The personnel assignment problem in different service industries aims to minimize the staff surplus/shortage costs. However, uncertainty in the staff demand challenges the accomplishment of that objective. This research studies the personnel assignment problem considering uncertain demand and multiskilled workforce configured through a 2-chaining strategy. We develop a two-stage stochastic optimization (TSSO) approach to calculate the multiskilling requirements that minimize the training costs and the expected costs of staff surplus/shortage. Later, we evaluate and compare the performance of the TSSO approach solutions with the solutions of two alternative optimization approaches under uncertainty - robust optimization (RO) and closed-form equation (CF). These two alternative approaches were published in Henao et al. [
Citation: César Augusto Henao, Ana Batista, Andrés Felipe Porto, Virginia I. González. Multiskilled personnel assignment problem under uncertain demand: A benchmarking analysis[J]. Mathematical Biosciences and Engineering, 2022, 19(5): 4946-4975. doi: 10.3934/mbe.2022232
The personnel assignment problem in different service industries aims to minimize the staff surplus/shortage costs. However, uncertainty in the staff demand challenges the accomplishment of that objective. This research studies the personnel assignment problem considering uncertain demand and multiskilled workforce configured through a 2-chaining strategy. We develop a two-stage stochastic optimization (TSSO) approach to calculate the multiskilling requirements that minimize the training costs and the expected costs of staff surplus/shortage. Later, we evaluate and compare the performance of the TSSO approach solutions with the solutions of two alternative optimization approaches under uncertainty - robust optimization (RO) and closed-form equation (CF). These two alternative approaches were published in Henao et al. [
[1] | C. A. Henao, J. C. Ferrer, J. C. Muñoz, J. A. Vera, Multiskilling with closed chains in the service sector: a robust optimization approach, Int. J. Prod. Econ., 179 (2016), 166–178. https://doi.org/10.1016/j.ijpe.2016.06.013 doi: 10.1016/j.ijpe.2016.06.013 |
[2] | C. A. Henao, J. C. Muñoz, J. C. Ferrer, Multiskilled workforce management by utilizing closed chains under uncertain demand: a retail industry case, Comput. Ind. Eng., 127 (2019), 74–88. https://doi.org/10.1016/j.cie.2018.11.061 doi: 10.1016/j.cie.2018.11.061 |
[3] | M. A. Abello, N. M. Ospina, J. M. De la Ossa, C. A. Henao, V. I. González, Using the k-chaining approach to solve a stochastic days-off-scheduling problem in a retail store, in Production Research: ICPR-Americas 2020, Communications in Computer and Information Science (eds. D. A. Rossit, F. Tohmé and G. Mejía Delgadillo), Springer, Cham, 1407 (2021), 156–170. https://doi.org/10.1007/978-3-030-76307-7_12 |
[4] | R. Muñoz, J. C. Muñoz, J. C. Ferrer, V. I. González, C. A. Henao, When should shelf stocking be done at night? A workforce management optimization approach for retailers, Work in progress. |
[5] | C. A. Henao, Diseño de una fuerza laboral polifuncional para el sector servicios: caso aplicado a la industria del retail, (Tesis Doctoral, Pontificia Universidad Católica de Chile, Santiago, Chile), 2015.[Online]. Available from: https://repositorio.uc.cl/handle/11534/11764 |
[6] | A. F. Porto, C. A. Henao, H. López-Ospina, E. R. González, Hybrid flexibility strategic on personnel scheduling: retail case study, Comput. Ind. Eng., 133 (2019), 220–230. https://doi.org/10.1016/j.cie.2019.04.049 doi: 10.1016/j.cie.2019.04.049 |
[7] | E. Álvarez, J. C. Ferrer, J. C. Muñoz, C. A. Henao, Efficient shift scheduling with multiple breaks for full-time employees: A retail industry case, Comput. Ind. Eng., 150 (2020), 106884. https://doi.org/10.1016/j.cie.2020.106884 doi: 10.1016/j.cie.2020.106884 |
[8] | M. Mac-Vicar, J. C. Ferrer, J. C. Muñoz, C. A. Henao, Real-time recovering strategies on personnel scheduling in the retail industry, Comput. Ind. Eng., 113 (2017), 589–601. https://doi.org/10.1016/j.cie.2017.09.045 doi: 10.1016/j.cie.2017.09.045 |
[9] | C. A. Henao, J. C. Muñoz, J. C. Ferrer, The impact of multi–skilling on personnel scheduling in the service sector: a retail industry case, J. Oper. Res. Soc., 66 (2015), 1949–1959. https://doi.org/10.1057/jors.2015.9 doi: 10.1057/jors.2015.9 |
[10] | Y. Wang, J. Tang, Optimized skill configuration for the seru production system under an uncertain demand, Ann. Oper. Res., 2020 (2020), 1-21. https://doi.org/10.1007/s10479-020-03805-3 doi: 10.1007/s10479-020-03805-3 |
[11] | Y. A. Mercado, C. A. Henao, Benefits of multiskilling in the retail industry: K-chaining approach with uncertain demand, in Production Research: ICPR-Americas 2020, Communications in Computer and Information Science (eds. D. A. Rossit, F. Tohmé and G. Mejía Delgadillo), Springer, Cham, 1407 (2021), 126–141. https://doi.org/10.1007/978-3-030-76307-7_10 |
[12] | S. Vergara, J. Del Villar, J. Masson, N. Pérez, C. A. Henao, V. I. González, Impact of labor productivity and multiskilling on staff management: A retail industry case, in Production Research: ICPR-Americas 2020, Communications in Computer and Information Science (eds. D. A. Rossit, F. Tohmé and G. Mejía Delgadillo), Springer, Cham, 1408 (2021), 223–237. https://doi.org/10.1007/978-3-030-76310-7_18 |
[13] | C. Liu, Z. Li, J. Tang, X. Wang, M. J. Yao, How SERU production system improves manufacturing flexibility and firm performance: an empirical study in China, Ann. Oper. Res., 2021 (2021), 1–26. https://doi.org/10.1007/s10479-020-03850-y doi: 10.1007/s10479-020-03850-y |
[14] | Y. A. Mercado, C. A. Henao, V. I. González, A two-stage stochastic optimization model for the retail multiskilled personnel scheduling problem: A k-chaining policy with k≥2, Math. Biosci. Eng., 19 (2022), 892–917. https://doi.org/10.3934/mbe.2022041 doi: 10.3934/mbe.2022041 |
[15] | W. C. Jordan, S. C. Graves, Principles on the benefits of manufacturing process flexibility, Manag. Sci., 41 (1995), 577–594. https://doi.org/10.1287/mnsc.41.4.577 doi: 10.1287/mnsc.41.4.577 |
[16] | M. J. Brusco, T. R. Johns, Staffing a multiskilled workforce with varying levels of productivity: An analysis of cross-training policies, Decision Sci., 29 (1998), 499–515. https://doi.org/10.1111/j.1540-5915.1998.tb01586.x doi: 10.1111/j.1540-5915.1998.tb01586.x |
[17] | G. K. Taskiran, X. Zhang, Mathematical models and solution approach for cross-training staff scheduling at call centers, Comput. Oper. Res., 87 (2017), 258-269. https://doi.org/10.1016/j.cor.2016.07.001 doi: 10.1016/j.cor.2016.07.001 |
[18] | H. Liu, The optimization of worker's quantity based on cross-utilization in two departments, Intell. Decis. Technol., 11 (2017), 3–13. https://doi.org/10.3233/IDT-160273 doi: 10.3233/IDT-160273 |
[19] | D. Simchi-Levi, Y. Wei, Understanding the performance of the long chain and sparse designs in process flexibility, Oper. Res., 60 (2012), 1125–1141. https://doi.org/10.1287/opre.1120.1081 doi: 10.1287/opre.1120.1081 |
[20] | O. Fontalvo Echavez, L. Fuentes Quintero, C. A. Henao, V. I. González, Two-stage stochastic optimization model for personnel days–off scheduling using closed-chained multiskilling structures, in Production Research: ICPR-Americas 2020, Communications in Computer and Information Science (eds. D. A. Rossit, F. Tohmé and G. Mejía Delgadillo), Springer, Cham, 1407 (2021), 19–32. https://doi.org/10.1007/978-3-030-76307-7_2 |
[21] | A. F. Porto, C. A. Henao, A. Lusa, O. Polo Mejía, R. Porto Solano, Solving a staffing problem with annualized hours, multiskilling with 2-chaining, and overtime: a retail industry case, Comput. Ind. Eng., 167 (2022), 107999. https://doi.org/10.1016/j.cie.2022.107999 doi: 10.1016/j.cie.2022.107999 |
[22] | J. Birge, F. Louveaux F, Introduction to stochastic programming, (2011), Springer, New York. https://doi.org/10.1007/978-1-4614-0237-4 |
[23] | D. Bertsimas, M. Sim, Robust discrete optimization and network flows, Math. Program., 98 (2003), 49–71. https://doi.org/10.1007/s10107-003-0396-4 doi: 10.1007/s10107-003-0396-4 |
[24] | D. Bertsimas, M. Sim, The price of robustness, Oper. Res., 52 (2004), 35–53. https://doi.org/10.1287/opre.1030.0065 doi: 10.1287/opre.1030.0065 |
[25] | W. Wiesemann, D. Kuhn, M. Sim, Distributionally robust convex optimization, Oper. Res., 62 (2014), 1358–1376. https://doi.org/10.1287/opre.2014.1314 doi: 10.1287/opre.2014.1314 |
[26] | A. Ernst, H. Jiang, M. Krishnamoorthy, B. Owens, D. Sier, An annotated bibliography of personnel scheduling and rostering, Ann. Oper. Res., 127 (2004), 21–144. https://doi.org/10.1023/B:ANOR.0000019087.46656.e2 doi: 10.1023/B:ANOR.0000019087.46656.e2 |
[27] | P. Brucker, R. Qu, E. Burke, Personnel scheduling: Models and complexity, Eur. J. Oper. Res., 210 (2011), 467–473. https://doi.org/10.1016/j.ejor.2010.11.017 doi: 10.1016/j.ejor.2010.11.017 |
[28] | J. Van den Bergh, J. Belien, P. De Bruecker, E. Demeulemeester, L. De Boeck, Personnel scheduling: A literature review, Eur. J. Oper. Res., 226 (2013), 367–385. https://doi.org/10.1016/j.ejor.2012.11.029 doi: 10.1016/j.ejor.2012.11.029 |
[29] | E. H. Özder, E. Özcan, T. Eren, A systematic literature review for personnel scheduling problems, Int. J. Inform. Technol. Decision Making, 19 (2020), 1695–1735. https://doi.org/10.1142/S0219622020300050 doi: 10.1142/S0219622020300050 |
[30] | J. F. Bard, D. P. Morton, Y. M. Wang, Workforce planning at USPS mail processing and distribution centers using stochastic optimization, Ann. Oper. Res., 155 (2007), 51–78. https://doi.org/10.1007/s10479-007-0213-1 doi: 10.1007/s10479-007-0213-1 |
[31] | X. Zhu, H. D. Sherali, Two-stage workforce planning under demand fluctuations and uncertainty, J. Oper. Res. Soc., 60 (2009), 94–103. https://doi.org/10.1057/palgrave.jors.2602522 doi: 10.1057/palgrave.jors.2602522 |
[32] | T. R. Robbins, T. P. Harrison, A stochastic programming model for scheduling call centers with global service level agreements, Eur. J. Oper. Res., 207 (2010), 1608–1619. https://doi.org/10.1016/j.ejor.2010.06.013 doi: 10.1016/j.ejor.2010.06.013 |
[33] | G.M. Campbell, A two-stage stochastic program for scheduling and allocating cross-trained workers, J. Oper. Res. Soc., 62 (2011), 1038–1047. https://doi.org/10.1057/jors.2010.16 doi: 10.1057/jors.2010.16 |
[34] | S. Liao, G. Koole, C. Van Delft, O. Jouini, Staffing a call center with uncertain non-stationary arrival rate and flexibility, OR Spectrum, 34 (2012), 691–721. https://doi.org/10.1007/s00291-011-0257-0 doi: 10.1007/s00291-011-0257-0 |
[35] | S. Liao, C. Van Delft, J. P. Vial, Distributionally robust workforce scheduling in call centres with uncertain arrival rates, Optim. Methods Software, 28 (2013), 501–522. https://doi.org/10.1080/10556788.2012.694166 doi: 10.1080/10556788.2012.694166 |
[36] | A. Gnanlet, W. Gilland, Impact of productivity on cross-training configurations and optimal staffing decisions in hospitals, Eur. J. Oper. Res., 238 (2014), 254–269. https://doi.org/10.1016/j.ejor.2014.03.033 doi: 10.1016/j.ejor.2014.03.033 |
[37] | J. Paul, L. MacDonald, Modeling the benefits of cross-training to address the nursing shortage, Int. J. Prod. Econ., 150 (2014), 83–95. https://doi.org/10.1016/j.ijpe.2013.11.025 doi: 10.1016/j.ijpe.2013.11.025 |
[38] | K. Kim, S. Mehrotra, A two-stage stochastic integer programming approach to integrated staffing and scheduling with application to nurse management, Oper. Res., 63 (2015), 1431–1451. https://doi.org/10.1287/opre.2015.1421 doi: 10.1287/opre.2015.1421 |
[39] | A. Parisio, C. N. Jones, A two-stage stochastic programming approach to employee scheduling in retail outlets with uncertain demand, Omega, 53 (2015), 97–103. https://doi.org/10.1016/j.omega.2015.01.003 doi: 10.1016/j.omega.2015.01.003 |
[40] | M. Bodur, J. R. Luedtke, Mixed-integer rounding enhanced benders decomposition for multiclass service-system staffing and scheduling with arrival rate uncertainty, Manag. Sci., 63 (2017), 2073–2091. https://doi.org/10.1287/mnsc.2016.2455 doi: 10.1287/mnsc.2016.2455 |
[41] | S. Mattia, F. Rossi, M. Servilio, S. Smriglio, Staffing and scheduling flexible call centers by two-stage robust optimization, Omega, 72 (2017), 25–37. https://doi.org/10.1016/j.omega.2016.11.001 doi: 10.1016/j.omega.2016.11.001 |
[42] | M. I. Restrepo, B. Gendron, L. M. Rousseau, A two-stage stochastic programming approach for multi-activity tour scheduling, Eur. J. Oper. Res., 262 (2017), 620–635. https://doi.org/10.1016/j.ejor.2017.04.055 doi: 10.1016/j.ejor.2017.04.055 |
[43] | D. S. Altner, A. C. Rojas, L. D. Servi, A two-stage stochastic program for multi-shift, multi-analyst, workforce optimization with multiple on-call options, J. Schedul., 21 (2018), 517–531. https://doi.org/10.1007/s10951-017-0554-9 doi: 10.1007/s10951-017-0554-9 |
[44] | D. S. Altner, E. K. Mason, L. D. Servi, Two–stage stochastic days–off scheduling of multi–skilled analysts with training options, J. Comb. Optim., 38 (2019), 111–129. https://doi.org/10.1007/s10878-018-0368-5 doi: 10.1007/s10878-018-0368-5 |
[45] | H.G. Beyer, B. Sendhoff, Robust optimization - A comprehensive survey, Computer Methods Appl. Mech. Eng., 196 (2007), 3190–3218. https://doi.org/10.1016/j.cma.2007.03.003 doi: 10.1016/j.cma.2007.03.003 |
[46] | P. Kouvelis, G. Yu, Robust discrete optimization and its applications, Springer, Boston, 2013. https://doi.org/10.1007/978-1-4757-2620-6 |
[47] | V. Gabrel, C. Murat, A. Thiele, Recent advances in robust optimization: An overview, Eur. J. Oper. Res., 235 (2014), 471–483. https://doi.org/10.1016/j.ejor.2013.09.036 doi: 10.1016/j.ejor.2013.09.036 |
[48] | D. Bertsimas, A. Thiele, A robust optimization approach to inventory theory, Oper. Res., 54 (2006), 150–168. https://doi.org/10.1287/opre.1050.0238 doi: 10.1287/opre.1050.0238 |
[49] | C. Bohle, S. Maturana, J. Vera, A robust optimization approach to wine grape harvesting scheduling, Eur. J. Oper. Res., 200 (2010), 245–252. https://doi.org/10.1016/j.ejor.2008.12.003 doi: 10.1016/j.ejor.2008.12.003 |
[50] | F. Robuste, C. F. Daganzo, R. R. Souleyrette Ⅱ, Implementing vehicle routing models, Transport. Res. Part B Methodol., 24 (1990), 263–286. https://doi.org/10.1016/0191-2615(90)90002-G doi: 10.1016/0191-2615(90)90002-G |
[51] | J. M. Del Castillo, A heuristic for the traveling salesman problem based on a continuous approximation, Transport. Res. Part B Methodol., 33 (1990), 123–152. https://doi.org/10.1016/S0191-2615(98)00034-4 doi: 10.1016/S0191-2615(98)00034-4 |
[52] | C. F. Daganzo, Logistics Systems Analysis (4th edition), Springer, Berlin, 2005. |
[53] | C. A. Henao, A. Batista, A. F. Porto, V. I. González, A benchmark dataset for the retail multiskilled personnel planning under uncertain demand, Data Brief, Forthcoming 2022. |
[54] | A. F. Porto, C. A. Henao, H. López-Ospina, E. R. González, V. I. González, Dataset for solving a hybrid flexibility strategy on personnel scheduling problem in the retail industry, Data Brief, 32 (2020), 106066. https://doi.org/10.1016/j.dib.2020.106066 doi: 10.1016/j.dib.2020.106066 |