guinea, Liberia, Nigeria,
and Sierra Leone as the most endemic countries [6]. LF’s severity and mortality cases are alarming,
especially in pregnant women; early therapy using ribavirin (and rehydration) helps improve the
prevention and control of LF [13, 19]. Moreover, the candidate vaccines currently in development
could significantly support the prevention of LF infection and help control neurological complications
such as deafness which usually happens to some LF recovered patients [8]. Despite growing public
health interest and concern for LF transmission, the knowledge of its ecology, epidemiology, and
distribution in West Africa is still limited and needs urgent attention from researchers, public health
practitioners, and policymakers.

In this research, we proposed a new deterministic model (see Figure 1) to analyze LF transmission
considering mild and severe infection and the role of environmental contribution on the overall LF
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infection. The model fitted nicely (see Figure 2) with the LF data for Nigeria and helped investigate
the dynamic behaviour of the seasonal LF outbreaks. Our epidemic modelling framework is based on
amplifying different infection stages and environmental impacts on the spread of LF. Moreover, our
results revealed a better insight into the patterns and driving forces of LF infection in Nigeria. Since
LF is a climate and land-use acute disease with poor people as the most vulnerable, there is a need for
environmental sanitization, especially in poverty settings, to lower the morbidity and mortality of the
disease effectively. LF is presumably driven by ecological factors with the principal host as M.
natalensis, which strongly linked LF cases and rainfall [4]. We modelled the dynamics of rodents as
constant instead of time-dependent as proposed in [2]. This is due to inadequate data for the rodents
population, e.g., population size and disease prevalence among vector populations; thus, we focused
our analyses on the human population and environmental factors’ contribution to the overall
transmission dynamics.

The threshold parameter, R0, was calculated using the conventional approach of NGM. The R0 is
regarded as one of the most crucial epidemiological quantities used for disease control.
Epidemiologically, R0 < 1 ensures that the LF elimination can be achieved with time even when the
control measures are not fully implemented, whereas LF persists in a population whenever R0 > 1.
Furthermore, the proposed model was rigorously analyzed and showed that the DFE is locally and
globally-asymptotically stable whenever the R0 < 1 and unstable otherwise. This epidemiologically
implies that the LF community transmission can be reduced significantly if R0 could be reduced to a
value less than one. Further analysis also revealed the existence of the EE points of the model, which
shows that without adequate control measures, LF transmission will continue and could cause severe
outbreaks, leading to increased morbidity and mortality.

Furthermore, we conducted a couple of numerical simulations to study each compartment’s
dynamics and analyze several crucial parameters of the model. Based on our simulation results, some
critical parameters are significantly relevant in increasing or eliminating the LF. Those parameters can
also shed light on how to reduce transmission, e.g., by reducing the risks from the vulnerable
population, the number of infected persons and stopping the spread of infection from those who have
already been infected. To this end, the dynamic feature of the individuals’ compartments has been
depicted in Figure 3. Figure 4(a) shows the effect of the parameter βIm on the class Im for some values
whereas Figure 4(b) depicts the effect of the parameter βIs on the class Is. The effect of the parameter
βvh on the class V has been depicted in Figure 4(c) whereas Figure 4(d) depicted the effect of ωh on
the class H. The effect of the parameter βr on the class Ir has been depicted in Figure 4(e) whereas
Figure 4(f) depicted the effect of βvr on the class V .

In addition, the PRCC for the sensitivity analysis of model (1) was estimated with R0 and infection
attack rate as response functions (see Figure 5). This revealed that the parameters µr (death rate of
rodents), θ (growth rate of rodents) and βr (transmission rate of rodents) are estimated as the model’s
top-ranked parameters that need emphasis for effective LF control. These parameters are all related
to rodents populations, indicating a need to control rodents from the environments for effective LF
control.

In conclusion, we qualitatively investigated LF transmission dynamics considering the effect of
differential infectivity and environmental factors, which are plausibly the main drivers of Nigeria’s LF
epidemic. The fitting results of the deterministic model were obtained using the reported LF cases
for Nigeria. We observed that the prediction result could be used to assess the transmission patterns
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of LF epidemics. Consequently, the effects of environmental factors that drive the LF dynamics were
analyzed, considering humans and rodents as hosts and vectors. This study also examined seasonal
amplitude that marked the first fifteen epidemiological weeks of the season as the high-risk period
for LF outbreaks in Nigeria. Hence, substantial research on LF and the provision of adequate health
resources, such as reverse transcriptase polymerase chain reaction assay and antigen detection test kits,
as well as antiviral drug ribavirin, are needed to earn sufficient LF prevention and mitigation.
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Appendix

A1. Proof of Theorem 3.2

Proof. To prove Theorem 3.2, we adopted the framework proposed in previous studies [9, 34, 36, 37,
40, 49–52], by constructing a Lyapunov function given below.

G(t) =g1

(
S h − S ∗h − S ∗h ln

S h

S ∗h

)
+ g2

(
E − E∗ − V∗ ln

E
E∗

)
+ g3

(
Im − I∗m − I∗m ln

Im

I∗m

)
+

g4

(
Is − I∗s − I∗s ln

Is

I∗s

)
+ g5

(
H − H∗ − H∗ ln

H
H∗

)
+ g6

(
V − V∗ − V∗ ln

V
V∗

)
+

g7

(
S r − S ∗r − S ∗r ln

S r

S ∗r

)
+ g8

(
Ir − I∗r − I∗r ln

Ir

I∗r

)
+ .

(A1)

Then the derivative of the above Lyapunov function with respect to time (t) is given by

Ġ(t) =g1

(
1 −

S ∗h
S h

)
Ṡ h + g2

(
1 −

E∗

E

)
Ė + g3

(
1 −

I∗m
Im

)
İm + g4

(
1 −

I∗s
Is

)
İs + g5

(
1 −

H∗

H

)
Ḣ+

g6

(
1 −

V∗

V

)
V̇ + g7

(
1 −

S ∗r
S r

)
Ṡ r + g8

(
1 −

I∗r
Ir

)
İr.

(A2)

Simplifying each of the above term (A2) and rearranging, we get

g1

(
1 −

S ∗h
S h

)
Ṡ h = ≤ g1λ

∗
hS ∗h

(
1 −

λhS h

λ∗hS ∗h
−

S ∗h
S h
+
λh

λ∗h

)
, (A3)

g2

(
1 −

E∗

E

)
Ė = g2λ

∗
hS ∗h

(
λhS h

λ∗hS ∗h
−

E
E∗
−

E∗λhS h

Eλ∗hS ∗h
+ 1

)
, (A4)

g3

(
1 −

I∗m
Im

)
İm = g3σE∗

( E
E∗
−

Im

I∗m
−

I∗mE
ImE∗

+ 1
)
, (A5)

g4

(
1 −

I∗s
Is

)
İs = g4τI∗m

( Im

I∗m
−

Is

I∗s
−

I∗s Im

IsI∗m
+ 1

)
, (A6)

g5

(
1 −

H∗

H

)
Ḣ = g5ϕIm I∗m

( Im

I∗m
−

H
H∗
−

H∗Im

HI∗m
+ 1

)
+ g5ϕIs I

∗
s

( Is

I∗s
−

H
H∗
−

H∗Is

HI∗s
+ 1

)
, (A7)

g6

(
1 −

V∗

V

)
V̇ =g6ωhI∗m

( Im

I∗m
−

V
V∗
−

V∗Im

VI∗m
+ 1

)
+ g6ωhI∗s

( Is

I∗s
−

V
V∗
−

V∗Is

VI∗s
+ 1

)
+

g6ωrI∗r
( Ir

I∗r
−

V
V∗
−

V∗Ir

VI∗r
+ 1

)
,

(A8)

g7

(
1 −

S ∗r
S r

)
Ṡ r = ≤ g7λ

∗
rS ∗r

(
1 −

λrS r

λ∗rS ∗r
−

S ∗r
S r
+
λr

λ∗r

)
, (A9)

g8

(
1 −

I∗r
Ir

)
İr = g8λ

∗
rS ∗r

(
λrS r

λ∗rS ∗r
−

Ir

I∗r
−

I∗rλrS r

Irλ∗rS ∗r
+ 1

)
. (A10)

Suppose the function Υ(Ξ) = 1−Ξ+ lnΞ, then, if Ξ > 0 it leads to Υ(Ξ) ≤ 0. Also, if Ξ = 1, Υ(Ξ) = 0,
thus, Ξ − 1 ≥ ln(Ξ) for any Ξ > 0. Let the coefficients of the Lyapunov functions (A1) be given by
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g1 = g2 = g5 = g6 = g7 = g8 = 1, g3 =
ϕIm I∗m
σE∗ , and g4 =

ϕIs I∗s
τI∗m

. Now, we substitute the above coefficients
and Eqs (A3)–(A10) into Eq (A2), we get

Ġ(t) ≤λ∗hS ∗h
(
2 −

S ∗h
S h
−

E
E∗
−

E∗λhS h

Eλ∗hS ∗h
+
λh

λ∗h

)
+

ϕIm I∗m
( E
E∗
−

I∗mE
ImE∗

−
H
H∗
−

H∗Im

HI∗m
+ 2

)
+

ϕIs I
∗
s

( Im

I∗m
−

I∗s Im

IsI∗m
−

H
H∗
−

H∗Is

HI∗s
+ 2

)
+

ωhI∗m
( Im

I∗m
− ln

( Im

I∗m

)
+ ln

( V
V∗

)
−

V
V∗

)
+

ωhI∗s
( Is

I∗s
− ln

( Is

I∗s

)
+ ln

( V
V∗

)
−

V
V∗

)
+

ωrI∗r
( Ir

I∗r
− ln

( Ir

I∗r

)
+ ln

( V
V∗

)
−

V
V∗

)
+

λ∗rS ∗r
(
2 −

S ∗r
S r
−

Ir

I∗r
−

I∗rλrS r

Irλ∗rS ∗r
+
λr

λ∗r

)
.

(A11)

Thus, Eqs (A1)–(A11) ensure that dG
dt ≤ 0 provided that λ∗hS ∗h

(
2− S ∗h

S h
− E

E∗ −
E∗λhS h
Eλ∗hS ∗h

+ λh
λ∗h

)
≤ 0,

(
E
E∗ −

I∗mE
ImE∗ −

H
H∗ −

H∗Im
HI∗m
+ 2

)
≤ 0,

(
Im
I∗m
−

I∗s Im

IsI∗m
− H

H∗ −
H∗Is
HI∗s
+ 2

)
≤ 0,

(
Im
I∗m
− ln Im

I∗m
+ Is

I∗s
− ln Is

I∗s
+ Ir

I∗r
− ln Ir

I∗r

)
≤ 3

(
V
V∗ − ln V

V∗

)
.

Consequently, the strict inequality dG
dt = 0 is satisfied only for S h = S ∗h, E = E∗, Im = I∗m, Is = I∗s ,

H = H∗, R = R∗, V = V∗, S r = S ∗r , and Ir = I∗r . Thus, the EE, Γ∗∗, is the only positive invariant set
to the system (1) contained entirely in Ω. Thus, following [33] every solutions of Eq (A2) with initial
conditions in Ω converge to Γ∗, as t → ∞. Hence, the positive EE (Γ∗) is globally asymptotically stable
(GAS).
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