In this study, an adaptive modified reaching law-based switch controller design was developed for robotic manipulator systems using the disturbance observer (DO) approach. Firstly, a standard DO is employed to estimate the unknown disturbances of the plant, from which the control signal could be compensated. Then, an adaptive modified reaching law is established to dynamically adapt the switching gain of the sliding mode robust term and further guarantee the finite-time arrival of the established sliding surface. Additionally, the convergence of the error system is analyzed via the Lyapunov method. At last, the feasibility and effectiveness of the proposed control scheme are verified by using a two-joint robotic manipulator model. The simulation results show that the developed controller can achieve rapid tracking, reduce system chattering and improve the robustness of the plant. The main innovations of the work are as follows. 1) A new adaptive reaching law is proposed; it can reduce chattering effectively, and it has a fast convergence speed. 2) Regarding the nonlinear robotic manipulator model, a novel adaptive sliding-mode controller was synthesized based on the DO to estimate the unknown disturbance and ensure effective tracking of the desired trajectory.
Citation: Xinyu Shao, Zhen Liu, Baoping Jiang. Sliding-mode controller synthesis of robotic manipulator based on a new modified reaching law[J]. Mathematical Biosciences and Engineering, 2022, 19(6): 6362-6378. doi: 10.3934/mbe.2022298
[1] | Bashir Ahmad, Ahmed Alsaedi, Ymnah Alruwaily, Sotiris K. Ntouyas . Nonlinear multi-term fractional differential equations with Riemann-Stieltjes integro-multipoint boundary conditions. AIMS Mathematics, 2020, 5(2): 1446-1461. doi: 10.3934/math.2020099 |
[2] | Ymnah Alruwaily, Lamya Almaghamsi, Kulandhaivel Karthikeyan, El-sayed El-hady . Existence and uniqueness for a coupled system of fractional equations involving Riemann-Liouville and Caputo derivatives with coupled Riemann-Stieltjes integro-multipoint boundary conditions. AIMS Mathematics, 2023, 8(5): 10067-10094. doi: 10.3934/math.2023510 |
[3] | Subramanian Muthaiah, Dumitru Baleanu, Nandha Gopal Thangaraj . Existence and Hyers-Ulam type stability results for nonlinear coupled system of Caputo-Hadamard type fractional differential equations. AIMS Mathematics, 2021, 6(1): 168-194. doi: 10.3934/math.2021012 |
[4] | Bashir Ahmad, Ahmed Alsaedi, Areej S. Aljahdali, Sotiris K. Ntouyas . A study of coupled nonlinear generalized fractional differential equations with coupled nonlocal multipoint Riemann-Stieltjes and generalized fractional integral boundary conditions. AIMS Mathematics, 2024, 9(1): 1576-1594. doi: 10.3934/math.2024078 |
[5] | Md. Asaduzzaman, Md. Zulfikar Ali . Existence of positive solution to the boundary value problems for coupled system of nonlinear fractional differential equations. AIMS Mathematics, 2019, 4(3): 880-895. doi: 10.3934/math.2019.3.880 |
[6] | Murugesan Manigandan, Kannan Manikandan, Hasanen A. Hammad, Manuel De la Sen . Applying fixed point techniques to solve fractional differential inclusions under new boundary conditions. AIMS Mathematics, 2024, 9(6): 15505-15542. doi: 10.3934/math.2024750 |
[7] | Kishor D. Kucche, Sagar T. Sutar, Kottakkaran Sooppy Nisar . Analysis of nonlinear implicit fractional differential equations with the Atangana-Baleanu derivative via measure of non-compactness. AIMS Mathematics, 2024, 9(10): 27058-27079. doi: 10.3934/math.20241316 |
[8] | Subramanian Muthaiah, Manigandan Murugesan, Muath Awadalla, Bundit Unyong, Ria H. Egami . Ulam-Hyers stability and existence results for a coupled sequential Hilfer-Hadamard-type integrodifferential system. AIMS Mathematics, 2024, 9(6): 16203-16233. doi: 10.3934/math.2024784 |
[9] | Bashir Ahmad, Manal Alnahdi, Sotiris K. Ntouyas, Ahmed Alsaedi . On a mixed nonlinear boundary value problem with the right Caputo fractional derivative and multipoint closed boundary conditions. AIMS Mathematics, 2023, 8(5): 11709-11726. doi: 10.3934/math.2023593 |
[10] | Djamila Chergui, Taki Eddine Oussaeif, Merad Ahcene . Existence and uniqueness of solutions for nonlinear fractional differential equations depending on lower-order derivative with non-separated type integral boundary conditions. AIMS Mathematics, 2019, 4(1): 112-133. doi: 10.3934/Math.2019.1.112 |
In this study, an adaptive modified reaching law-based switch controller design was developed for robotic manipulator systems using the disturbance observer (DO) approach. Firstly, a standard DO is employed to estimate the unknown disturbances of the plant, from which the control signal could be compensated. Then, an adaptive modified reaching law is established to dynamically adapt the switching gain of the sliding mode robust term and further guarantee the finite-time arrival of the established sliding surface. Additionally, the convergence of the error system is analyzed via the Lyapunov method. At last, the feasibility and effectiveness of the proposed control scheme are verified by using a two-joint robotic manipulator model. The simulation results show that the developed controller can achieve rapid tracking, reduce system chattering and improve the robustness of the plant. The main innovations of the work are as follows. 1) A new adaptive reaching law is proposed; it can reduce chattering effectively, and it has a fast convergence speed. 2) Regarding the nonlinear robotic manipulator model, a novel adaptive sliding-mode controller was synthesized based on the DO to estimate the unknown disturbance and ensure effective tracking of the desired trajectory.
The topic of fractional differential equations received immense popularity and attraction due to their extensive use in the mathematical modeling of several real world phenomena. Examples include HIV-immune system with memory [1], stabilization of chaotic systems [2], chaotic synchronization [3,4], ecology [5], infectious diseases [6], economic model [7], fractional neural networks [8,9], COVID-19 infection [10], etc. A salient feature distinguishing fractional-order differential and integral operators from the classical ones is their nonlocal nature, which can provide the details about the past history of the phenomena and processes under investigation. In the recent years, many researchers contributed to the development of fractional calculus, for example, see [11,12,13,14,15,16,17,18,19,20,21,22,23,24] and the references cited therein. One can also find a substantial material about fractional order coupled systems in the articles [25,26,27,28,29,30,31,32,33,34].
In this paper, motivated by [30], we consider a Caputo type coupled system of nonlinear fractional differential equations supplemented with a new set of boundary conditions in terms of the sum and difference of the governing functions given by
{CDνφ(t)=f(t,φ(t),ψ(t)),t∈J:=[0,T],CDρψ(t)=g(t,φ(t),ψ(t)),t∈J:=[0,T],P1(φ+ψ)(0)+P2(φ+ψ)(T)=m∑i=1ai(φ+ψ)(σi),∫T0(φ−ψ)(s)ds−∫ζη(φ−ψ)(s)ds=A, | (1.1) |
where CDχ is the Caputo fractional derivative operator of order χ∈{ν,ρ}, ν,ρ∈(0,1], 0<σi<η<ζ<T, i=1,…,m (the case 0<η<ζ<σi<T can be treated in a similar way), P1,P2,ai,A are nonnegative constants, such that P1+P2−m∑i=1ai≠0, T−ζ+η≠0, and f,g:[0,T]×R2→R are continuous functions.
Here it is imperative to notice that the first condition introduced in the problem (1.1) can be interpreted as the sum of the governing functions φ and ψ at the end positions of the interval [0,T] is sum of similar contributions due to arbitrary positions at σi∈(0,T),i=1,...,m, while the second condition describes that the contribution of the difference of the governing functions φ and ψ on the domain [0,T] differs from the one an arbitrary sub-domain (η,ξ) by a constant A.
We will also study the problem (1.1) by replacing A in the last condition with the one containing nonlinear Riemann-Liouville integral term of the form:
1Γ(δ)∫T0(T−s)δ−1h(s,φ(s),ψ(s))ds,δ>0, | (1.2) |
where h:[0,T]×R2→R is a given continuous function.
We organize the rest of the paper as follows. In Section 2, we outline the related concepts of fractional calculus and establish an auxiliary lemma for the linear analogue of the problem (1.1). We apply the standard fixed point theorems to derive the existence and uniqueness results for the problem (1.1) in Section 3. The case of nonlinear Riemann-Liouville integral boundary conditions is discussed in Section 4. The paper concludes with some interesting observations and special cases.
Let us begin this section with some preliminary concepts of fractional calculus [11].
Definition 2.1. The Riemann-Liouville fractional integral of order q>0 of a function h:[0,∞)→R is defined by
Iqh(t)=∫t0(t−s)q−1Γ(q)h(s)ds,t>0, |
provided the right-hand side is point-wise defined on (0,∞), where Γ is the Gamma function.
Definition 2.2. The Caputo fractional derivative of order q for a function h:[0,∞]→R with h(t)∈ACn[0,∞) is defined by
CDqh(t)=1Γ(n−q)∫t0h(n)(s)(t−s)q−n+1ds=In−qh(n)(t), t>0,n−1<q<n. |
Lemma 2.1. Let q>0 and h(t)∈ACn[0,∞) or Cn[0,∞). Then
(IqCDqh)(t)=h(t)−n−1∑k=0h(k)(0)k!tk,t>0,n−1<q<n. | (2.1) |
Now we present an auxiliary lemma related to the linear variant of problem (1.1).
Lemma 2.2. Let F,G∈C[0,T], φ,ψ∈AC[0,T].Then the solution of the following linear coupled system:
{CDνφ(t)=F(t),t∈J:=[0,T],CDρψ(t)=G(t),t∈J:=[0,T],P1(φ+ψ)(0)+P2(φ+ψ)(T)=m∑i=1ai(φ+ψ)(σi),∫T0(φ−ψ)(s)ds−∫ζη(φ−ψ)(s)ds=A, | (2.2) |
is given by
φ(t)=∫t0(t−s)ν−1Γ(ν)F(s)ds+12{AΛ2−1Λ2∫T0(∫s0(s−x)ν−1Γ(ν)F(x)dx−∫s0(s−x)ρ−1Γ(ρ)G(x)dx)ds−P2Λ1(∫T0(T−s)ν−1Γ(ν)F(s)ds+∫T0(T−s)ρ−1Γ(ρ)G(s)ds)+1Λ2∫ξη(∫s0(s−x)ν−1Γ(ν)F(x)dx−∫s0(s−x)ρ−1Γ(ρ)G(x)dx)ds+m∑i=1aiΛ1(∫σi0(σi−s)ν−1Γ(ν)F(s)ds+∫σi0(σi−s)ρ−1Γ(ρ)G(s)ds)}, | (2.3) |
ψ(t)=∫t0(t−s)ρ−1Γ(ρ)G(s)ds+12{−AΛ2+1Λ2∫T0(∫s0(s−x)ν−1Γ(ν)F(x)dx−∫s0(s−x)ρ−1Γ(ρ)G(x)dx)ds−P2Λ1(∫T0(T−s)ν−1Γ(ν)F(s)ds+∫T0(T−s)ρ−1Γ(ρ)G(s)ds)−1Λ2∫ξη(∫s0(s−x)ν−1Γ(ν)F(x)dx−∫s0(s−x)ρ−1Γ(ρ)G(x)dx)ds+m∑i=1aiΛ1(∫σi0(σi−s)ν−1Γ(ν)F(s)ds+∫σi0(σi−s)ρ−1Γ(ρ)G(s)ds)}, | (2.4) |
where
Λ1:=P1+P2−m∑i=1ai≠0, | (2.5) |
Λ2:=T−ζ+η≠0. | (2.6) |
Proof. Applying the operators Iν and Iρ on the first and second fractional differential equations in (2.2) respectively and using Lemma 2.1, we obtain
φ(t)=∫t0(t−s)ν−1Γ(ν)F(s)ds+c1, | (2.7) |
ψ(t)=∫t0(t−s)ρ−1Γ(ρ)G(s)ds+c2, | (2.8) |
where c1,c2∈R. Inserting (2.7) and (2.8) in the condition P1(φ+ψ)(0)+P2(φ+ψ)(T)=m∑i=1ai(φ+ψ)(σi), we get
c1+c2=1Λ1{m∑i=1ai(∫σi0(σi−s)ν−1Γ(ν)F(s)ds+∫σi0(σi−s)ρ−1Γ(ρ)G(s)ds)−P2(∫T0(T−s)ν−1Γ(ν)F(s)ds+∫T0(T−s)ρ−1Γ(ρ)G(s)ds)}. | (2.9) |
Using (2.7) and (2.8) in the condition ∫T0(φ−ψ)(s)ds−∫ζη(φ−ψ)(s)ds=A, we obtain
c1−c2=1Λ2{A−∫T0(∫s0(s−x)ν−1Γ(ν)F(x)dx−∫s0(s−x)ρ−1Γ(ρ)G(x)dx)ds+∫ξη(∫s0(s−x)ν−1Γ(ν)F(x)dx−∫s0(s−x)ρ−1Γ(ρ)G(x)dx)ds}. | (2.10) |
Solving (2.9) and (2.10) for c1 and c2, yields
c1=12{AΛ2−1Λ2∫T0(∫s0(s−x)ν−1Γ(ν)F(x)dx−∫s0(s−x)ρ−1Γ(ρ)G(x)dx)ds−P2Λ1(∫T0(T−s)ν−1Γ(ν)F(s)ds+∫T0(T−s)ρ−1Γ(ρ)G(s)ds)+1Λ2∫ξη(∫s0(s−x)ν−1Γ(ν)F(x)dx−∫s0(s−x)ρ−1Γ(ρ)G(x)dx)ds+1Λ1m∑i=1ai(∫σi0(σi−s)ν−1Γ(ν)F(s)ds+∫σi0(σi−s)ρ−1Γ(ρ)G(s)ds)}, |
and
c2=12{−AΛ2+1Λ2∫T0(∫s0(s−x)ν−1Γ(ν)F(x)dx−∫s0(s−x)ρ−1Γ(ρ)G(x)dx)ds−P2Λ1(∫T0(T−s)ν−1Γ(ν)F(s)ds+∫T0(T−s)ρ−1Γ(ρ)G(s)ds)−1Λ2∫ξη(∫s0(s−x)ν−1Γ(ν)F(x)dx−∫s0(s−x)ρ−1Γ(ρ)G(x)dx)ds+1Λ1m∑i=1ai(∫σi0(σi−s)ν−1Γ(ν)F(s)ds+∫σi0(σi−s)ρ−1Γ(ρ)G(s)ds)}. |
Substituting the values of c1 and c2 in (2.7) and (2.8) respectively, we get the solution (2.3) and (2.4). By direct computation, one can obtain the converse of this lemma. The proof is complete.
Let X=C([0,T],R)×C([0,T],R) denote the Banach space endowed with the norm ‖(φ,ψ)‖=‖φ‖+‖ψ‖=supt∈[0,T]|φ(t)|+supt∈[0,T]|ψ(t)|, (φ,ψ)∈X. In view of Lemma 2.2, we define an operator Φ:X→X in relation to the problem (1.1) as
Φ(φ,ψ)(t):=(Φ1(φ,ψ)(t),Φ2(φ,ψ)(t)), | (3.1) |
where
Φ1(φ,ψ)(t)=1Γ(ν)∫t0(t−s)ν−1f(s,φ(s),ψ(s))ds+12{AΛ2−1Λ2∫T0(∫s0(s−x)ν−1Γ(ν)f(x,φ(x),ψ(x))dx−∫s0(s−x)ρ−1Γ(ρ)g(x,φ(x),ψ(x))dx)ds−P2Λ1(∫T0(T−s)ν−1Γ(ν)f(s,φ(s),ψ(s))ds+∫T0(T−s)ρ−1Γ(ρ)g(s,φ(s),ψ(s))ds)+1Λ2∫ξη(∫s0(s−x)ν−1Γ(ν)f(x,φ(x),ψ(x))dx−∫s0(s−x)ρ−1Γ(ρ)g(x,φ(x),ψ(x))dx)ds+1Λ1m∑i=1ai(∫σi0(σi−s)ν−1Γ(ν)f(s,φ(s),ψ(s))ds+∫σi0(σi−s)ρ−1Γ(ρ)g(s,φ(s),ψ(s))ds)}, | (3.2) |
and
Φ2(φ,ψ)(t)=1Γ(ρ)∫t0(t−s)ρ−1g(s,φ(s),ψ(s))ds+12{−AΛ2+1Λ2∫T0(∫s0(s−x)ν−1Γ(ν)f(x,φ(x),ψ(x))dx−∫s0(s−x)ρ−1Γ(ρ)g(x,φ(x),ψ(x))dx)ds−P2Λ1(∫T0(T−s)ν−1Γ(ν)f(s,φ(s),ψ(s))ds+∫T0(T−s)ρ−1Γ(ρ)g(s,φ(s),ψ(s))ds)−1Λ2∫ξη(∫s0(s−x)ν−1Γ(ν)f(x,φ(x),ψ(x))dx−∫s0(s−x)ρ−1Γ(ρ)g(x,φ(x),ψ(x))dx)ds+1Λ1m∑i=1ai(∫σi0(σi−s)ν−1Γ(ν)f(s,φ(s),ψ(s))ds+∫σi0(σi−s)ρ−1Γ(ρ)g(s,φ(s),ψ(s))ds)}. | (3.3) |
In the forthcoming analysis, we need the following assumptions.
(H1) There exist continuous nonnegative functions μi,κi∈C([0,1],R+),i=1,2,3, such that
|f(t,φ,ψ)|≤μ1(t)+μ2(t)|φ|+μ3(t)|ψ|∀(t,φ,ψ)∈J×R2; |
|g(t,φ,ψ)|≤κ1(t)+κ2(t)|φ|+κ3(t)|ψ|∀(t,φ,ψ)∈J×R2. |
(H2) There exist positive constants αi,βi,i=1,2, such that
|f(t,φ1,ψ1)−f(t,φ2,ψ2)|≤α1|φ1−φ2|+α2|ψ1−ψ2|,∀t∈J,φi,ψi∈R,i=1,2; |
|g(t,φ1,ψ1)−g(t,φ2,ψ2)|≤β1|φ1−φ2|+β2|ψ1−ψ2|,∀t∈J,φi,ψi∈R,i=1,2. |
For computational convenience, we introduce the notation:
ϱ1=12|Λ1|[m∑i=1aiσνiΓ(ν+1)+P2TνΓ(ν+1)]+12|Λ2|[ζν+1−ην+1Γ(ν+2)+Tν+1Γ(ν+2)], | (3.4) |
ϱ2=12|Λ1|[m∑i=1aiσρiΓ(ρ+1)+P2TρΓ(ρ+1)]+12|Λ2|[ζρ+1−ηρ+1Γ(ρ+2)+Tρ+1Γ(ρ+2)], | (3.5) |
and
M0=min{1−[‖μ2‖(2ϱ1+TνΓ(ν+1))+‖κ2‖(2ϱ2+TρΓ(ρ+1))],1−[‖μ3‖(2ϱ1+TνΓ(ν+1))+‖κ3‖(2ϱ2+TρΓ(ρ+1))]}. |
We make use of the following fixed point theorem [35] to prove the existence of solutions for the problem (1.1).
Lemma 3.1. Let E be the Banach space and Q:E→E be a completely continuous operator. If the set Ω={x∈E|x=μQx,0<μ<1} is bounded, then Q has a fixed point in E.
Theorem 3.1. Suppose that f,g:J×R2→R are continuousfunctions and the condition (H1) holds. Then there exists at least one solution for the problem (1.1) on J if
‖μ2‖(2ϱ1+TνΓ(ν+1))+‖κ2‖(2ϱ2+TρΓ(ρ+1))<1,‖μ3‖(2ϱ1+TνΓ(ν+1))+‖κ3‖(2ϱ2+TρΓ(ρ+1))<1, | (3.6) |
where ϱi(i=1,2) are defined in (3.4)–(3.5).
Proof. Observe that continuity of Φ:X→X follows from that of the functions f and g. Now we show that the operator Φ maps any bounded subset of X into a relatively compact subset of X. For that, let Ωˉr⊂X be bounded. Then, for the positive real constants Lf and Lg, we have
|f(t,φ(t),ψ(t))|≤Lf,|g(t,φ(t),ψ(t))|≤Lg,∀(φ,ψ)∈Ωˉr. |
So, for any (φ,ψ)∈Ωˉr, t∈J, we get
|Φ1(φ,ψ)(t)|≤LfΓ(ν)∫t0(t−s)ν−1ds+12{A|Λ2|+1Λ2∫T0(Lf∫s0(s−x)ν−1Γ(ν)dx+Lg∫s0(s−x)ρ−1Γ(ρ)dx)ds+P2|Λ1|(Lf∫T0(T−s)ν−1Γ(ν)ds+Lg∫T0(T−s)ρ−1Γ(ρ)ds)+1|Λ2|∫ξη(Lf∫s0(s−x)ν−1Γ(ν)dx+Lg∫s0(s−x)ρ−1Γ(ρ)dx)ds+1|Λ1|m∑i=1ai(Lf∫σi0(σi−s)ν−1Γ(ν)ds+Lg∫σi0(σi−s)ρ−1Γ(ρ)ds)}≤LfTνΓ(ν+1)+Lf2|Λ1|[m∑i=1aiσνiΓ(ν+1)+P2TνΓ(ν+1)]+Lf2|Λ2|[ζν+1−ην+1Γ(ν+2)+Tν+1Γ(ν+2)]+Lg2|Λ1|[m∑i=1aiσρiΓ(ρ+1)+P2TρΓ(ρ+1)]+Lg2|Λ2|[ζρ+1−ηρ+1Γ(ρ+2)+Tρ+1Γ(ρ+2)]+A2|Λ2|, |
which, in view of (3.4) and (3.5), takes the form:
|Φ1(φ,ψ)(t)|≤Lf(TνΓ(ν+1)+ϱ1)+Lgϱ2+A2|Λ2|. | (3.7) |
In a similar fashion, one can obtain
|Φ2(φ,ψ)(t)|≤Lfϱ1+Lg(TρΓ(ρ+1)+ϱ2)+A2|Λ2|. | (3.8) |
From (3.7) and (3.8), we get
‖Φ(φ,ψ)‖=‖Φ1(φ,ψ)‖+‖Φ2(φ,ψ)‖≤Lf(TνΓ(ν+1)+2ϱ1)+Lg(TρΓ(ρ+1)+2ϱ2)+A|Λ2|. |
From the foregoing inequality, we deduce that the operator Φ is uniformly bounded.
In order to show that Φ maps bounded sets into equicontinuous sets of X, let t1,t2∈[0,T],t1<t2, and (φ,ψ)∈Ωˉr. Then
|Φ1(φ,ψ)(t2)−Φ1(φ,ψ)(t1)|≤|1Γ(ν)(∫t10[(t2−s)ν−1−(t1−s)ν−1]f(s,φ(s),ψ(s))ds+∫t2t1(t2−s)ν−1f(s,φ(s),ψ(s))ds)|≤Lf(2(t2−t1)ν+tν2−tν1Γ(ν+1)). |
Analogously, we can obtain
|Φ2(φ,ψ)(t2)−Φ2(u,v)(t1)|≤Lg(2(t2−t1)ρ+tρ2−tρ1Γ(ρ+1)). |
Clearly the right-hand sides of the above inequalities tend to zero when t1→t2, independently of (φ,ψ)∈Ωˉr. Thus it follows by the Arzelá-Ascoli theorem that the operator Φ:X→X is completely continuous.
Next we consider the set E={(φ,ψ)∈X|(φ,ψ)=λΦ(φ,ψ),0<λ<1} and show that it is bounded. Let (φ,ψ)∈E, then (φ,ψ)=λΦ(φ,ψ),0<λ<1. For any t∈J, we have
φ(t)=λΦ1(φ,ψ)(t),ψ(t)=λΦ2(φ,ψ)(t). |
As in the previous step, using ϱi(i=1,2) given by (3.4)-(3.5), we find that
|φ(t)|=λ|Φ1(φ,ψ)(t)|≤(‖μ1‖+‖μ2‖‖φ‖+‖μ3‖‖ψ‖)(TνΓ(ν+1)+ϱ1)+(‖κ1‖+‖κ2‖‖φ‖+‖κ3‖‖ψ‖)ϱ2+A2|Λ2|, |
|ψ(t)|=λ|Φ2(φ,ψ)(t)|≤(‖μ1‖+‖μ2‖‖φ‖+‖μ3‖‖ψ‖)ϱ1+(‖κ1‖+‖κ2‖‖φ‖+‖κ3‖‖ψ‖)(TρΓ(ρ+1)+ϱ2)+A2|Λ2|. |
In consequence, we get
‖φ‖+‖ψ‖≤‖μ1‖(2ϱ1+TνΓ(ν+1))+‖κ1‖(2ϱ2+TρΓ(ρ+1))+A|Λ2|+[‖μ2‖(2ϱ1+TνΓ(ν+1))+‖κ2‖(2ϱ2+TρΓ(ρ+1))]‖φ‖+[‖μ3‖(2ϱ1+TνΓ(ν+1))+‖κ3‖(2ϱ2+TνΓ(ν+1))]‖ψ‖. |
Thus, by the condition (3.6), we have
‖(φ,ψ)‖≤1M0{‖μ1‖(2ϱ1+TνΓ(ν+1))+‖κ1‖(2ϱ2+TρΓ(ρ+1))+A|Λ2|}, |
which shows that ‖(φ,ψ)‖ is bounded for t∈J. In consequence, the set E is bounded. Thus it follows by the conclusion of Lemma 3.1 that the operator Φ has at least one fixed point, which is indeed a solution of the problem (1.1).
Letting μ2(t)=μ3(t)≡0 and κ2(t)=κ3(t)≡0, the statement of Theorem 3.1 takes the following form.
Corollary 3.1. Let f,g:J×R2→R be continuousfunctions such that
|f(t,φ,ψ)|≤μ1(t),|g(t,φ,ψ)|≤κ1(t),∀(t,φ,ψ)∈J×R2, |
where μ1,κ1∈C([0,T],R+). Then there exists at least one solution for the problem (1.1) on J.
Corollary 3.2. If μi(t)=λi,κi(t)=εi,i=1,2,3, then the condition (H1) becomes:
(H′1) there exist real constants λi,εi>0,i=1,2, such that
|f(t,φ,ψ)|≤λ1+λ2|φ|+λ3|ψ|∀(t,φ,ψ)∈J×R2; |
|f(t,φ,ψ)|≤ε1+ε2|φ|+ε3|ψ|∀(t,φ,ψ)∈J×R2; |
and (3.6) takes the form:
λ2(2ϱ1+TνΓ(ν+1))+ε2(2ϱ2+TρΓ(ρ+1))<1,λ3(2ϱ1+TνΓ(ν+1))+ε3(2ϱ2+TρΓ(ρ+1))<1. |
Then there exists at least one solution for the problem (1.1) on J.
The next result is concerned with the existence of a unique solution for the problem (1.1) and is reliant on the contraction mapping principle due to Banach.
Theorem 3.2. Let f,g:[0,1]×R2→R be continuous functions and the assumption (H2) holds.Then the problem (1.1) has a unique solution on J if
α(TνΓ(ν+1)+2ϱ1)+β(TρΓ(ρ+1)+2ϱ2)<1, | (3.9) |
where α=max{α1,α2},β=max{β1,β2} and ϱi,i=1,2, are defined in (3.4)-(3.5).
Proof. Consider the operator Φ:X→X defined by (3.1) and take
r>M1(TνΓ(ν+1)+2ϱ1)+M2(TρΓ(ρ+1)+2ϱ2)+A|Λ2|1−(α(TνΓ(ν+1)+2ϱ1)+β(TρΓ(ρ+1)+2ϱ2)), |
where M1=supt∈[0,T]|f(t,0,0)|, and M2=supt∈[0,T]|g(t,0,0)|. Then we show that ΦBr⊂Br, where Br={(φ,ψ)∈X:‖(φ,ψ)‖≤r}. By the assumption (H1), for (φ,ψ)∈Br,t∈[0,T], we have
|f(t,φ(t),ψ(t))|≤|f(t,φ(t),ψ(t))−f(t,0,0)|+|f(t,0,0)|≤α(|φ(t)|+|ψ(t)|)+M1≤α(‖φ‖+‖ψ‖)+M1. |
In a similar manner, one can find that
|g(t,φ(t),ψ(t))|≤β(‖φ‖+‖ψ‖)+M2. |
In consequence, for (φ,ψ)∈Br, we obtain
|Φ1(φ,ψ)(t)|≤TνΓ(ν+1)(α(‖φ‖+‖ψ‖)+M1)+12[A|Λ2|+1|Λ2|(Tν+1Γ(ν+2)(α(‖φ‖+‖ψ‖)+M1)+Tρ+1Γ(ρ+2)(β(‖φ‖+‖ψ‖)+M2))+P2|Λ1|(TνΓ(ν+1)(α(‖φ‖+‖ψ‖)+M1)+TρΓ(ρ+1)(β(‖φ‖+‖ψ‖)+M2))+1|Λ2|(ζν+1−ην+1Γ(ν+2)(α(‖φ‖+‖ψ‖)+M1)+ζρ+1−ηρ+1Γ(ρ+2)(β(‖φ‖+‖ψ‖)+M2))+1|Λ1|m∑i=1ai(σνiΓ(ν+1)(α(‖φ‖+‖ψ‖)+M1)+σρiΓ(ρ+1)(β(‖φ‖+‖ψ‖)+M2))], |
which, on taking the norm for t∈J, yields
‖Φ1(φ,ψ)‖≤(α(TνΓ(ν+1)+ϱ1)+βϱ2)(‖φ‖+‖ψ‖)+M1(TνΓ(ν+1)+ϱ1)+M2ϱ2+A2|Λ2|. |
In the same way, for (φ,ψ)∈Br, one can obtain
‖Φ2(φ,ψ)‖≤(αϱ1+β(TρΓ(ρ+1)+ϱ2))(‖φ‖+‖ψ‖)+M1ϱ1+M2(TρΓ(ρ+1)+ϱ2)+A2|Λ2|. |
Therefore, for any (φ,ψ)∈Br, we have
‖Φ(φ,ψ))‖=‖Φ1(φ,ψ)‖+‖Φ2(φ,ψ)‖≤(α(TνΓ(ν+1)+2ϱ1)+β(TρΓ(ρ+1)+2ϱ2))(‖φ‖+‖ψ‖)+M1(TνΓ(ν+1)+2ϱ1)+M2(TρΓ(ρ+1)+2ϱ2)+A|Λ2|<r, |
which shows that Φ maps Br into itself.
Next it will be shown that the operator Φ is a contraction. For (φ1,ψ1),(φ2,ψ2)∈E,t∈[0,T], it follows by (H2) that
|Φ1(φ1,ψ1)(t)−Φ1(φ2,ψ2)(t)|≤∫t0(t−s)ν−1Γ(ν)|f(s,φ1(s),ψ1(s))−f(s,φ2(s),ψ2(s))|ds+12{1|Λ2|∫T0(∫s0(s−x)ν−1Γ(ν)|f(x,φ1(x),ψ1(x))−f(x,φ2(x),ψ2(x))|dx+∫s0(s−x)ρ−1Γ(ρ)|g(x,φ1(x),ψ1(x))−g(x,φ2(x),ψ2(x))|dx)ds+P2|Λ1|(∫T0(T−s)ν−1Γ(ν)|f(s,φ1(s),ψ1(s))−f(s,φ2(s),ψ2(s))|ds+∫T0(T−s)ρ−1Γ(ρ)|g(s,φ1(s),ψ1(s))−g(s,φ2(s),ψ2(s))|ds)+1|Λ2|∫ξη(∫s0(s−x)ν−1Γ(ν)|f(x,φ1(x),ψ1(x))−f(x,φ2(x),ψ2(x))|dx+∫s0(s−x)ρ−1Γ(ρ)|g(x,φ1(x),ψ1(x))−g(x,φ2(x),ψ2(x))|dx)ds+1|Λ1|m∑i=1ai(∫σi0(σi−s)ν−1Γ(ν)|f(s,φ1(s),ψ1(s))−f(s,φ2(s),ψ2(s))|ds+∫σi0(σi−s)ρ−1Γ(ρ)|g(s,φ1(s),ψ1(s))−g(s,φ2(s),ψ2(s))|ds)}≤{α(TνΓ(ν+1)+ϱ1)+βϱ2}(‖φ1−φ2‖+‖ψ1−ψ2‖), |
and
|Φ2(φ1,ψ1)(t)−Φ2(φ2,ψ2)(t)|≤∫t0(t−s)ρ−1Γ(ρ)|g(s,φ1(s),ψ1(s))−g(s,φ2(s),ψ2(s))|ds+12{1|Λ2|∫T0(∫s0(s−x)ν−1Γ(ν)|f(x,φ1(x),ψ1(x))−f(x,φ2(x),ψ2(x))|dx+∫s0(s−x)ρ−1Γ(ρ)|g(x,φ1(x),ψ1(x))−g(x,φ2(x),ψ2(x))|dx)ds+P2|Λ1|(∫T0(T−s)ν−1Γ(ν)|f(s,φ1(s),ψ1(s))−f(s,φ2(s),ψ2(s))|ds+∫T0(T−s)ρ−1Γ(ρ)|g(s,φ1(s),ψ1(s))−g(s,φ2(s),ψ2(s))|ds)+1|Λ2|∫ξη(∫s0(s−x)ν−1Γ(ν)|f(x,φ1(x),ψ1(x))−f(x,φ2(x),ψ2(x))|dx+∫s0(s−x)ρ−1Γ(ρ)|g(x,φ1(x),ψ1(x))−g(x,φ2(x),ψ2(x))|dx)ds+1|Λ1|m∑i=1ai(∫σi0(σi−s)ν−1Γ(ν)|f(s,φ1(s),ψ1(s))−f(s,φ2(s),ψ2(s))|ds+∫σi0(σi−s)ρ−1Γ(ρ)|g(s,φ1(s),ψ1(s))−g(s,φ2(s),ψ2(s))|ds)}≤{αϱ1+β(TρΓ(ρ+1)+ϱ2)}(‖φ1−φ2‖+‖ψ1−ψ2‖). |
In view of the foregoing inequalities, it follows that
‖Φ(φ1,ψ1)−Φ(φ2,ψ2)‖=‖Φ1(φ1,ψ1)−Φ1(φ2,ψ2)‖+‖Φ2(φ1,ψ1)−Φ2(φ2,ψ2)‖≤{α(TνΓ(ν+1)+2ϱ1)+β(TρΓ(ρ+1)+2ϱ2)}‖(φ1−φ2,ψ1−ψ2)‖. |
Using the condition (3.9), we deduce from the above inequality that Φ is a contraction mapping. Consequently Φ has a unique fixed point by the application of contraction mapping principle. Hence there exists a unique solution for the problem (1.1) on J. The proof is finished.
Example 3.1. Consider the following problem
{CD1/2φ(t)=f(t,φ(t),ψ(t)),t∈J:=[0,2],CD4/5ψ(t)=g(t,φ(t),ψ(t)),t∈J:=[0,2],(φ+ψ)(0)+5/2(φ+ψ)(2)=1/2(φ+ψ)(1/4)+3/2(φ+ψ)(1/2),∫20(φ−ψ)(s)ds−∫3/42/3(φ−ψ)(s)ds=1, | (3.10) |
where ν=1/2,ρ=4/5,η=2/3,ζ=3/4,a1=1/2,a2=3/2,P1=1,P2=5/2,σ1=1/4,σ2=1/2,A=1,T=2, and f(t,φ,ψ) and g(t,φ,ψ) will be fixed later.
Using the given data, we find that Λ1=1.5,Λ2=1.91666667, ϱ1=2.110627579,ϱ2=2.494392906, where Λ1,Λ2,ϱ1 and ϱ2 are respectively given by (2.5), (2.6), (3.4) and (3.5). For illustrating theorem 3.1, we take
f(t,φ,ψ)=e−t5√16+t2(tan−1φ+ψ+cost)andg(t,φ,ψ)=1(t+2)6(|φ|1+|ψ|+tψ+e−t). | (3.11) |
Clearly f and g are continuous and satisfy the condition (H1) with μ1(t)=e−tcost5√16+t2,μ2(t)=e−t5√16+t2,μ3(t)=e−t10√16+t2,κ1(t)=e−t(t+2)6,κ2(t)=1(t+2)6, and κ3(t)=12(t+2)6. Also
‖μ2‖(2ϱ1+TνΓ(ν+1))+‖κ2‖(2ϱ2+TρΓ(ρ+1))≈0.398009902, |
and
‖μ3‖(2ϱ1+TνΓ(ν+1))+‖κ3‖(2ϱ2+TρΓ(ρ+1))≈0.199004951<1. |
Thus all the conditions of theorem 3.1 hold true and hence the problem (3.10) with f(t,φ,ψ) and g(t,φ,ψ) given by (3.11) has at least one solution on [0,2].
Next we demonstrate the application of Theorem 3.2. Let us choose
f(t,φ,ψ)=e−ttan−1φ+cosψ5√16+t2andg(t,φ,ψ)=1(2+t)6(|φ|2+|φ|+sinψ). | (3.12) |
It is easy to show that the condition (H2) is satisfied with α1=α2=1/20=α and β1=1/64,β2=1/128 and so, β=1/64. Also α(TνΓ(ν+1)+2ϱ1)+β(TρΓ(ρ+1)+2ϱ2)≈0.39800990<1. Thus the hypothesis of Theorem 3.2 holds and hence its conclusion implies that the problem (3.10) with f(t,φ,ψ) and g(t,φ,ψ) given by (3.12) has a unique solution on [0,2].
In this section, we consider a variant of the problem (1.1) involving a nonlinear Riemann-Liouville integral term in the last boundary condition given by
{CDνφ(t)=f(t,φ(t),ψ(t)),t∈J:=[0,T],CDρψ(t)=g(t,φ(t),ψ(t)),t∈J:=[0,T],P1(φ+ψ)(0)+P2(φ+ψ)(T)=m∑i=1ai(φ+ψ)(σi),∫T0(φ−ψ)(s)ds−∫ζη(φ−ψ)(s)ds=1Γ(δ)∫T0(T−s)δ−1h(s,φ(s),ψ(s))ds,δ>0. | (4.1) |
Now we state a uniqueness result for the problem (4.1). We do not provide the proof of this result as it is similar to that of Theorem 3.2.
Theorem 4.1. Let f, g, h:[0, 1]\times \mathbb{R}^2\to \mathbb{R} be continuous functions and the following assumption holds:
(\overline{H}_2) There exist positive constants \alpha_i, \, \beta_i, \gamma_i, \, i = 1, 2 , such that
|f(t, \varphi_1, \psi_1)-f(t, \varphi_2, \psi_2)|\leq \alpha_1|\varphi_1-\varphi_2|+\alpha_2|\psi_1-\psi_2|, \quad \forall\, t\in J, \, \, \varphi_i, \psi_i\in \mathbb{R}, \, i = 1, 2; |
|g(t, \varphi_1, \psi_1)-g(t, \varphi_2, \psi_2)|\leq \beta_1|\varphi_1-\varphi_2|+\beta_2|\psi_1-\psi_2|, \quad \forall\, t\in J, \, \, \varphi_i, \psi_i\in \mathbb{R}, \, i = 1, 2; |
|h(t, \varphi_1, \psi_1)-h(t, \varphi_2, \psi_2)|\leq \gamma_1|\varphi_1-\varphi_2|+\gamma_2|\psi_1-\psi_2|, \quad \forall\, t\in J, \, \, \varphi_i, \psi_i\in \mathbb{R}, \, i = 1, 2. |
Then the problem (4.1) has a unique solution on J if
\begin{equation} \frac{\gamma T^\delta}{|\Lambda_2|\Gamma(\delta+1)}+\alpha\Big(\frac{T^\nu}{\Gamma(\nu+1)}+2\varrho_1\Big)+\beta\Big(\frac{T^\rho}{\Gamma(\rho+1)}+2\varrho_2\Big) < 1, \end{equation} | (4.2) |
where \alpha = \max \{\alpha_1, \alpha_2\}, \, \beta = \max \{\beta_1, \beta_2\}, \gamma = \max \{\gamma_1, \gamma_2\}, and \varrho_i, \, i = 1, 2 are defined in (3.4)-(3.5).
Example 4.1. Let us consider the data given in Example 3.1 for the problem (4.1) with (3.12), h(t, \varphi, \psi) = (\sin \varphi + \cos \psi+1/2)/\sqrt{t^2+49} and \delta = 3/2 . Then \gamma = 1/7 and
\frac{\gamma T^\delta}{|\Lambda_2|\Gamma(\delta+1)}+\alpha\Big(\frac{T^\nu}{\Gamma(\nu+1)}+2\varrho_1\Big)+\beta\Big(\frac{T^\rho}{\Gamma(\rho+1)}+2\varrho_2\Big)\approx 0.5565956 < 1. |
Clearly the assumptions of Theorem 4.1 are satisfied. Hence, by the conclusion of Theorem 4.1, the problem (4.1) with the given data has a unique solution on [0, 2].
We have studied a coupled system of nonlinear Caputo fractional differential equations supplemented with a new class of nonlocal multipoint-integral boundary conditions with respect to the sum and difference of the governing functions by applying the standard fixed point theorems. The existence and uniqueness results presented in this paper are not only new in the given configuration but also provide certain new results by fixing the parameters involved in the given problem. For example, our results correspond to the ones with initial-multipoint-integral and terminal-multipoint-integral boundary conditions by fixing P_2 = 0 and P_1 = 0 respectively in the present results. By taking A = 0 in the present study, we obtain the results for the given coupled system of fractional differential equations with the boundary conditions of the form:
P_1(\varphi+\psi)(0)+P_2(\varphi+\psi)(T) = \sum\limits_{i = 1}^{m} a_{i}(\varphi+\psi)(\sigma_{i}), \, \int_0^T(\varphi-\psi)(s)ds = \int_{\eta}^{\zeta}(\varphi-\psi)(s)ds, |
where the second (integral) condition means that the contribution of the difference of the unknown functions (\varphi-\psi) on the domain (0, T) is equal to that on the sub-domain (\eta, \zeta). Such a situation arises in heat conduction problems with sink and source. In the last section, we discussed the uniqueness of solutions for a variant of the problem (1.1) involving nonlinear Riemann-Liouville integral term in the last boundary condition of (1.1). This consideration further enhances the scope of the problem at hand. As a special case, the uniqueness result (Theorem 4.1) for the problem (4.1) corresponds to nonlinear integral boundary conditions for \delta = 1.
This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, Saudi Arabia under grant no. (KEP-PhD-80-130-42). The authors, therefore, acknowledge with thanks DSR technical and financial support. The authors also thank the reviewers for their useful remarks that led to the improvement of the original manuscript.
The authors declare that they have no competing interests.
[1] |
C. Yang, Y. Jiang, W. He, J. Na, Z. Li, B. Xu, Adaptive parameter estimation and control design for robot manipulators with finite-time convergence, IEEE Trans. Ind. Electron., 65 (2018), 8112-8123. https://doi.org/10.1109/TIE.2018.2803773 doi: 10.1109/TIE.2018.2803773
![]() |
[2] |
H. Wang, Adaptive control of robot manipulators with uncertain kinematics and dynamics, IEEE Trans. Autom. Control, 62 (2017), 948-954. https://doi.org/10.1109/TAC.2016.2575827 doi: 10.1109/TAC.2016.2575827
![]() |
[3] |
Y. Hu, J. Li, Y. Chen, Q. Wang, C. Chi, H. Zhang, et al., Design and control of a highly redundant rigid-flexible coupling robot to assist the COVID-19 oropharyngeal-swab sampling. IEEE Robot. Autom. Lett., 7 (2022), 1856-1863. https://doi.org/10.1109/lra.2021.3062336 doi: 10.1109/lra.2021.3062336
![]() |
[4] | Y. Hu, H. Su, J. Fu, H. R. Karimi, G. Ferrigno, E. D. Momi, et al., Nonlinear model predictive control for mobile medical robot using neural optimization, IEEE Trans. Ind. Electron., 68 (2021), 12636-12645. https://10.1109/TIE.2020.3044776 |
[5] |
S. Mobayen, F. Tchier, L. Ragoub, Design of an adaptive tracker for n-link rigid robotic manipulators based on super-twisting global nonlinear sliding mode control, Int. J. Syst. Sci., 48 (2017), 1990-2002. https://doi.org/10.1080/00207721.2017.1299812 doi: 10.1080/00207721.2017.1299812
![]() |
[6] |
A. Abooee, M. M. Khorasani, M. Haeri, Finite time control of robotic manipulators with position output feedback, Int. J. Robust Nonlinear Control, 27 (2017), 2982-2999. https://doi.org/10.1002/rnc.3721 doi: 10.1002/rnc.3721
![]() |
[7] |
R. J. Wai, R. Muthusamy, Fuzzy-neural-network inherited sliding-mode control for robot manipulator including actuator dynamics, IEEE Trans. Neural Networks Learn. Syst., 24 (2013), 274-287. https://doi.org/10.1109/TNNLS.2012.2228230 doi: 10.1109/TNNLS.2012.2228230
![]() |
[8] |
Z. Zhao, J. Yang, S. Li, Z. Zhang, L. Guo, Finite-time super-twisting sliding mode control for Mars entry trajectory tracking, J. Franklin Inst., 352 (2015), 5226-5248. https://doi.org/10.1016/j.jfranklin.2015.08.022 doi: 10.1016/j.jfranklin.2015.08.022
![]() |
[9] |
V. I. Utkin, A. S. Poznyak, Adaptive sliding mode control with application to super-twist algorithm: Equivalent control method, Automatica, 49 (2013), 39-47. https://doi.org/10.1016/j.automatica.2012.09.008 doi: 10.1016/j.automatica.2012.09.008
![]() |
[10] |
Z. Liu, H. R. Karimi, J. Yu, Passivity-based robust sliding mode synthesis for uncertain delayed stochastic systems via state observer, Automatica, 111 (2020), 108596. https://doi.org/10.1016/j.automatica.2019.108596 doi: 10.1016/j.automatica.2019.108596
![]() |
[11] |
Z. Liu, J. Yu, H. R. Karimi, Adaptive H∞ sliding mode control of uncertain neutral-type stochastic systems based on state observer, Int. J. Robust Nonlinear Control, 30 (2020), 1141-1155. https://doi.org/10.1002/rnc.4817 doi: 10.1002/rnc.4817
![]() |
[12] |
T. Gonzalez, J. A. Moreno, L. Fridman, Variable gain super-twisting sliding mode control, IEEE Trans. Autom. Control, 57 (2012), 2100-2105. https://doi.org/10.1109/TAC.2011.2179878 doi: 10.1109/TAC.2011.2179878
![]() |
[13] | X. L. Tang, Z. Liu, Sliding mode observer-based adaptive control of uncertain singular systems with unknown time-varying delay and nonlinear input, ISA Trans., (2021), in press. https://doi.org/10.1016/j.isatra.2021.09.011 |
[14] | B. Jiang, C. C. Gao, Decentralized adaptive sliding mode control of large-scale semi-Markovian jump interconnected systems with dead-zone input, IEEE Trans. Autom. Control, (2021), in press. https://doi.org/10.1109/TAC.2021.3065658 |
[15] |
H. R. Karimi, A sliding mode approach to H∞ synchronization of master-slave time-delay systems with Markovian jumping parameters and nonlinear uncertainties, J. Franklin Inst., 349 (2012), 1480-1496. https://doi.org/10.1016/j.jfranklin.2011.09.015 doi: 10.1016/j.jfranklin.2011.09.015
![]() |
[16] |
H. Liu, X. Tian, G. Wang, T. Zhang, Finite-time H-infinity control for high-precision tracking in robotic manipulators using backstepping control, IEEE Trans. Ind. Electron., 63 (2016), 5501-5513. https://doi.org/10.1109/TIE.2016.2583998 doi: 10.1109/TIE.2016.2583998
![]() |
[17] |
S. Li, Z. Shao, Y. Guan, A dynamic neural network approach for efficient control of manipulators, IEEE Trans. Syst., Man, Cybern.: Syst., 49 (2017), 1-10. https://doi.org/10.1109/TSMC.2017.2690460 doi: 10.1109/TSMC.2017.2690460
![]() |
[18] |
A. Mohammadi, M. Tavakoli, H. J. Marquez, F. Hashemzadeh, Nonlinear disturbance observer design for robotic manipulators, Control Eng. Pract., 21 (2013), 253-267. https://doi.org/10.1016/j.conengprac.2012.10.008 doi: 10.1016/j.conengprac.2012.10.008
![]() |
[19] |
S. Yu, X. Yu, B. Shirinzadeh, Z. Man, Continuous finite-time control for robotic manipulators with terminal sliding mode, Automatica, 41 (2005), 1957-1964. https://doi.org/10.1016/j.automatica.2005.07.001 doi: 10.1016/j.automatica.2005.07.001
![]() |
[20] |
J. Baek, M. Jin, S. Han, A new adaptive sliding-mode control scheme for application to robot manipulators, IEEE Trans. Ind. Electron., 63 (2016), 3628-3637. https://doi.org/10.1109/TIE.2016.2522386 doi: 10.1109/TIE.2016.2522386
![]() |
[21] |
H. Liu, J. Sun, J. Nie, L. Zou, Observer-based adaptive second-order non-singular fast terminal sliding mode controller for robotic manipulators, Asian J. Control, 23 (2020), 1845-1854. https://doi.org/10.1002/asjc.2369 doi: 10.1002/asjc.2369
![]() |
[22] |
W. Gao, J. C. Hung, Variable structure control of nonlinear systems: A new approach, IEEE Trans. Ind. Electron., 40 (1993), 45-55. https://doi.org/10.1109/41.184820 doi: 10.1109/41.184820
![]() |
[23] |
A. Wang, X. Jia, S. Dong, A new exponential reaching law of sliding mode control to improve performance of permanent magnet synchronous motor, IEEE Trans. Magn., 49 (2013), 2409-2412. https://doi.org/10.1109/TMAG.2013.2240666 doi: 10.1109/TMAG.2013.2240666
![]() |
[24] |
C. J. Fallaha, M. Saad, H. Y. Kanaan, K. Al-Haddad, Sliding-mode robot control with exponential reaching law, IEEE Trans. Ind. Electron., 58 (2011), 600-610. https://doi.org/10.1109/TIE.2010.2045995 doi: 10.1109/TIE.2010.2045995
![]() |
[25] |
Z. Zhao, H. Gu, J. Zhang, G. Ding, Terminal sliding mode control based on super-twisting algorithm, J. Syst. Eng. Electron., 28 (2017), 145-150. https://doi.org/10.21629/JSEE.2017.01.16 doi: 10.21629/JSEE.2017.01.16
![]() |
[26] |
W. H. Chen, D. J. Ballance, P. J. Gawthrop, J. O'Reilly, A nonlinear disturbance observer for robotic manipulators, IEEE Trans. Ind. Electron., 47 (2000), 932-938. https://doi.org/10.1109/41.857974 doi: 10.1109/41.857974
![]() |
[27] |
S. Rajendran, D. Jena, Variable speed wind turbine for maximum power capture using adaptive fuzzy integral sliding mode control, J. Mod. Power Syst. Clean Energy, 2 (2014), 114-125. https://doi.org/10.1007/s40565-014-0061-3 doi: 10.1007/s40565-014-0061-3
![]() |
[28] |
N. M. Moawad, W. M. Elawady, A. Sarhan, Development of an adaptive radial basis function neural network estimator-based continuous sliding mode control for uncertain nonlinear systems, ISA Trans., 87 (2018), 200-216. https://doi.org/10.1016/j.isatra.2018.11.021 doi: 10.1016/j.isatra.2018.11.021
![]() |
1. | Haitham Qawaqneh, Hasanen A. Hammad, Hassen Aydi, Exploring new geometric contraction mappings and their applications in fractional metric spaces, 2024, 9, 2473-6988, 521, 10.3934/math.2024028 |