Research article

Review of chaotic mapping enabled nature-inspired algorithms


  • Received: 14 May 2022 Revised: 25 May 2022 Accepted: 26 May 2022 Published: 06 June 2022
  • Chaotic maps were frequently introduced to generate random numbers and used to replace the pseudo-random numbers distributed in Gauss distribution in computer engineering. These improvements in optimization were called the chaotic improved optimization algorithm, most of them were reported better in literature. In this paper, we collected 19 classical maps which could all generate pseudo-random numbers in an interval between 0 and 1. Four types of chaotic improvement to original optimization algorithms were summarized and simulation experiments were carried out. The classical grey wolf optimization (GWO) and sine cosine (SC) algorithms were involved in these experiments. The final simulation results confirmed an uncertainty about the performance of improvements applied in different algorithms, different types of improvements, or benchmark functions. However, Results confirmed that Bernoulli map might be a better choice for most time. The code related to this paper is shared with https://gitee.com/lvqing323/chaotic-mapping.

    Citation: Zheng-Ming Gao, Juan Zhao, Yu-Jun Zhang. Review of chaotic mapping enabled nature-inspired algorithms[J]. Mathematical Biosciences and Engineering, 2022, 19(8): 8215-8258. doi: 10.3934/mbe.2022383

    Related Papers:

  • Chaotic maps were frequently introduced to generate random numbers and used to replace the pseudo-random numbers distributed in Gauss distribution in computer engineering. These improvements in optimization were called the chaotic improved optimization algorithm, most of them were reported better in literature. In this paper, we collected 19 classical maps which could all generate pseudo-random numbers in an interval between 0 and 1. Four types of chaotic improvement to original optimization algorithms were summarized and simulation experiments were carried out. The classical grey wolf optimization (GWO) and sine cosine (SC) algorithms were involved in these experiments. The final simulation results confirmed an uncertainty about the performance of improvements applied in different algorithms, different types of improvements, or benchmark functions. However, Results confirmed that Bernoulli map might be a better choice for most time. The code related to this paper is shared with https://gitee.com/lvqing323/chaotic-mapping.



    加载中


    [1] X. S. Yang, Nature-inspired optimization algorithms: Challenges and open problems, J. Comput. Sci., 46 (2020), 101104. https://doi.org/10.1016/j.jocs.2020.101104 doi: 10.1016/j.jocs.2020.101104
    [2] Z. M. Gao, J. Zhao, An Improved Grey Wolf Optimization Algorithm with Variable Weights, Comput. Intell. Neurosci., 2019 (2019), 2981282. https://doi.org/10.1155/2019/2981282 doi: 10.1155/2019/2981282
    [3] Z. M. Gao, J. Zhao, Benchmark functions with Python, Riga, Latvia: Golden Light Academic Publishing, (2020), 3-5.
    [4] L. Zhao, T. Zheng, M. Lin, A. Hawbani, J. Shang, C. Fan, SPIDER: A social computing inspired predictive routing scheme for softwarized vehicular networks, IEEE Trans. Intell. Transp. Syst., (2021), 1-12. https://doi.org/10.1109/TITS.2021.3122438
    [5] L. Zhao, W. Zhao, A. Hawbani, A. Y. Al-Dubai, G. Min, A. Y. Zomaya, et al., Novel online sequential learning-based adaptive routing for edge software-defined vehicular networks, IEEE Trans. Wireless Commun., 20 (2021), 2991-3004. https://doi.org/10.1109/TWC.2020.3046275 doi: 10.1109/TWC.2020.3046275
    [6] L. Zhao, C. Wang, K. Zhao, D. Tarchi, S. Wan, N. Kumar, INTERLINK: A digital twin-assisted storage strategy for satellite-terrestrial networks, IEEE Trans. Aerosp. Electron. Syst., (2022). https://doi.org/10.1109/TAES.2022.3169130
    [7] S. Mirjalili, A. Lewis, The whale optimization algorithm, Adv. Eng. Software, 95 (2016), 51-67. https://doi.org/10.1016/j.advengsoft.2016.01.008 doi: 10.1016/j.advengsoft.2016.01.008
    [8] Y. Chen, G. De Luca, Technologies supporting artificial intelligence and robotics application development, J. Artif. Intell. Technol., 1 (2021), 1-8. https://doi.org/10.37965/jait.2020.0065 doi: 10.37965/jait.2020.0065
    [9] J. Kennedy, R. Eberhart, Particle swarm optimization, in Proceedings of ICNN'95 – Inte-rnational Conference on Neural Networks, 4 (1995), 1942-1948. https://doi.org/10.1109/ICNN.1995.488968
    [10] J. Kennedy, R. C. Eberhart, A discrete binary version of the particle swarm algorithm, in 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, 5 (1997), 4104-4108. https://doi.org/10.1109/ICSMC.1997.637339
    [11] Y. Shi, R. Eberhart, A modified particle swarm optimizer, in 1998 IEEE International Conference on Evolutionary Computation Proceedings, IEEE World Congress on Computational Intelligence (Cat. No.98TH8360), (1998), 69-73. https://doi.org/10.1109/ICEC.1998.699146
    [12] Y. Shi, R. C. Eberhart, Parameter selection in particle swarm optimization, Springer, Berlin, Heidelberg, (1998), 591-600. https://doi.org/10.1007/BFb0040810
    [13] P. N. Suganthan, Particle swarm optimiser with neighbourhood operator, in Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), 3 (1999), 1958-1962. https://doi.org/10.1109/CEC.1999.785514
    [14] R. C. Eberhart, Y. Shi, Comparing inertia weights and constriction factors in particle swarm optimization, in Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512), 1 (2000), 84-88. https://doi.org/10.1109/CEC.2000.870279
    [15] R. Mendes, J. Kennedy, J. Neves, The fully informed particle swarm: simpler, maybe better, IEEE Trans. Evol. Comput., 8 (2004), 204-210. https://doi.org/10.1109/TEVC.2004.826074 doi: 10.1109/TEVC.2004.826074
    [16] M. E. H. Pedersen, A. J. Chipperfield, Simplifying particle swarm optimization, Appl. Soft Comput., 10 (2010), 618-628. https://doi.org/10.1016/j.asoc.2009.08.029 doi: 10.1016/j.asoc.2009.08.029
    [17] Y. Chunming, D. Simon, A new particle swarm optimization technique, in 18th Internati-onal Conference on Systems Engineering (ICSEng'05), (2005), 164-169. https://doi.org/10.1109/ICSENG.2005.9
    [18] X. X. Feng, Z. W. Jun, Y. Z. Lian, Dissipative particle swarm optimization, in Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600), 2 (2002), 1456-1461 https://doi.org/10.1109/CEC.2002.1004457
    [19] Z. M. Gao, J. Zhao, X. R. Li, Y. R. Hu, An improved sine cosine algorithm with multiple updating ways for individuals, J. Phys.: Conf. Ser., 1678 (2020), 012079. https://doi.org/10.1088/1742-6596/1678/1/012079 doi: 10.1088/1742-6596/1678/1/012079
    [20] J. Kennedy, Bare bones particle swarms, in Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706), (2003), 80-87. https://doi.org/10.1109/SIS.2003.1202251
    [21] A. P. Engelbrecht, Heterogeneous particle swarm optimization, in Swarm Intelligence, Springer, Berlin, Heidelberg, 6234 (2010). https://doi.org/10.1007/978-3-642-15461-4_17
    [22] P. J. Angeline, Using selection to improve particle swarm optimization, in 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360), (1998), 84-89. https://doi.org/10.1109/ICEC.1998.699327
    [23] H. Ullah, B. Ahmad, I. Sana, A. Sattar, A. Khan, S. Akbar, et al. Comparative study for machine learning classifier recommendation to predict political affiliation based on online reviews, CAAI Trans. Intell. Technol., 6 (2021), 251-264. https://doi.org/10.1049/cit2.12046 doi: 10.1049/cit2.12046
    [24] H. Haklı, H. Uğuz, A novel particle swarm optimization algorithm with Levy flight, Appl. Soft Comput., 23 (2014), 333-345. https://doi.org/10.1016/j.asoc.2014.06.034 doi: 10.1016/j.asoc.2014.06.034
    [25] E. Emary, H. M. Zawbaa, M. Sharawi, Impact of Lèvy flight on modern meta-heuristic optimizers, Appl. Soft Comput., 75 (2019), 775-789. https://doi.org/10.1016/j.asoc.2018.11.033 doi: 10.1016/j.asoc.2018.11.033
    [26] B. Abdollahzadeh, F. S. Gharehchopogh, S. Mirjalili, African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems, Comput. Ind. Eng., 158 (2021), 107408. https://doi.org/10.1016/j.cie.2021.107408 doi: 10.1016/j.cie.2021.107408
    [27] D. Ghosh, J. Singh, Spectrum-based multi-fault localization using Chaotic Genetic Algorithm, Inf. Software Technol., 133 (2021), 106512. https://doi.org/10.1016/j.infsof.2021.106512 doi: 10.1016/j.infsof.2021.106512
    [28] B. Alatas, Chaotic harmony search algorithms, Appl. Math. Comput., 216 (2010), 2687-2699. https://doi.org/10.1016/j.amc.2010.03.114 doi: 10.1016/j.amc.2010.03.114
    [29] L. Ding, H. Wu, Y. Yao, Chaotic artificial bee colony algorithm for system identification of a small-scale unmanned helicopter, Int. J. Aerosp. Eng., 2015 (2015), 801874. https://doi.org/10.1155/2015/801874 doi: 10.1155/2015/801874
    [30] A. H. Gandomi, X. S. Yang, S. Talatahari, A. H. Alavi, Firefly algorithm with chaos, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 89-98. https://doi.org/10.1016/j.cnsns.2012.06.009 doi: 10.1016/j.cnsns.2012.06.009
    [31] J. Jiang, X. Yang, X. Meng, K. Li, Enhance chaotic gravitational search algorithm (CGSA) by balance adjustment mechanism and sine randomness function for continuous optimization problems, Phys. A, 537 (2020), 122621. https://doi.org/10.1016/j.physa.2019.122621 doi: 10.1016/j.physa.2019.122621
    [32] A. H. Gandomi, X. S. Yang, Chaotic bat algorithm, J. Comput. Sci., 5 (2014), 224-232. https://doi.org/10.1016/j.jocs.2013.10.002 doi: 10.1016/j.jocs.2013.10.002
    [33] X. S. Yang, A new metaheuristic bat-inspired algorithm, in Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), Springer, Berlin, Heidelberg, 284 (2010), 65-74. https://doi.org/10.1007/978-3-642-12538-6_6
    [34] A. Farshin, S. Sharifian, A chaotic grey wolf controller allocator for Software Defined Mobile Network (SDMN) for 5th generation of cloud-based cellular systems (5G), Comput. Commun., 108 (2017), 94-109. https://doi.org/10.1016/j.comcom.2017.05.003 doi: 10.1016/j.comcom.2017.05.003
    [35] W. Zhu, H. Duan, Chaotic predator–prey biogeography-based optimization approach for UCAV path planning, Aerosp. Sci. Technol., 32 (2014), 153-161. https://doi.org/10.1016/j.ast.2013.11.003 doi: 10.1016/j.ast.2013.11.003
    [36] G. Kaur, S. Arora, Chaotic whale optimization algorithm, J. Comput. Des. Eng., 5 (2018), 275-284. https://doi.org/10.1016/j.jcde.2017.12.006 doi: 10.1016/j.jcde.2017.12.006
    [37] R. M. Rizk-Allah, A. E. Hassanien, S. Bhattacharyya, Chaotic crow search algorithm for fractional optimization problems, Appl. Soft Comput., 71 (2018), 1161-1175. https://doi.org/10.1016/j.asoc.2018.03.019 doi: 10.1016/j.asoc.2018.03.019
    [38] M. Mitić, N. Vuković, M. Petrović, Z. Miljković, Chaotic fruit fly optimization algorithm, Knowledge-Based Syst., 89 (2015), 446-458. https://doi.org/10.1016/j.knosys.2015.08.010 doi: 10.1016/j.knosys.2015.08.010
    [39] M. Kohli, S. Arora, Chaotic grey wolf optimization algorithm for constrained optimization problems, J. Comput. Des. Eng., 5 (2018), 458-472. https://doi.org/10.1016/j.jcde.2017.02.005 doi: 10.1016/j.jcde.2017.02.005
    [40] A. Erramilli, R. P. Singh, P. Pruthi, Chaotic maps as models of packet traffic, Teletraffic Sci. Eng., 1 (1994), 329-338. https://doi.org/10.1016/B978-0-444-82031-0.50040-8 doi: 10.1016/B978-0-444-82031-0.50040-8
    [41] Chaotic Maps, 2021. Available from: https://www.mathworks.com/matlabcentral/fileexchange/7370-chaotic-maps.
    [42] Y. Hu, J. Gong, Y. Jiang, L. Liu, G. Xiong, H. Chen, Hybrid map-based navigation method for unmanned ground vehicle in urban scenario, Remote Sens., 5 (2013), 3662-3680. https://doi.org/10.3390/rs5083662 doi: 10.3390/rs5083662
    [43] D. He, C. He, L. G. Jiang, H. W. Zhu, G. R. Hu, Chaotic characteristics of a one-dimensional iterative map with infinite collapses, IEEE Trans. Circuits Syst. I Fundam. Theory Appl., 48 (2001), 900-906. https://doi.org/10.1109/81.933333 doi: 10.1109/81.933333
    [44] I. Fister, M. Perc, S. M. Kamal, I. Fister, A review of chaos-based firefly algorithms: Perspectives and research challenges, Appl. Math. Comput., 252 (2015), 155-165. https://doi.org/10.1016/j.amc.2014.12.006 doi: 10.1016/j.amc.2014.12.006
    [45] G. Pastor, M. Romera, F. Montoya, A revision of the Lyapunov exponent in 1D quadratic maps, Physica D, 107 (1997), 17-22. https://doi.org/10.1016/S0167-2789(97)00057-2 doi: 10.1016/S0167-2789(97)00057-2
    [46] T. Xiang, X. Liao, K. Wong, An improved particle swarm optimization algorithm combined with piecewise linear chaotic map, Appl. Math. Comput., 190 (2007), 1637-1645. https://doi.org/10.1016/j.amc.2007.02.103 doi: 10.1016/j.amc.2007.02.103
    [47] J. Zhao, Z. M. Gao, B. L. Jia, The improved slime mould algorithm with piecewice map, in 2020 International Symposium on Computer Engineering and Intelligent Communications (ISCEIC), (2020), 25-29. https://doi.org/10.1109/ISCEIC51027.2020.00013
    [48] M. Khishe, M. R. Mosavi, Chimp optimization algorithm, Expert Syst. Appl., 149 (2020), 113338. https://doi.org/10.1016/j.eswa.2020.113338 doi: 10.1016/j.eswa.2020.113338
    [49] A. Saxena, R. Kumar, S. Das, β-chaotic map enabled grey wolf optimizer, Appl. Soft Comput., 75 (2019), 84-105. https://doi.org/10.1016/j.asoc.2018.10.044 doi: 10.1016/j.asoc.2018.10.044
    [50] H. Li, S. Wang, M. Ji, An improved chaotic ant colony algorithm, in Proceedings of the 9th international conference on Advances in Neural Networks, Springer, Berlin, Heidelberg, (2012), 633-640. https://doi.org/10.1007/978-3-642-31346-2_71
    [51] B. Wu, S. Fan, Improved artificial bee colony algorithm with chaos, in Computer Science for Environmental Engineering and EcoInformatics, Springer, Berlin, Heidelberg, 158 (2011), 51-56. https://doi.org/10.1007/978-3-642-22694-6_8
    [52] A. A. Ateya, A. Muthanna, A. Vybornova, A. D. Algarni, A. Abuarqoub, Y. Koucheryavy, et al., Chaotic salp swarm algorithm for SDN multi-controller networks, Eng. Sci. Technol. Int. J., 22 (2019), 1001-1012. https://doi.org/10.1016/j.jestch.2018.12.015 doi: 10.1016/j.jestch.2018.12.015
    [53] X. Liang, Z. Cai, M. Wang, X. Zhao, H. Chen, C. Li, Chaotic oppositional sine–cosine method for solving global optimization problems, Eng. Comput., 38 (2022), 1223–1239. https://doi.org/10.1007/s00366-020-01083-y doi: 10.1007/s00366-020-01083-y
    [54] S. I. Boushaki, N. Kamel, O. Bendjeghaba, A new quantum chaotic cuckoo search algor-ithm for data clustering, Expert Syst. Appl., 96 (2018), 358-372. https://doi.org/10.1016/j.eswa.2017.12.001 doi: 10.1016/j.eswa.2017.12.001
    [55] S. Aggarwal, P. Chatterjee, R. P. Bhagat, K. K. Purbey, S. J. Nanda, A social spider optimization algorithm with chaotic initialization for robust clustering, Procedia Comput. Sci., 143 (2018), 450-457. https://doi.org/10.1016/j.procs.2018.10.417 doi: 10.1016/j.procs.2018.10.417
    [56] A. A. Dehkordi, A. S. Sadiq, S. Mirjalili, K. Z. Ghafoor, Nonlinear-based chaotic harris hawks optimizer: Algorithm and internet of vehicles application, Appl. Soft Comput., (2021), 107574. https://doi.org/10.1016/j.asoc.2021.107574
    [57] S. Mirjalili, S. M. Mirjalili, A. Lewis, Grey wolf optimizer, Adv. Eng. Software, 69 (2014), 46-61. https://doi.org/10.1016/j.advengsoft.2013.12.007 doi: 10.1016/j.advengsoft.2013.12.007
    [58] S. Mirjalili, SCA: A Sine Cosine Algorithm for solving optimization problems, Knowledge Based Syst., 96 (2016), 120-133. https://doi.org/10.1016/j.knosys.2015.12.022 doi: 10.1016/j.knosys.2015.12.022
    [59] A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, H. Chen, Harris hawks optimization: Algorithm and applications, Future Gener. Comput. Syst., 97 (2019), 849-872. https://doi.org/10.1016/j.future.2019.02.028 doi: 10.1016/j.future.2019.02.028
    [60] A. Faramarzi, M. Heidarinejad, B. Stephens, S. Mirjalili, Equilibrium optimizer: A novel optimization algorithm, Knowledge Based Syst., 191 (2019), 105190. https://doi.org/10.1016/j.knosys.2019.105190 doi: 10.1016/j.knosys.2019.105190
    [61] S. Li, H. Chen, M. Wang, A. A. Heidari, S. Mirjalili, Slime mould algorithm: A new method for stochastic optimization, Future Gener. Comput. Syst., 111 (2020), 300-323. https://doi.org/10.1016/j.future.2020.03.055 doi: 10.1016/j.future.2020.03.055
    [62] Z. M. Gao, J. Zhao, S. R. Li, The improved slime mould algorithm with cosine controlling parameters, J. Phys.: Conf. Ser., 1631 (2020), 012083. DOI:10.1088/1742-6596/1631/1/012083 doi: 10.1088/1742-6596/1631/1/012083
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2630) PDF downloads(149) Cited by(0)

Article outline

Figures and Tables

Figures(35)  /  Tables(8)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog