Research article

Multi-leader-follower group consensus of stochastic time-delay multi-agent systems subject to Markov switching topology


  • Received: 23 March 2022 Revised: 13 May 2022 Accepted: 16 May 2022 Published: 20 May 2022
  • The multi-leader-follower group consensus issue of a class of stochastic time-delay multi-agent systems subject to Markov switching topology is investigated. The purpose is to determine a distributed control protocol to make sure that the followers' states converge in mean square to a convex hull generated by the leaders' states. Through a model transformation, the problem is transformed into a mean-square stability issue of a new system. Then, an easy-to-check sufficient condition for the solvability of the multi-leader-follower group consensus issue is proposed by utilizing the Lyapunov stability theory, graph theory, as well as several inequality techniques. It is shown that the required feedback gain can be acquired once the condition is satisfied. Finally, an example is used to illustrate the effectiveness of the control protocol.

    Citation: Tong Guo, Jing Han, Cancan Zhou, Jianping Zhou. Multi-leader-follower group consensus of stochastic time-delay multi-agent systems subject to Markov switching topology[J]. Mathematical Biosciences and Engineering, 2022, 19(8): 7504-7520. doi: 10.3934/mbe.2022353

    Related Papers:

  • The multi-leader-follower group consensus issue of a class of stochastic time-delay multi-agent systems subject to Markov switching topology is investigated. The purpose is to determine a distributed control protocol to make sure that the followers' states converge in mean square to a convex hull generated by the leaders' states. Through a model transformation, the problem is transformed into a mean-square stability issue of a new system. Then, an easy-to-check sufficient condition for the solvability of the multi-leader-follower group consensus issue is proposed by utilizing the Lyapunov stability theory, graph theory, as well as several inequality techniques. It is shown that the required feedback gain can be acquired once the condition is satisfied. Finally, an example is used to illustrate the effectiveness of the control protocol.



    加载中


    [1] W. Ren, R. W. Beard, Deep space spacecraft formation flying, in Distributed Consensus in Multi-Vehicle Cooperative Control, London, U.K.: Springer-Verlag, (2008), 225–246. https://doi.org/10.1007/978-1-84800-015-5
    [2] S. Safavi, U. A. Khan, Leader-follower consensus in mobile sensor networks, IEEE Signal Process. Lett., 22 (2015), 2249–2253. https://doi.org/10.1109/LSP.2015.2474134 doi: 10.1109/LSP.2015.2474134
    [3] C. Ma, W. Wu, Distributed leader-follower consensus of nonlinear multi-agent systems with unconsensusable switching topologies and its application to flexible-joint manipulators, Syst. Sci. Control Eng., 6 (2018), 200–207. https://doi.org/10.1080/21642583.2018.1547991 doi: 10.1080/21642583.2018.1547991
    [4] Z. Tang, T. Huang, J. Shao, J. Hu, Leader-following consensus for multi-agent systems via sampled-data control, IET Control Theory Appl., 5 (2011), 1658–1665. https://doi.org/10.1049/iet-cta.2010.0653 doi: 10.1049/iet-cta.2010.0653
    [5] C. Wang, H. Ji, Leader-following consensus of multi-agent systems under directed communication topology via distributed adaptive nonlinear protocol, Syst. Control Lett., 70 (2014), 23–29. https://doi.org/10.1016/j.sysconle.2014.05.010 doi: 10.1016/j.sysconle.2014.05.010
    [6] X. Jiang, G. Xia, Z. Feng, T. Li, Non-fragile $H_{\infty}$ consensus tracking of nonlinear multi-agent systems with switching topologies and transmission delay via sampled-data control, Inf. Sci., 509 (2020), 210–226. https://doi.org/10.1016/j.ins.2019.08.078 doi: 10.1016/j.ins.2019.08.078
    [7] J. Liu, T. Yin, D. Yue, H. R. Karimi, J. Cao, Event-based secure leader-following consensus control for multiagent systems with multiple cyber attacks, IEEE Trans. Cybern., 51 (2021), 162–173. https://doi.org/10.1109/TCYB.2020.2970556 doi: 10.1109/TCYB.2020.2970556
    [8] M. Ji, G. Ferrari-Trecate, M. Egerstedt, A. Buffa, Containment control in mobile networks, IEEE Trans. Autom. Control, 53 (2008), 1972–1975. https://doi.org/10.1109/TAC.2008.930098 doi: 10.1109/TAC.2008.930098
    [9] Q. Ma, F. L. Lewis, S. Xu, Cooperative containment of discrete-time linear multi-agent systems, Int. J. Robust Nonlin. Control, 25 (2015), 1007–1018. https://doi.org/10.1002/rnc.3124 doi: 10.1002/rnc.3124
    [10] D. Wang, N. Zhang, J. Wang, W. Wang, Cooperative containment control of multiagent systems based on follower observers with time delay, IEEE Trans. Syst., Man, Cybern., Syst., 47 (2016), 13–23. https://doi.org/10.1109/TSMC.2016.2577578 doi: 10.1109/TSMC.2016.2577578
    [11] G. Albi, L. Pareschi, M. Zanella, Boltzmann games in heterogeneous consensus dynamics, J. Stat. Phys., 175 (2019), 97–125. https://doi.org/10.1007/s10955-019-02246-y doi: 10.1007/s10955-019-02246-y
    [12] L. Zhao, J. Yu, H. Yu, C. Lin, Neuroadaptive containment control of nonlinear multiagent systems with input saturations, Int. J. Robust Nonlin. Control, 29 (2019), 2742–2756. https://doi.org/10.1002/rnc.4520 doi: 10.1002/rnc.4520
    [13] Q. Zhou, W. Wang, H. Liang, M. V. Basin, B. Wang, Observer-based event-triggered fuzzy adaptive bipartite containment control of multi-agent systems with input quantization, IEEE Trans. Fuzzy Syst., 29 (2021), 372–384. https://doi.org/10.1109/TFUZZ.2019.2953573 doi: 10.1109/TFUZZ.2019.2953573
    [14] L. Martinović, Ž. Zečević, B. Krstajić, Cooperative tracking control of single-integrator multi-agent systems with multiple leaders, Eur. J. Control, 63 (2022), 232–239. https://doi.org/10.1016/j.ejcon.2021.11.003 doi: 10.1016/j.ejcon.2021.11.003
    [15] H. Liang, Y. Zhou, H. Zhang, Containment control for singular multi-agent systems with an internal model compensator, Sci. China Inf. Sci., 63 (2020), 229202. https://doi.org/10.1007/s11432-018-9780-3 doi: 10.1007/s11432-018-9780-3
    [16] T. Hu, L. Li, Y. Wu, W. Sun, Consensus dynamics in noisy trees with given parameters, Mod. Phys. Lett. B, 36 (2022), 2150608. https://doi.org/10.1142/S0217984921506089 doi: 10.1142/S0217984921506089
    [17] T. Liu, J. Qi, Z. Jiang, Distributed containment control of multi-agent systems with velocity and acceleration saturations, Automatica, 117 (2020), 108992. https://doi.org/10.1016/j.automatica.2020.108992 doi: 10.1016/j.automatica.2020.108992
    [18] L. Ma, Z. Wang, Q. Han, Y. Liu, Consensus control of stochastic multi-agent systems: a survey, Sci. China Inf. Sci., 60 (2017), 120201. https://doi.org/10.1007/s11432-017-9169-4 doi: 10.1007/s11432-017-9169-4
    [19] J. Zhou, Y. Wang, X. Zheng, Z. Wang, H. Shen, Weighted $H_{\infty}$ consensus design for stochastic multi-agent systems subject to external disturbances and ADT switching topologies, Nonlinear Dyn., 96 (2019), 853–868. https://doi.org/10.1007/s11071-019-04826-9 doi: 10.1007/s11071-019-04826-9
    [20] X. Wang, J. H. Park, H. Yang, An improved protocol to consensus of delayed MASs with UNMS and aperiodic DoS cyber-attacks, IEEE Trans. Netw. Sci. Eng., 8 (2021), 2506–2516. https://doi.org/10.1109/TNSE.2021.3098258 doi: 10.1109/TNSE.2021.3098258
    [21] Z. Xu, H. Ni, H. R. Karimi, D. Zhang, A Markovian jump system approach to consensus of heterogeneous multiagent systems with partially unknown and uncertain attack strategies, Int. J. Robust Nonlin. Control, 30 (2020), 3039–3053. https://doi.org/10.1002/rnc.4923 doi: 10.1002/rnc.4923
    [22] M. Fang, C. Zhou, X. Huang, X. Li, J. Zhou, $H_{\infty}$ couple-group consensus of stochastic multi-agent systems with fixed and Markovian switching communication topologies, Chin. Phys. B, 28 (2019), 010703. https://doi.org/10.1088/1674-1056/28/1/010703 doi: 10.1088/1674-1056/28/1/010703
    [23] S. Huo, L. Zhang, S. Chen, Y. Zhang, $H_{\infty}$ consensus control of multi-agent systems under attacks with partially unknown Markovian probabilities, J. Frankl. Inst., 358 (2021), 4917–4928. https://doi.org/10.1016/j.jfranklin.2021.04.013 doi: 10.1016/j.jfranklin.2021.04.013
    [24] Z. Yan, X. Huang, J. Cao, Variable-sampling-period dependent global stabilization of delayed memristive neural networks based on refined switching event-triggered control, Sci. China Inf. Sci., 63 (2020), 212201. https://doi.org/10.1007/s11432-019-2664-7 doi: 10.1007/s11432-019-2664-7
    [25] X. Huang, Y. Liu, Y. Wang, J. Zhou, M. Fang, Z. Wang, $L_{2}- L_{\infty}$ consensus of stochastic delayed multi-agent systems with ADT switching interaction topologies, Appl. Math. Comput., 368 (2020), 124800. https://doi.org/10.1016/j.amc.2019.124800 doi: 10.1016/j.amc.2019.124800
    [26] Z. Zhang, X. Huang, Y. Chen, J. Zhou, Input-to-state $H_{\infty}$ learning of recurrent neural networks with delay and disturbance, Int. J. Adapt. Control Signal Process., 35 (2021), 1438–1453. https://doi.org/10.1002/acs.3251 doi: 10.1002/acs.3251
    [27] J. Li, X. Liu, C. Wei, The impact of fear factor and self-defence on the dynamics of predator-prey model with digestion delay, Math. Biosci. Eng., 18 (2021), 5478–5504. https://doi.org/10.3934/mbe.2021277 doi: 10.3934/mbe.2021277
    [28] R. Sakthivel, M. Rathika, S. Santra, M. Muslim, Observer-based dissipative control for Markovian jump systems via delta operators, Int. J. Syst. Sci., 48 (2017), 247–256. https://doi.org/10.1080/00207721.2016.1177131 doi: 10.1080/00207721.2016.1177131
    [29] Y. Xia, W. Zhou, Z. Yang, Global analysis and optimal harvesting for a hybrid stochastic phytoplankton-zooplankton-fish model with distributed delays, Math. Biosci. Eng., 17 (2020), 6149–6180. https://doi.org/10.3934/mbe.2020326 doi: 10.3934/mbe.2020326
    [30] M. S. Ali, M. Usha, O. M. Kwon, N. Gunasekaran, K. G. Thakur, $H_{\infty}$/passive non-fragile synchronisation of Markovian jump stochastic complex dynamical networks with time-varying delays, Int. J. Syst. Sci., 52 (2021), 1270–1283. https://doi.org/10.1080/00207721.2020.1856445 doi: 10.1080/00207721.2020.1856445
    [31] Y. Cao, W. Ren, M. Egerstedt, Distributed containment control with multiple stationary or dynamic leaders in fixed and switching directed networks, Automatica, 48 (2012), 1586–1597. https://doi.org/10.1016/j.automatica.2012.05.071 doi: 10.1016/j.automatica.2012.05.071
    [32] G. Wen, Z. Duan, Y. Zhao, W. Yu, J. Cao, Robust containment tracking of uncertain linear multi-agent systems: a non-smooth control approach, Int. J. Control, 87 (2014), 2522–2534. https://doi.org/10.1080/00207179.2014.930930 doi: 10.1080/00207179.2014.930930
    [33] H. Lütkepohl, Rules for matrix operations, in Handbook of Matrices, New York: Wiley, (1996), 15–22. https://doi.org/10.1017/S0266466698143086
    [34] S. Boyd, L. E. Ghaoui, E. Feron, V. Balakrishnan, Some standard problems involving LMIs, in Linear Matrix Inequalities in System and Control Theory, Philadelphia: SIAM, (1994), 7–36. https://doi.org/10.1137/1.9781611970777.ch2
    [35] X. Mao, Razumikhin-type theorems on exponential stability of stochastic functional differential equations, Stoch. Process. Appl., 65 (1996), 233–250. https://doi.org/10.1016/S0304-4149(96)00109-3 doi: 10.1016/S0304-4149(96)00109-3
    [36] K. Khandani, M. Parsa, Distributed containment control of a class of multi-agent systems driven by Brownian motion, Int. J. Dyn. Control, 7 (2019), 1035–1045. https://doi.org/10.1007/s40435-019-00561-6 doi: 10.1007/s40435-019-00561-6
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1996) PDF downloads(123) Cited by(5)

Article outline

Figures and Tables

Figures(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog