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Abstract: The personnel assignment problem in different service industries aims to minimize the staff 

surplus/shortage costs. However, uncertainty in the staff demand challenges the accomplishment of 

that objective. This research studies the personnel assignment problem considering uncertain demand 

and multiskilled workforce configured through a 2-chaining strategy. We develop a two-stage 

stochastic optimization (TSSO) approach to calculate the multiskilling requirements that minimize the 

training costs and the expected costs of staff surplus/shortage. Later, we evaluate and compare the 

performance of the TSSO approach solutions with the solutions of two alternative optimization 

approaches under uncertainty - robust optimization (RO) and closed-form equation (CF). These two 

alternative approaches were published in Henao et al. [1] and Henao et al. [2], respectively. In addition, 

we compare the performance of the TSSO approach solutions with the solution of the deterministic 

(DT) approach and the solutions of myopic multiskilling approaches. To make performance 

comparisons between the different approaches, we used both real and simulated data derived from a 

retail store operating in Chile. The results show that, for different demand variability levels, TSSO, 

RO, and CF always belong to the set of approaches with the lowest average total cost. That is, in this 

group, there are no statistical differences from one approach to another, so these approaches are the 

most cost-effective. We also provide insights to retail decision-makers for addressing two key aspects. 

First, the methodology allows to address two fundamental multiskilling issues: how much multiskilling 

to add and how it should be added. Second, it is provided understanding on how to select the most 
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suitable approach according to the balance between the conservatism and the reliability associated with 

the solutions delivered by each approach. Finally, we identify some methodological challenges for 

future research, such as the evaluation of k-chaining strategies with 𝑘 ≥ 2. 

Keywords: workforce flexibility; multiskilling; cross-training; 2-chaining; stochastic optimization; 

robust optimization; retail 

 

1. Introduction 

Retail companies must face constant changes in staffing demand caused by the seasonality and 

uncertainty of demand [1–4]. In general, retailers seek to reduce their labor costs and simultaneously 

improve the service levels offered to their customers [5,6]. However, even retail companies with 

effective personnel scheduling tools can have difficulty in managing staff surpluses or shortages due 

to the seasonality and uncertainty of demand [7–9]. Various authors addressed the problems of staff 

surpluses and shortages through the use of an optimal multiskilled staff (e.g., [10–13]). 

In a retail store, multiskilled staff can work in multiple departments, allowing store supervisors 

to relocate multiskilled workers from departments with staff surpluses to departments with staff 

shortages [14]. Several articles have reported that the most profitable staff is one where multiskilled 

workers are skilled to perform up to a total of two store departments (e.g., [15–17]). This is known in 

the multiskilling literature as a 2-flexibility policy, and based on this policy, the 2-chaining strategy 

has been the most recommended to design training plans (e.g., [18–21]). 

In a retail store context, 2-chaining requires that a set of workers be skilled up to a maximum of 

two departments and training schemes must be designed through closed long chains and/or closed short 

chains. In one closed long chain (CLC), each store department has one multiskilled worker, such that 

these workers connect all the departments through a single closed chain. In turn, in one closed short 

chain (CSC), only a subset of departments is connected through a closed chain, since only some of 

them have multiskilled workers. Particularly, Henao et al. [1,2] and Porto et al. [6,21] indicated that 

staff training plans built through of CLCs and CSCs provide maximum efficiency to assign and reassign 

workers in scenarios with unscheduled staff absenteeism and/or uncertainty in the staff demand. 

In Figure 1 three examples of 2-chaining structures are shown. In each of the three structures, 

demand nodes (departments) are in the middle, whereas supply nodes (workers) are positioned on the 

right (single-skilled workers) and the left (multiskilled workers). Figure 1(a) shows that in one CLC, 

there is only one multiskilled worker at each store department. In contrast, Figure 1(b) shows that in 

two similar CLCs, each department has two multiskilled workers forming two CLCs that are 

indistinguishable. Finally, Figure 1(c) shows three multiskilled workers connecting departments 1, 2, 

and 3 by using of one CLC, and also shows two additional multiskilled workers connecting 

departments 2 and 3 by using of one CSC.
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1 In the personnel scheduling literature, we have not found a closed-form equation with partial knowledge of the stochastic parameter. 

On the contrary, all the studies assumed complete knowledge. Thus, without loss of generality, the closed-form approach is considered 

to have access to full distributional knowledge of stochastic parameters in this paper. 
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Figure 1. Some examples of 2-chaining structures: (a) One closed long chain; (b) Two 

similar closed long chains; (c) One closed long chain and one closed short chain. 

For the same retail case study and assuming uncertainty in the staff demand (at the store level), 

Henao et al. [1] and Henao et al. [2] solved a weekly multiskilled personnel assignment problem 

(MPAP). They calculated the number of single-skilled workers who should become multiskilled and 

in which additional department they should be trained. In addition, both studies designed training plans 

through a 2-chaining strategy to minimize the total cost of under/overstaffing and training. In the first 

study, Henao et al. [1] developed a single-stage robust optimization approach to calculate the optimal 

number of multiskilled workers per store's department, whereas in the second study, Henao et al. [2] 

derived a closed-form equation to deliver an estimation of the optimal quantity of multiskilled workers 

per store's department. Even with different solution approaches, both studies showed that the most 

profitable staff is one where there is a mix of single-skilled and multiskilled workers. Their results also 

showed that the best 2-chaining structures combine CLCs and CSCs of different lengths. 

The literature on personnel scheduling problems shows several approaches for optimizing under 

uncertainty that have received substantial theoretical development, among these are: (1) Closed-form 

equation (CF); under this approach, it is possible to develop an analytic expression to calculate the 

optimal solution (or an approximation of the optimal solution) for the addressed problem. This 

approach requires knowing the probability distribution function associated with the parameter under 

uncertainty1. (2) Two-stage stochastic optimization (TSSO); this approach assumes complete 

knowledge of the distribution of probability associated with the parameter under uncertainty and 

includes (in an explicit way) such uncertainty into the mathematical model [22]. (3) Robust 

optimization (RO); unlike the previous approaches, complete knowledge of the stochastic parameters 

is not required [23,24]. Stochastic parameters are represented by the so-called uncertainty set, i.e., a 

set where parameters can take any value. RO limits the variability in the parameter under uncertainty 

to an acceptable and predefined range to avoid unreasonable scenarios. (4) Distributionally robust 

optimization (DRO); this approach is known as a generalization of the RO and TSSO approaches. 

DRO tackles the uncertainty by including additional information into the uncertainty set (e.g., mean 

and covariance), which can be estimated from expert knowledge or historical data [25]. In short, CF 

and TSSO assume complete distributional information, DRO assumes partial distributional 

information, whereas RO assumes minimal distributional knowledge about the uncertain parameters.    
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Although all of these approaches guarantee robust solutions, they cannot ensure the same level of 

reliability and conservatism in the solutions. Note that, in a retail store context, a robust solution is not 

necessarily the best in every possible scenario of demand variability, but it remains good over a wide 

range of changes in staffing demand. 

The current work builds on top of our previous findings from Henao et al. [1] and Henao et al. [2]. 

We also propose to solve the MPAP with 2-chaining in this paper. However, unlike other references in 

the state-of-the-art and our previous works, we formulate a TSSO model to calculate the multiskilling 

requirements that minimize the training costs and the expected costs of staff surplus/shortage. 

Particularly, this work presents two main contributions. First, we solve the MPAP using a TSSO 

approach. Second, we evaluate and compare the performance of three different optimization 

approaches under uncertainty (i.e., TSSO vs. RO vs. CF). Note that, the benchmark RO and CF 

approaches were already published in Henao et al. [1] and Henao et al. [2], respectively. Besides, these 

three optimization approaches under uncertainty will be compared with the deterministic (DT) 

approach and with two multiskilling approaches considered as myopic: zero multiskilling (ZM) and 

total multiskilling (TM). Such that, under a ZM approach, each worker is skilled to perform in a single 

store department (i.e., single-skilled), whereas under a TM approach, all workers are skilled to perform 

in all departments. The methodology is tested for a case study associated with a retail store operating 

in Chile, which has already been presented and solved by Henao et al. [1,2]. The performance of all 

approaches is assessed by means of out-of-sample simulations. Each approach is tested against 

different levels of variability in staff demand per store's department. We also provide insights on how 

to choose the most suitable approach according to the balance between conservatism and reliability 

associated with each of them. 

2. Literature review 

Personnel scheduling is a research area extensively studied. In this topic, literature review articles 

such as Ernst et al. [26], Brucker et al. [27], Van den Bergh et al. [28], and Özder et al. [29] addressed 

various problems and solution methodologies associated with multiple industries. Table 1 presents 

previous articles that have used optimization approaches under uncertainty to solve personnel 

scheduling problems in the service industries. The principal features of these articles are described 

below. We remark that each of the articles classified in Table 1 considered demand uncertainty, but 

none of them included supply uncertainty (i.e., unscheduled staff absenteeism). 

1. Type of personnel scheduling problem (PSP) studied: May be classified as: (a) Staffing (S), 

that is, deciding the number of workers needed per task type and per labor contract type. (b) Shift 

scheduling (SS), that is, deciding what shift each worker should perform on their working days. (c) 

Days-off scheduling (DOS), that is, deciding the sequence of working and resting days that should be 

assigned to each worker (e.g., weekly, biweekly). (d) Tour scheduling (TS), where shifts and days-off 

are scheduled simultaneously (e.g., weekly, biweekly). (e) Assignment (A), where workers are assigned 

to particular task types, but it is not required to schedule shifts or rest days (e.g., daily, weekly, monthly). 

Note that, the last type of problem is known as the personnel assignment problem (PAP), and when it 

involves the use of multiskilled staff, it is known as the MPAP. 

2. Multiskilling (MS): Specifies whether or not the PSP incorporates multiskilling as a source of 

labor flexibility. If the study includes multiskilling, we identify two alternatives. That is, the skill(s) of 

a worker can be incorporated into the math model as a parameter (par) or as a variable (var). 
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3. 2-chaining (2-CH): Specifies when a study incorporated the multiskilling using the 2-chaining 

strategy. 

4. Solution method (SM) used: May be: (a) linear programming (LP); (b) integer programming 

(IP); (c) mixed integer programming (MIP); (d) heuristics (H); (e) metaheuristics (M); (f) benders 

decomposition (BD); (g) branch-and-cut (B&C); (h) column generation (CG); or (i) analytic (AN). 

5. Approach to model uncertainty (AMU): Specifies the optimization approach under 

uncertainty employed to handle the uncertain demand in the study. It can be classified as: (a) two-stage 

stochastic optimization (TSSO); (b) distributionally robust optimization (DRO); (c) single-stage robust 

optimization (1RO); (d) two-stage robust optimization (2RO); or (e) closed-form equation (CF). 

6. Application: Service industry where the study has been applied. 

Table 1. Principal features for the related literature on optimization methods under 

uncertainty for solving the PSP in the service sector; including this paper. 

Reference PSP MS 2-CH SM AMU Application 

Bard et al. [30] S + TS No –  IP + H TSSO Postal service 

Zhu & Sherali [31] S + SS Var No MIP + BD TSSO Service centers 

Robbins & Harrison [32] S + TS No – MIP + BD TSSO Call Centers 

Campbell [33] DOS Par No IP + H TSSO Health 

Liao et al. [34] S + A No – MIP TSSO, 1RO Call Centers 

Liao et al. [35] S + SS No – MIP TSSO, DRO Call Centers 

Gnanlet & Gilland [36] S + A Var Yes MIP + AN TSSO, CF Health 

Paul & MacDonald [37] S + A Var Yes MIP + H + AN CF Health 

Kim & Mehrotra [38] S + TS No –  MIP + M TSSO  Health  

Parisio & Jones [39] TS No – MIP TSSO Retail 

Henao et al. [1] A Var Yes MIP + H 1RO Retail 

Bodur & Luedtke [40] S + SS Par Yes MIP + BD + B&C TSSO Call Centers 

Liu [18] S + A Par Yes IP + AN TSSO, CF – 

Mattia et al. [41] S + SS No – IP + BD + B&C 2RO Call Centers 

Restrepo et al. [42] TS Par No MIP + M  TSSO  –  

Altner et al. [43] S + SS No –  IP + CG  TSSO  CSOC  

Altner et al. [44] DOS Var No MIP + M TSSO  CSOC  

Henao et al. [2] A Var Yes AN + H + LP CF Retail 

Fontalvo Echavez et al. [20] DOS Var Yes MIP TSSO Retail 

This paper A Var Yes MIP + H + AN TSSO, RO, CF Retail 

Below, we present a more detailed review of various articles listed in Table 1. We begin with those 

that did not incorporate multiskilling as a source of flexibility and then consider those that did. Then, 

we discuss those articles that solved the addressed problem using two or more optimization approaches 

under uncertainty. 

2.1. Personnel scheduling problems without multiskilling 

Table 1 shows that various articles did not use multiskilled staff to minimize 

overstaffing/understaffing levels (i.e., [30,32,34,35,38,39,41,43]). This is common in studies where 
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the personnel scheduling problem only considers a single type of task (or store department). In Bard 

et al. [30], a TSSO model is developed to solve a shift scheduling problem in a post office. Decisions 

on the number of required workers were modeled in the first stage, and weekly shift structures were 

modeled in the second stage. In Kim and Mehrotra [38], the authors proposed a TSSO model to 

determine the staff size and the shift structures in the first stage, whereas these shift structures were 

adjusted once new information about incoming demand was available in the second stage. Similarly, 

Parisio and Jones [39] proposed a TSSO model to solve a tour scheduling problem in retail. Optimal 

decisions on workers’ schedules (i.e., rest days and shifts) were modeled in the first stage, while 

overtime decisions after demand realization were modeled in the second stage. 

2.2. Personnel scheduling problems with multiskilling 

Table 1 indicates that various articles included multiskilling as a source of flexibility. Thus, such 

articles addressed a personnel scheduling problem with at least two types of tasks (or store 

departments). The literature review shows that multiskilling can be incorporated into mathematical 

modeling in three ways. 

First, by considering multiple multiskilling structures as an input parameter in the math model 

and then the model solution must identify the best performing structure (i.e., [18,33,40,42]). In 

Campbell [33], a TSSO model is developed to solve a days-off scheduling problem with multiskilled 

workers and a multi-department service environment. Decisions on rest days were modeled in the first 

stage, whereas reassigns available workers according to the observed demands were modeled in the 

second stage. In Restrepo et al. [42], the authors addressed a tour scheduling problem considering 

workers with identical skill sets. Decisions on rest days and shifts were represented in the first stage, 

while break times and task assignments were described in the second stage. 

Second, by modeling the multiskilling as a decision variable into the math model (i.e., [31,44]). 

In Zhu and Sherali [31], the authors proposed a TSSO model to solve a staffing and shift scheduling 

problem. Decisions on staffing levels and shifts were modeled in the first stage, while in the second 

stage, worker reassignment decisions were taken. In Altner et al. [44], the authors studied a TSSO 

model to solve a days-off scheduling problem. The first stage modeled decisions on which workers 

should be multiskilled and which days each worker should rest considering a bi-weekly planning 

horizon. Then, for each day, the second stage considered how task types could be assigned to workers 

once the uncertain demand is revealed. 

Third, by modeling the multiskilling as a decision variable into the math model and ensuring the 

formation of closed-chained multiskilling structures by including of a set of constraints into the model 

(i.e., [1,2,20,36,37]). Particularly in the retail industry, Henao et al. [1] and Henao et al. [2] solved a 

weekly MPAP with 2-chaining using different optimization approaches under uncertainty; RO and CF, 

respectively. Note that, to our knowledge, these are the only articles that solved the MPAP with 2-

chaining (see Table 1). The MPAP allows adding and simplifying scheduling decisions while focusing 

on answering the multiskilling tactical questions. In both articles, the authors proposed two 

methodological stages to sequentially answer the following three tactical questions: (i) How many 

multiskilled workers are needed per department? (ii) In which second department should be trained 

each of the workers identified as multiskilled? (iii) How many CLCs and/or CSCs are needed, and 

which store departments should belong to each of the chains? In Henao et al. [1], the first stage of the 

methodology proposed a single-stage robust optimization model to answer the question (i), while the 
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second stage proposed a constructive heuristic to answer the questions (ii) and (iii). In Henao et al. [2], 

the first stage of the methodology derived a closed-form equation to answer the question (i), while the 

second stage used the constructive heuristic developed by Henao et al. [1] to answer the questions (ii) 

and (iii). However, these sequential methodologies could lead to suboptimal solutions; thus, integrated 

approaches are needed to guarantee optimality. 

2.3. Personnel scheduling problems solved with various optimization approaches under uncertainty 

Table 1 shows various articles that solved a personnel scheduling problem using two optimization 

approaches under uncertainty (i.e., [18,34,35,36]). On one side, Liao et al. [34] and Liao et al. [35] did 

not incorporate multiskilling in the mathematical modeling. On the other hand, Liu [18] incorporated 

multiskilling in the mathematical modeling as a parameter, while Gnanlet and Gilland [36] 

incorporated multiskilling as a variable, but they also used 2-chaining. 

In Liao et al. [34], the authors addressed a call center staffing problem considering single-length 

shifts. They compared the performance of a stochastic programming approach and a robust 

programming formulation. Regarding the average cost, they explained that the TSSO approach was 

more efficient than the RO approach. This is because the RO approach is based on a worst-case-type 

analysis. Thus, the optimal RO solution generates higher staffing levels, which decreases the staff 

shortage costs but also increases the direct salary costs. In Liao et al. [35], for a case study in call 

centers, the authors proposed a methodology that combined the TSSO and DRO approaches to solve 

simultaneously a staffing and shift scheduling problem considering service level constraints. Liu [18] 

and Gnanlet and Gilland [36] proposed TSSO models to solve a staffing problem with only two task 

types for the health sector. In Liu [18], the authors developed an analytic expression to calculate the 

optimal number of workers. In Gnanlet and Gilland [36], the authors also developed analytic 

expressions to determine the optimal number of multiskilled nurses. Note that none of these four papers 

solved the MPAP, and they did not address the retail industry as a case study. 

2.4. Main contributions 

Our study seeks to fill two gaps evidenced in the literature review. First, for the MPAP with 2-

chaining in the retail industry, we develop a TSSO model to simultaneously answer the tactical 

questions (i), (ii), and (iii) described previously, instead of solving them sequentially, as proposed by 

Henao et al. [1] and Henao et al. [2]. It is important to note that, Table 1 indicates that most of the 

authors used a TSSO approach to solve the PSP addressed, but none of them studied the MPAP with 

2-chaining. 

Second, we propose to evaluate and compare the performance of three different optimization 

approaches under uncertainty (i.e., TSSO vs. RO vs. CF). Thus, using an extensive computational study, 

we will quantify the reliability of the TSSO model by comparing it with the benchmark RO and CF 

approaches presented in Henao et al. [1] and Henao et al. [2], respectively. However, we will not make 

comparisons with additional benchmarks from the literature, because except for Henao et al. [1] and 

Henao et al. [2], the other articles in Table 1 studied different PSPs. In addition to these three 

optimization approaches, we propose to compare them with the deterministic (DT) approach and with 

the two myopic approaches ZM and TM. 
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3. Description and assumptions of the MPAP 

Our problem considers a retail store with a known number of departments, such that each of them 

has contracted a group of workers initially single-skilled. Working in a store department requires 

specific skills, which differ among all departments. Although the working hours of workers are 

determined in their contracts, the store’s departments face uncertainty in demand. Here, the skill 

training of workers plays a strategic role in handling the uncertainty in demands. That is, the costs 

associated with staff shortages and surpluses in the different store departments may be prevented by 

assigning some multiskilled workers from departments with staff surpluses to departments with staff 

shortages. Therefore, the goal of the problem is to decide how many workers should be multiskilled 

and in what additional department, such that they get ready to work in other departments in case needed. 

Table 2. Notation. 

Sets 

𝐼 Workers, indexed by 𝑖 

𝐿 Departments of the retail store, indexed by 𝑙 

𝑆 Scenarios of demand, indexed by 𝑠 

𝐼𝑙 Set of single-skilled workers initially hired in department 𝑙, indexed by 𝑖 

Parameters 

𝑟𝑙(𝑠) Random parameter of staff demand in weekly hours per store's department l, ∀𝑙 ∈ 𝐿, 𝑠 ∈ 𝑆 

𝑟̄𝑙 Average value of staff demand in weekly hours per store's department l, ∀𝑙 ∈ 𝐿 

𝑐  Cost of workers training in any department; [US$-week /Worker] 

𝑢  Staff shortage cost per store's department; [US$/Hour] 

𝑏  Staff surplus cost per store's department; [US$/Hour] 

ℎ Weekly hours that workers have to work in accordance with their employment contract 

𝑚𝑖 Department in which the worker i is initially trained, ∀𝑖 ∈ 𝐼 

Variables 

𝑥𝑖𝑙 1 if worker i is trained in department l, 0 otherwise, ∀𝑖 ∈ 𝐼, 𝑙 ∈ 𝐿 

𝑣𝑖 1 if worker i is multiskilled, 0 otherwise, ∀𝑖 ∈ 𝐼 

𝜆𝑙 Number of multiskilled workers belonging to department l, ∀𝑙 ∈ 𝐿  

𝛺 Number of generated closed-chains  

𝜔𝑖𝑙 Number of weekly working hours allocated to worker 𝑖 in department l, ∀𝑖 ∈ 𝐼, 𝑙 ∈ 𝐿  

𝜅𝑙 Number of staff shortage hours per week in department 𝑙, ∀𝑙 ∈ 𝐿 

𝛿𝑙  Number of staff surplus hours per week in department 𝑙, ∀𝑙 ∈ 𝐿 

Solution approaches for the MPAP with 2-chaining 

𝐷𝑇 Deterministic optimization 

𝑅𝑂 Robust optimization 

𝐶𝐹 Closed-form equation 

𝑇𝑆𝑆𝑂 Two-stage stochastic optimization 

 

In short, in this paper, we will solve a weekly MPAP that at the same time determines how many 

multiskilled workers are needed, in what second department, and how to assign working hours to each 

worker over a one-week planning horizon. In addition, our formulation will provide a training plan 

that ensures the formation of CLCs and/or CSCs, which have shown to be especially useful in 

minimizing overstaffing and understaffing under uncertain demand. Thus, the solution of the MPAP 
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with 2-chaining, at the store level, must minimize the training costs and the expected costs of staff 

surplus/shortage. Table 2 presents the mathematical notation employed to formulate the MPAP with 2-

chaining. It will also be possible to find additional notation at each subsection of the proposed 

methodology in Section 4. 

Similar to Henao et al. [1] and Henao et al. [2], the formulation of the MPAP with 2-chaining 

considers various assumptions: (1) The demand in weekly hours per store's department, 𝑟𝑙(𝑠),  is a 

random parameter. In this paper, it is assumed two different levels of knowledge about the uncertainty 

of the parameter 𝑟𝑙(𝑠): (i) for the TSSO and CF approaches, the probability distribution of the random 

parameter is completely known; (ii) for the RO approach, only the average value and the maximum 

value allowed of the random parameter are known. (2) There is no correlation between the demand of 

different pairs of departments. (3) Staffing demand per store's department may not be fully covered 

(i.e., unsatisfied demand). Thus, the objective function incorporates a staff shortage cost, and it is 

assumed that this cost does not differ between departments. (4) Staff surplus also has an associated 

cost, and it is also assumed that this cost does not vary between departments. Mattia et al. [41] and 

Henao et al. [1] indicated that this cost represents an opportunity cost, which is incurred when there 

are idle workers in the store. (5) The objective function also incorporates staff training costs, and they 

do not vary by department. (6) All store workers have the same type of contract and thus they must 

perform an equal number of weekly working hours. (7) It is assumed that, for each department, the 

available assignment weekly hours, (|𝐼𝑙|ℎ), are equal to the average value of weekly hours demand (𝑟̄𝑙). 

Notice that this assumption imposes a trivial solution to the deterministic formulation for the MPAP. 

That is, since there is no imbalance between staffing and staff demand in each store department, the 

solution of the deterministic MPAP formulation will not require any multiskilled worker. That is, the 

DT approach solution will be equivalent to the ZM approach solution (i.e., zero multiskilling). (8) All 

departments have contracted a group of workers initially single-skilled. (9) Workers can be trained in 

a single additional department and, thus, they could perform up to a total of two store departments. 

(10) Workers have equal productivity in those departments where they are skilled. Henao et al. [1,2,9] 

and Porto et al. [6,21], who also addressed multiskilled personnel scheduling problems for retail stores, 

explain that this last assumption is reasonable when multiskilled workers can only perform up to a 

maximum of two store departments, and the types of tasks performed have a low and uniform level of 

complexity. 

4. Methodology 

This section proposes a framework to solve the MPAP with 2-chaining and uncertain demand, as 

described above. First, in Subsection 4.1, we develop a TSSO model to calculate the multiskilling 

requirements that minimize the training costs and the expected costs of staff surplus/shortage. Then, 

in Subsection 4.2, we present the two alternative optimization approaches under uncertainty - RO and 

CF - to solve the addressed problem. These two alternative approaches were already published in 

Henao et al. [1] and Henao et al. [2], respectively. Recall that the main contributions of this work are: 

(1) to solve the MPAP with 2-chaining using a TSSO approach and (2) to evaluate and compare the 

performance of three different optimization approaches under uncertainty (i.e., TSSO vs. RO vs. CF). 
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4.1. Stochastic MPAP formulation 

In this subsection, we present a brief background on the TSSO approach, and then we present the 

TSSO version of the deterministic MPAP model (DT) developed by Henao et al. [1]. In Subsection 

4.1.1, we make abuse of notation for the sake of consistency with the standard nomenclature used on 

the Stochastic Optimization literature. All symbols are described within the context. 

4.1.1. Background on the TSSO framework 

In a TSSO approach, decisions are modeled in two stages. The first-stage decisions are often 

denoted by the set of variables, 𝑥, and are called the “here-and-now” decisions. These decisions are 

made before the uncertain parameters become known. The second-stage decisions or recourse 

decisions are often described by the vector of variables, 𝑦(𝑥, 𝜉), and are defined as the “wait and see” 

decisions. These decisions are made once the uncertainty is exposed. Uncertain parameters are 

represented by 𝜉, and are assumed to be known. Thus, the second-stage decisions depend not only on 

first-stage decisions but also on the knowledge of the parameters under uncertainty, that is, 𝑦(𝑥, 𝜉). In 

addition, in the TSSO framework, non-anticipativity constraints are implicitly modeled to ensure that 

the first-stage decisions are not affected by the knowledge of the uncertain parameters. For details 

about the theory of TSSO, the reader is referred to Birge and Louveaux [22]. 

A general form for the classical TSSO model is expressed in Equation (1), distinguishing between 

first-stage and second-stage decisions.   

( )
, ( , )

( , )T

p
x y x
Min c x f y x


+          

s.t.                    (1)  

x X  

( , ) ( , )y x Y x  , 

Note that the first term in the objective function, 𝑐𝑇𝑥, corresponds cost incurred by the first-stage 

decisions. The second-stage term is the recourse expected cost function, 𝛦𝑝[𝑓(𝑦(𝑥, 𝜉))],  which is 

represented as the expectation of the second-stage objective taken over the stochastic parameter 𝜉 

within a given probability measure 𝑝. Such that 𝑓(𝑦(𝑥, 𝜉)) is the operational value function.  

The uncertain parameters, 𝜉, are usually continuous; thus, the TSSO framework is in most cases 

intractable. Sample Average Approximation (SAA) approach is commonly used to overcome this issue. 

The SAA is based on the generation of a set of random samples from the true stochastic parameter 𝜉 

that would represent them. Birge and Louveaux [22] explain that, for each possible scenario, the SAA 

clones the variables set of second-stage. Thus, by taking independent and identically distributed (iid) 

random samples, 𝜉,  from the assumed probability distribution, it is possible to approximate the 

problem (1). By doing so, we represent each generated sample by 𝜉(𝑠) ∈ 𝛯𝑠, where 𝛯𝑠 is the set of all 

iid random samples generated and |𝛯𝑠| represents the cardinality of 𝛯𝑠, that is, number of scenarios. 

Such that, when |𝛯𝑠|  is large enough (but a finite number), the SAA approach has a high quality. 

However, for a large set of scenarios in the second-stage, the SAA can be too expensive to solve. Below, 

for a finite set of scenarios, the SAA formulation of (1) is defined. 
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Then, (2) is a finite-dimensional problem equivalent to (1). 

4.1.2. TSSO model for the MPAP 

For the MPAP problem, we assume complete knowledge of the distribution of probability 

associated with the uncertain demand, which is accessible from historical data. The deterministic linear 

MIP model presented by Henao et al. [1] can be extended to add such uncertainty. For full details on 

the DT model, the reader is referred to Subsection 3.1 in Henao et al. [1]. 

In this subsection, we proposed a TSSO model for the MPAP with 2-chaining. To facilitate 

comparisons of the TSSO version with the DT version developed by Henao et al. [1], we use the same 

mathematical notation. The first-stage variables, 𝑥𝑖𝑙, 𝑣𝑖, and 𝜆𝑙 are tactical decisions associated with 

the workers training to work in one additional store department. These decisions are taken before the 

uncertainty in weekly demands has been revealed. The second-stage continuous recourse variables, 

𝜔𝑖𝑙(𝑠),  𝜅𝑙(𝑠),  𝛿𝑙(𝑠), are operational decisions associated with the workers allocation to minimize staff 

surplus/shortage levels. These decisions are taken after the uncertainty in weekly demands has been 

revealed. To solve the TSSO version for the MPAP, we implemented an SAA approach. 

Below, the mathematical formulation of our TSSO model is presented. Also recall that, in Table 

2 was defined the math notation for each of the sets, parameters, and variables used in the TSSO model. 

:

sec

1
( ) ( )

i

il l l

i I l L l m s S l L s S l L

first stage ond stage

Min cx u s b s
S

 
      

− −

 
+ + 

 
                                       (3) 

s.t. 

∑ 𝜔𝑖𝑙𝑖∈𝐼 (𝑠) + 𝜅𝑙(𝑠) − 𝛿𝑙(𝑠) = 𝑟𝑙(𝑠)      ∀𝑙 ∈ 𝐿, 𝑠 ∈ 𝑆                             (4) 

∑ 𝜔𝑖𝑙𝑙∈𝐿 (𝑠) = ℎ                                 ∀𝑖 ∈ 𝐼, 𝑠 ∈ 𝑆                             (5) 

𝜔𝑖𝑙(𝑠) ≤ ℎ𝑥𝑖𝑙                               ∀𝑖 ∈ 𝐼, 𝑙 ∈ 𝐿, 𝑠 ∈ 𝑆                         (6) 

𝑥𝑖𝑙 = 1                                          ∀𝑖 ∈ 𝐼, 𝑙 ∈ 𝐿: 𝑙 = 𝑚𝑖                       (7) 

𝑣𝑖 = ∑ 𝑥𝑖𝑙𝑙∈𝐿:𝑙≠𝑚𝑖
                                   ∀𝑖 ∈ 𝐼                                  (8) 

𝜆𝑙 = ∑ 𝑣𝑖𝑙∈𝐼𝑙
                                            ∀𝑙 ∈ 𝐿                                  (9) 

𝑣𝑖 ≤ 1                                                       ∀𝑖 ∈ 𝐼                                 (10) 

∑ 𝑣𝑖𝑖∈𝐼𝑙
= ∑ 𝑥𝑖𝑙𝑖∈{𝐼−𝐼𝑙}                                 ∀𝑙 ∈ 𝐿                                 (11) 

𝑥𝑖𝑙 ∈ {0,1}                                           ∀𝑖 ∈ 𝐼, 𝑙 ∈ 𝐿                           (12) 
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𝑣𝑖 ≥ 0                                                     ∀𝑖 ∈ 𝐼                                  (13) 

𝜆𝑙 ≥ 0                                                     ∀𝑙 ∈ 𝐿                                  (14) 

𝜔𝑖𝑙(𝑠) ≥ 0                                 ∀𝑖 ∈ 𝐼, 𝑙 ∈ 𝐿, 𝑠 ∈ 𝑆                        (15) 

𝜅𝑙(𝑠) ≥ 0                                   ∀𝑙 ∈ 𝐿, 𝑠 ∈ 𝑆                                 (16) 

𝛿𝑙(𝑠) ≥ 0                                   ∀𝑙 ∈ 𝐿, 𝑠 ∈ 𝑆                                 (17) 

The objective function (3) minimizes the total weekly cost. On the one hand, and associated with 

the first-stage decisions, the first term in the objective function minimizes the total training cost. On 

the other hand, and associated with the second-stage decisions, the next two terms in the objective 

function minimize the total expected cost of staff shortages and surpluses. In the TSSO version for the 

MPAP, the decisions about how many workers should be multiskilled in the first-stage will impact the 

staff surplus/shortage levels in the second-stage. Besides, the second-stage decisions are recourse 

variables that seek to take corrective actions in the workers' assignment after the uncertainty is revealed, 

but such corrective actions have a cost. Thus, a TSSO approach seeks to select the variables of first-

stage that minimizes both first-stage costs and expected second-stage random costs. 

Constraints (4) account for demand fulfillment for each department and demand scenario. They 

also calculate the staff surplus/shortages levels produced by the mismatch between the staffing and 

staff demand. Constraints (5) guarantee that, for each demand scenario, all workers are assigned to 

work the working hours stipulated in their contracts. Constraints (6) ensure that, for each demand 

scenario, workers can only be assigned to work in those departments where they received training. 

Constraints (7) indicate the department where each worker was originally trained. Constraints (8) 

indicate whether a worker was trained to be multiskilled, or he/she continues as a single-skilled. 

Constraints (9) calculate the optimal number of multiskilled workers belonging to each department. 

Constraints (10) ensure that workers can be trained in a single additional department. Constraints (11) 

ensure that the sum of multiskilled workers originally trained in the department 𝑙 and who were also 

trained to perform in another second department (∑ 𝑣𝑖𝑖∈𝐼𝑙
), is equal to the sum of multiskilled workers 

originally trained in a department different to 𝑙 but that were also trained to perform in 𝑙 as additional 

department (∑ 𝑥𝑖𝑙𝑖∈{𝐼−𝐼𝑙}  ). Constraints (10) and (11) guarantee a 2-chaining policy, and thus, the 

generation of CLCs or CSCs that allow the transfer of multiskilled workers among store departments. 

Note that, Henao et al. [1] explained that for both CLCs and CSCs formation, it is required that the 

outdegree of every one demand nodes belonging to a chain must be equal to the indegree of its 

corresponding supply node. The constraints (11) guarantee the satisfaction of such requirement. 

Constraints (12)-(17) indicate the possible values that each decision variable can take. Note that, given 

the auxiliary variables 𝑣𝑖 must take values less than or equal to one (see constraints (10)) and they are 

calculated through the sum of the binary variables 𝑥𝑖𝑙  (see constraints (8)), such variables do not 

require to be declared as binary. Finally, note that constraints (4)-(6) and (15)-(17) were accordingly 

extended from Henao et al. [1] to model that the second-stage variables depend on the random demand 

scenarios. 

The optimal solution of the TSSO simultaneously answer the following three tactical questions: 

(i) How many multiskilled workers are needed per department, 𝜆𝑙? (ii) In which second department 

should be trained each of the workers identified as multiskilled, 𝑥𝑖𝑙?, and (iii) How many CLCs and/or 

CSCs are needed, and which store departments should belong to each of the chains, 𝛺? 
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4.2. Alternative optimization approaches for solving the MPAP under uncertainty 

In this subsection, we present the alternative optimization approaches, RO and CF, presented in 

Henao et al. [1] and Henao et al. [2] respectively, for solving the MPAP with 2-chaining and uncertain 

demand. Later, in Section 6, the solution of the proposed TSSO model will be compared with the 

benchmark approaches RO and CF. 

4.2.1. Robust MPAP formulation 

Robust optimization is widely studied in the literature. In Beyer and Sendhoff [45], Kouvelis and 

Yu [46], and Gabrel et al. [47], the authors exhaustively reviewed and discussed articles that present 

methodological advances in RO as well as a range of problems that have used RO. In this subsection, 

we present the single-stage RO approach developed by Henao et al. [1] to solve the MPAP with 2-

chaining and uncertain demand. The classic first-stage RO is an alternative approach to TSSO, where 

the probability distribution associated with the random parameter is not known; instead, the uncertainty 

of the parameter is modeled using the so-called uncertainty sets that usually are obtained by using 

historical data or estimates. In the RO approach from Henao et al. [1], it is assumed that the uncertain 

demand of each store department has a known average value, 𝑟̄𝑙, and the maximum value allowed for 

the uncertain demand is equal to 𝑟̂𝑙 = 𝛼𝑟̄𝑙. Note that, this maximum allowed variation is defined as a 

fraction of the average value, where α is equivalent to the coefficient of variation (CV) for the demand 

in a department, 0 ≤ 𝛼 ≤ 1. Thus, the weekly hours demand 𝑟̃𝑙 is a random variable that can only take 

values within the interval [𝑟̄𝑙 − 𝑟̂𝑙, 𝑟̄𝑙 + 𝑟̂𝑙]. 

Henao et al. [1] also included into the RO model the set 𝐽, which refers to the set of departments 

whose staff demands can vary simultaneously. They assumed that |𝐽| = |𝐿|, so that, the staff demand 

in each department is subject to uncertainty. In order to address issues of overconservative solutions in 

the RO framework, it was possible to define an uncertainty budget parameter or level of conservatism, 

𝛤, which was stated as a fraction, 0 ≤ 𝛤 ≤ 1, of all departments with uncertain demand, |𝐽|. If 𝛤 = 0, 

RO model is equivalent to DT model, since uncertainty is not considered and demand values are the 

nominal values of the uncertainty set. If 𝛤 = 1, solutions are optimized accordingly for the worst-case 

scenario, which considers the maximum allowed uncertainty. 

Considering the previous assumptions and the approaches developed by Bertsimas and Sim [24], 

Bertsimas and Thiele [48] and Bohle et al. [49]; Henao et al. [1] presented a RO version of their DT 

formulation. The RO model seeks to minimize the worst-case operational costs of staff shortages and 

surpluses for the training decisions, 𝑥𝑖𝑙 . For full details on the RO version, the reader is referred to 

Subsection 3.2.2 in Henao et al. [1]. 

Finally, we found two key methodological differences between the TSSO approach and the RO 

approach. First, while the TSSO approach solutions are driven by the best-expected cost, solutions of 

the RO approach are driven by the best performance in the worst-case scenario. Second, the TSSO 

approach simultaneously answers the tactical questions (i), (ii), and (iii) established at the end of 

Subsection 4.1.2, which ensures consistency in the decision approach. On the contrary, the single-stage 

RO approach answers these questions sequentially through two methodological stages. The first stage 

of the methodology proposed a RO model to answer the question (i). The second stage proposed a 

constructive heuristic to answer the questions (ii) and (iii). For full details on the constructive heuristic, 

the reader is referred to Subsection 3.3 in Henao et al. [1]. In short, the first stage determines the 
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optimal number of multiskilled workers needed per department (𝜆𝑙).  Then, the second stage 

considering the solution provided by the first stage decides in which second department should be 

trained each of the workers identified as multiskilled (𝑥𝑖𝑙), whereas the minimum number of closed 

chains is built (𝛺). 

4.2.2. Closed-form MPAP formulation 

In this subsection, we present the approach developed by Henao et al. [2] for solving the MPAP 

with 2-chaining and uncertain demand. Similar to Henao et al. [1], Henao et al. [2] answered the tactical 

questions (i), (ii), and (iii) sequentially through two methodological stages. The first stage of the 

methodology proposed a CF equation to estimate: (i) the number of multiskilled workers needed per 

department (𝜆𝑙). The second stage used the constructive heuristic developed by Henao et al. [1] to 

determine: (ii) in which second department should be trained each of the multiskilled workers (𝑥𝑖𝑙); 

and (iii) the number of generated closed-chains (𝛺). Note that, the second stage considers the solution 

provided by the first stage. 

The CF expression developed by Henao et al. [2] was motivated by various problems in the 

literature where the authors seek to find an approximate solution using local optimality criteria. In 

Robuste et al. [50], Del Castillo [51], and Daganzo [52], the authors present a range of complex 

logistics problems (e.g., distribution centers location and vehicle routing) that have used a closed-form 

equation. In particular, in Henao et al. [2], the authors derived a novel CF equation that examines every 

single department in separate to deliver an estimation of the optimal quantity of multiskilled workers. 

Note that, under a CF approach, it is assumed that the local conditions are considered to be explicable 

for the complete region under evaluation. 

CF is an alternative framework to TSSO and RO, where is assumed complete knowledge of the 

distribution of probability associated with the uncertain demand. The CF approach considered the 

following two key assumptions: (1) the probability density function for the staff demand per 

department is independently and normally distributed with known average value 𝑟̄𝑙  and standard 

deviation 𝜎𝑙; (2) the staff hours supply per store’s department are equal to the average value of staff 

hours demand (|𝐼𝑙|ℎ = 𝑟̄𝑙). Note that the second assumption was also considered in the TSSO and 

RO approaches. 

Under these assumptions, Henao et al. [2] developed a closed-form equation to estimate the 

number of multiskilled workers needed per department (𝜆𝑙). The CF equation seeks to minimize the 

incurred training cost (but per-hour instead of per-week) and the expected staff shortage cost. For 

further details about the development of the CF equation, the reader is referred to Subsection 4.2.1 in 

Henao et al. [2]. 

 We also found two key methodological differences between the TSSO approach and the CF 

approach. First, the TSSO approach solutions are driven by the best-expected cost. In contrast, the 

solutions of the CF approach are driven by the best performance in the average-case scenario. Second, 

the TSSO approach simultaneously answers the tactical questions (i), (ii), and (iii), whereas the CF 

approach answers these questions sequentially. Finally, unlike TSSO and RO approaches that propose 

sophisticated optimization models for assessing the benefits of the 2-chaining structures, the CF 

approach offers decision-makers with a valuable and practical formula to estimate cost-effectiveness 

levels of multiskilling. 
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5. Case study 

We propose a case study to validate the methodology previously presented. Such case study is 

associated with a home improvement store in Santiago de Chile, only for its sales personnel. In 

Subsection 5.1, we present the performance metrics used in Section 6 to assess and compare the 2-

chaining structures constructed by the optimization approaches under uncertainty (i.e., TSSO, RO, and 

CF). Besides, in Section 6, these three optimization approaches under uncertainty will be compared 

with the two myopic approaches ZM and TM. Recall that the ZM approach represents the solution of 

the DT formulation. Also, note that the TM approach will achieve the lower bound of the total weekly 

staff surplus/shortage cost, whereas the ZM approach will obtain the upper bound. Later, we explain 

the data requirements of the MPAP model in Subsection 5.2. 

5.1. Metrics of performance 

To evaluate the performance of the solution approaches presented (i.e., DT, TSSO, RO, CF, ZM, 

and TM), we use metrics to measure: the required multiskilling levels (%𝑀𝐸, %𝑇𝑀), the incurred 

costs (𝜑, 𝜓 ), and the reliability (%𝑆𝑆𝑆 ) associated with the solutions delivered by each approach. 

Below, we describe each of these metrics in more detail. 

1) Multiskilled workers in percentage. It is calculated as the ratio between the total number of 

multiskilled workers and the total number of hired workers. 

%𝑀𝐸 =  
∑ 𝜆𝑙𝑖∈𝐿

|𝐼|
. 100 

2) Total multiskilling in percentage. It is calculated as the ratio between the number of additional 

departments in which workers were trained and the maximum number feasible. 

%𝑇𝑀 =  
∑ ∑ 𝑥𝑖𝑙𝑙∈𝐿:𝑙≠𝑚𝑖𝑖∈𝐼

|𝐼|(|𝐿| − 1)
. 100      

3) Total weekly cost. It is equivalent to the sum of incurred costs of training and staff surplus/ 

shortage. 

𝜑 = ∑ ∑ 𝑐𝑥𝑖𝑙 + ∑ 𝑢𝑘𝑙 + ∑ 𝑏𝛿𝑙𝑙∈𝐿𝑙∈𝐿𝑙∈𝐿:𝑙≠𝑚𝑖𝑖∈𝐼   

4) Total weekly staff surplus/shortage cost. It is defined as the incurred cost of staff surplus/ 

shortage associated with any approach. 

𝜓 = ∑ 𝑢𝑘𝑙 + ∑ 𝑏𝛿𝑙𝑙∈𝐿𝑙∈𝐿   

5) Savings on the total weekly cost of staff surplus/shortage for an approach. Consider that, 𝜓𝑍𝑀 

indicates the incurred cost of staff surplus/shortage when all workers are single-skilled, whereas 𝜓𝑇𝑀 

indicates the incurred cost when each worker is trained to work in all departments. Then, the difference 

between 𝜓𝑍𝑀  and 𝜓𝑇𝑀  represents the maximum possible savings in this cost when there is total 

multiskilling. 

%𝑆𝑆𝑆 =  
𝜓𝑍𝑀 − 𝜓

𝜓𝑍𝑀 − 𝜓𝑇𝑀
. 100 
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5.2. Data requirements of the MPAP 

This subsection describes the data used in this study. To fairly compare the three optimization 

approaches under uncertainty (i.e., TSSO, RO, CF), we used the same case study that was already 

presented and solved by Henao et al. [1] and Henao et al. [2]. The database includes real and simulated 

data that were derived from a retail store operating in Chile. The real dataset indicates the store size, 

the number of single-skilled workers initially hired in each store department, working hours established 

in the employment contract, average weekly staff hours demand per department, and the cost 

parameters values. The simulated datasets describe the random weekly staff hours demand per 

department. Below we present a description of both dataset types. For more details of the database, the 

reader is referred to the data article presented by Henao et al. [53]. 

5.2.1. Real dataset 

The case study evaluates a store with |𝐼| = 30 and |𝐿| = 6. Such that each worker has a full-time 

contract according to Chilean labor legislation, that is, ℎ = 45. Let 𝑟̄𝑙 be the average value of demand 

in weekly hours per store's department 𝑙, ∀𝑙 ∈ 𝐿. Such that, 𝑟̄1 = 315 (i.e., 7 workers), 𝑟̄2 = 225, 𝑟̄3 =

135, 𝑟̄4 = 135, 𝑟̄5 = 180, and 𝑟̄6 = 360. Regarding the cost parameters, the training cost per worker 

is assumed to be the same minimum value for each store department (𝑐 = 𝑈𝑆$1 − 𝑤𝑒𝑒𝑘/𝑤𝑜𝑟𝑘𝑒𝑟). 

Henao et al. [1,2,9] and Porto et al. [6,21,54] indicate that the results obtained under this assumption 

can be interpreted as an upper bound of the requirements multiskilling. The staff shortage cost is equal 

to 𝑢 = 𝑈𝑆$60/ℎ, whereas the staff surplus cost is equal to 𝑏 = 𝑈𝑆$15/ℎ. Note that the TSSO, RO, 

and CF approaches use the same real dataset.  

5.2.2. Simulated datasets 

The case study considers in-sample data along with out-of-sample data, both associated with the 

uncertain demand. Regarding the in-sample data, these consider the data utilized to find the in-sample 

solutions with the TSSO approach. Regarding the out-of-sample data, these consider the data utilized 

to make fair comparisons between the performance of the solutions obtained by the optimization 

approaches under uncertainty (i.e., TSSO, RO, and CF) and the approaches considered as myopic (i.e., 

ZM and TM). In both sample data types, to evaluate how the 2-chaining structures work in the face of 

different levels of variability demand, we test six coefficients of variation: 𝐶𝑉 =

5, 10, 20, 30, 40, 50%. In addition, in both sample data types, we consider that the random realizations 

of the weekly staff hours demand per store's department are independent and normally distributed with 

known average value 𝑟̄𝑙 and standard deviation 𝜎𝑙 = 𝑟̄𝑙𝐶𝑉. Note that, in Henao et al. [1,2], Abello et al. [3], 

Fontalvo Echavez et al. [20], Porto et al. [6,21], and Mercado et al. [14], articles with case studies in 

the retail industry, authors also used the same probability density function (pdf) to test the benefits of 

using multiskilled workers. 

For the in-sample data, because an SAA method is used for solving the TSSO model (3)-(17), we 

employ a Monte Carlo simulation to randomly create 2000 scenarios for the staff demand in weekly 

hours per store's department 𝑟𝑙(𝑠), ∀𝑙 ∈ 𝐿, 𝑠 ∈ 𝑆, such that |𝑆| = 2000. This simulation is performed 

for six different CVs of demand. To determine the appropriate sample size of |𝑆|, we performed a data 

sample evaluation and identified that the solutions stabilize from 1000 scenarios. We choose the value 
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of |𝑆| = 2000, considered as a representative sample size for this case study. Note that 2000 weekly 

demand scenarios are equivalent to a sample of 38.5 years. Later, we created two different datasets to 

evaluate and compare the conservatism level in the TSSO approach solutions. Each dataset has a 

different truncation type in the pdf’s of the departments’ demand. The first dataset considers that the 

pdfs are truncated between the percentiles 5th and 95th. That is, 10% of the data distribution is excluded, 

which avoids the generation of extreme demand values. In addition, the pdfs are truncated at zero. The 

second dataset considers that the pdfs are zero-truncated, which avoids the generation of negative 

demand values. However, in this second dataset, extreme demand values could be generated more 

frequently (in both pdf’s tails) as the %CV of demand increases. Thus, the second dataset offers a more 

conservative point of view than the first dataset. That is, TSSO approach solutions obtained under a 

more conservative truncation may require higher multiskilling levels than those obtained under less 

conservative truncation. Note that the CF approach also assumes that the pdf for each department’s 

demand follows a normal distribution truncated at zero. 

For the out-of-sample data, to simplify the analyses, we employ a Monte Carlo simulation to 

create a single dataset for the realizations of the random staff demand in weekly hours in all 

departments. In this case, following a zero-truncated normal distribution and, for each store department 

and CV, we generated 10000 scenarios for the demand parameters. 

Summarizing, we use three simulated datasets. Two in-sample datasets, of which the first is 

percentile-truncated and the second is zero-truncated; whereas the out-of-sample dataset is zero-

truncated only. There are six files in each dataset (one for each CV), and each of them contains random 

realizations of the weekly staff hours demand for six departments (2000 for in-sample and 10000 for 

out-of-sample). The simulated datasets are presented in 18 files classified according to: (i) sample data 

type (in-sample, out-of-sample); (ii) In which way the normal distribution was truncated (percentile-

truncated, zero-truncated); and (iii) coefficient of variation for demand in a department (5, 10, 20, 30, 

40, 50%). As mentioned before, these files are available in the data article presented in Henao et al. [53]. 

6. Computational tests, results, and discussion 

This section presents the computational experiments, the results, and the discussions associated 

with the case study. In Subsection 6.1, the in-sample solutions in terms of the training decisions of the 

TSSO approach are compared with the solutions of RO, CF, and DT approaches. In Subsection 6.2, 

we carry out an out-of-sample analysis to evaluate cost and reliability benchmarking the TSSO 

approach to the alternative optimization approaches under uncertainty (i.e., RO and CF), the 

deterministic (DT) approach, and the two myopic approaches ZM and TM. The models were written 

in the AMPL language and solved through ILOG CPLEX 12.9.0, such that for all instances, we 

obtained optimality gaps of less than 0.1%. Additionally, all test instances were run on Intel Xeon Gold 

6148, 2.4GHz - 2.39GHz (two processors) with 256 GB of RAM. 

6.1. Benchmarking analysis: In-sample 

We compared the proposed TSSO model with the benchmark approaches RO, CF, and DT. The 

DT model presented in Henao et al. [1] was solved using the nominal values of the uncertain demand. 

The RO and CF approaches were solved as we defined in Subsection 4.2.1 and 4.2.2, respectively. 

Regarding the RO approach, we evaluated two levels of conservatism or uncertainty budget; 𝛤 = 0.6 
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and 1. On one side, 𝛤  = 1 represents the worst-case scenario and, therefore, the problem’s most 

conservative solution. On the other hand, Henao et al. [1] indicated in their results that 𝛤  = 0.6 

represents a cost-effective value of 𝛤,  since such value achieves savings of at least a 95% on the 

average total weekly cost of staff surplus/shortage (i.e., %𝑆𝑆𝑆 ≥ 95%) in the face of different levels 

of demand uncertainty. The TSSO model (3)-(17) was solved using an SAA approach, as described in 

Subsection 5.2. The TSSO model solutions are presented considering two in-sample datasets: (i) zero-

truncated and (ii) percentile-truncated.  

Summarizing, the in-sample analysis compares the performance of the following approaches: (i) 

two-stage stochastic optimization with a pdf zero-truncated (TSSO-ZT); (ii) two-stage stochastic 

optimization with a pdf percentile-truncated (TSSO-PT); (iii) robust optimization with 𝛤 = 1 (RO-1); 

(iv) robust optimization with 𝛤 = 0.6 (RO-0.6); (v) closed-form equation (CF); and (vi) deterministic 

optimization (DT). To compare in-sample solutions in terms of the training decisions, and only for the 

approaches TSSO-ZT, TSSO-PT, RO-1, RO-0.6 and CF, we evaluate six different demand variability 

levels: 𝐶𝑉 = 5, 10, 20, 30, 40, 50%. 

Below, we present the results and discussions of the in-sample analysis in three subsections. 

6.1.1. Characteristics of the models 

Table 3 reports the computational times and size for each model and CV. We observe that the 

computational times of the TSSO model are much greater than the RO and CF models, which is 

because the size of the TSSO model is also larger than the others. TSSO-ZT and TSSO-PT models take 

an average of 39.2 hours and 28.1 hours, respectively, to solve to optimality. Despite the computational 

time difference compared to the other models, the TSSO approach has acceptable computational times 

for real-life applications since decisions related to workers training are considered as tactical-strategic. 

Thus, staff training decisions are taken  over planning horizons of medium and long-term (e.g., months, 

seasons, semesters). 

Table 3. Computational times and size of the models. 

 Approach 
CPU time Average 

CPU time 
Constraints 

Binary 

variables 

Continuous 

variables 5% 10% 20% 30% 40% 50% 

TSSO-ZT 41.9 h  109.6 h 23.3 h 41.1 h 13.6 h 5.4 h 39.2 h 384,054 150 396,048 

TSSO-PT 11.3 h 18.0 h 37.7 h 32.8 h 15.3 h 53.4 h 28.1 h 384,054 150 396,048 

RO-1 0.39 s 0.33 s 0.3 s 3.83 s 4.56 s 0.53 s 1.66 s 254 150 247 

RO-0.6 0.23 s 0.23 s 0.7 s 0.06 s 0.3 s 5.66 s 1.20 s 254 150 247 

CF 0.02 s 0.02 s 0.02 s 0.02 s 0.02 s 0.02 s 0.02 s - - - 

DT 0.01 s 0.01 s 240 150 240 

In addition, as was expected, the DT model has the lowest computational time. However, the 

computational times of the RO and CF models are also quite short. Regarding RO models, these have 

very low computational times since their size is almost identical to the DT model. Finally, the 

computational times of the CF model are also very low because this approach is solved using 

conventional spreadsheets, which demonstrates its high practical value. Thus, the DT, CF, and RO 

approaches have the same order of magnitude for finding an optimal solution, while the TSSO 
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approach is several orders of magnitude larger, but reasonable for the tactical MPAP. 

6.1.2. How much multiskilling should be added? 

The objective in this subsection is to respond the following tactical question: (i) How many 

multiskilled workers are needed per department? Given this purpose, we calculate the optimal number 

of multiskilled workers per department (𝜆𝑙
∗) considering six coefficients of variation (CV) in demand 

and five optimization approaches under uncertainty (TSSO-ZT, TSSO-PT, RO-1, RO-0.6, CF). Figure 

2 presents the multiskilling requirements associated with each combination between optimization 

approach and CV. Recall that, our case study considers a store with six department sizes (DS), whose 

average values of weekly staff hours are respectively 315, 225, 135, 135, 180, and 360. Finally, the DT 

approach was not considered in this comparison, since its solution does not require any multiskilled 

worker (i.e., zero multiskilling). This is because, for each department, the available assignment weekly 

hours (|𝐼𝑙|ℎ) are equal to the average value of weekly hours demand (𝑟̄𝑙). Thus, there is no imbalance 

between staffing and staff demand in each store department. 

 

Figure 2. Metrics of multiskilling for each CV and optimization approach under uncertainty. 

In Figure 2, the colored area shows the optimal number of multiskilled workers in each 

department size (𝜆𝑙
∗). It is observed that as the %CV of demand and the DS increase, 𝜆𝑙

∗ also increases. 

Similarly, for each approach, the sum of the multiskilling requirements for all departments 

(∑ 𝜆𝑙
∗, %𝑀𝐸, %𝑇𝑀𝑙∈𝐿 ) increase progressively as %CV of demand rises. There are several aspects 

worth discussing. It is observed that, for each of the five approaches, when CV=5% (i.e., the minimum 
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value tested for the %CV) a single multiskilled worker is required per department even when the 

training cost was considered almost free (𝑐 = 1). Such a result can be seen as the required minimum 

multiskilling level (i.e., 𝑀𝐸 = 20%  and 𝑇𝑀 = 4% ). In contrast, for the RO-1, CF, and TSSO-ZT 

approaches, when CV=50% (i.e., the maximum value tested for the %CV) all store workers are 

required to be multiskilled. Such result can be seen as the theoretical maximum (i.e., ∑ 𝜆𝑙
∗

𝑙∈𝐿 = |𝐼|, 

𝑀𝐸 = 100% , 𝑇𝑀 = 20% ). In fact, once the CV is greater than or equal to 40%, the TSSO-ZT 

approach requires that 100% of the single-skilled workers be trained to be multiskilled. 

Note that when %ME and %TM reach their theoretical maximum, this may involve three possible 

conclusions. First, 𝑀𝐸 = 100% and 𝑇𝑀 = 20% represent sufficient multiskilling levels to minimize 

the staff surplus/shortage costs. Second, for very high demand variability levels, 2-chaining structures 

could not be enough to minimize the staff surplus/shortage costs, and thus, k-chaining structures with 

𝑘 ≥ 2 may be explored. That is, chaining structures where a number of workers are trained to perform 

in two or more departments. Third, for very high demand variability levels, increases in labor flexibility 

are required but also increases in staffing levels. That is, more workers should be hired. 

It is also noteworthy that the conservatism levels in the solutions vary according to the demand 

variability and the selected approach. Note that, the higher are the required multiskilling levels 

(%ME, %TM) associated with an approach, the higher is its conservatism level. Considering this 

criterion, from Figure 2, we order the five approaches according to its conservatism level: (1) TSSO-

ZT (the most conservative), (2) RO-1, (3) CF, (4) TSSO-PT, and (5) RO-0.6 (the least conservative). 

The solutions of the RO-0.6 are the least conservative, mainly because it considers an intermediate 

uncertainty budget (i.e., 𝛤 = 0.6). In contrast, the RO-1 approach presents solutions more conservative 

than the solutions of the CF and TSSO-PT approaches. This intuitive result is explained by the fact 

that the RO-1 approach aims to protect against the worst-case scenario. That is to say, the RO approach 

as presented in Subsection 4.2.1, implies that for each CV, the weekly hours demand 𝑟̃𝑙 is a bound 

random variable taking the maximum permitted variation, 𝑟̂𝑙 = 𝐶𝑉𝑟̄𝑙, on the interval [𝑟̄𝑙 − 𝑟̂𝑙, 𝑟̄𝑙 + 𝑟̂𝑙]. 

Finally, a less intuitive result indicates that the solutions of the TSSO-ZT are more conservative 

than the solutions of the RO-1 approach, although not very different. However, this result can be 

explained because the TSSO-ZT approach considers a range of possible demand realizations wider 

than the RO-1 approach. Recall that, although under the RO-1 approach the demand realizations take 

the maximum or minimum value on the interval [𝑟̄𝑙 − 𝑟̂𝑙, 𝑟̄𝑙 + 𝑟̂𝑙], the TSSO-ZT uses a dataset where 

the pdf’s of the departments’ demand are zero-truncated. Such a dataset represents the maximum 

theoretical range for the demand realizations in our case of study. 

6.1.3. How should multiskilling be added? 

The objective in this subsection is to respond the following two tactical questions: (ii) In which 

second department should be trained each of the workers identified as multiskilled? and (iii) How 

many CLCs and/or CSCs are needed, and which store departments should belong to each of the chains? 

Given this purpose, we analyzed the 2-chaining structures generated according to the demand 

variability (CV) and the evaluated approach (TSSO-ZT, TSSO-PT, RO-1, RO-0.6, CF). Regarding the 

RO and CF approaches, once the question (i) has been answered in Subsection 6.1.2, it is required to 

apply the constructive heuristic developed by Henao et al. [1] to answer the questions (ii) and (iii). The 

constructive heuristic builds the minimum required number of closed chains, replicating the CLC 

concept. Unlike RO and CF approaches, the TSSO approach simultaneously answers the tactical 



4966 

 

Mathematical Biosciences and Engineering                                                        Volume 19, Issue 5, 4946–4975. 

questions (i), (ii), and (iii). 

As an example, Table 4 presents the set of 2-chaining structures obtained for each approach and 

a CV of 20%. For each approach, Table 4 shows the optimal total number of multiskilled workers 

(∑ 𝜆𝑙
∗

𝑙∈𝐿 ), the constructed closed-chains, and what types of closed chains were built. 

Table 4. 2-chaining structures constructed for each approach and for CV=20%. 

Approach  ∑ 𝜆𝑙
∗

𝑙∈𝐿   Closed chains Type of closed chain 

TSSO-ZT 19 D1-D3-D5-D6-D4-D2-D1 CLC 

  D5-D4-D1-D6-D2-D5 CSC 

  D2-D3-D6-D2 CSC 

  D1-D5-D6-D1 CSC 

  D1-D6-D1 CSC 

RO-1 15 D3-D1-D4-D5-D6-D2-D3 CLC 

  D1-D2-D6-D3-D5-D1 CSC 

  D4-D6-D4 CSC 

  D1-D6-D1 CSC 

CF 12 D3-D1-D4-D5-D6-D2-D3 CLC 

  D1-D5-D2-D6-D1 CSC 

  D1-D6-D1 CSC 

TSSO-PT 12 D1-D3-D6-D5-D4-D1 CSC 

  D1-D2-D5-D6-D1 CSC 

  D1-D6-D2-D1 CSC 

RO-0.6 11 D1-D2-D4-D3-D6-D5-D1 CLC 

  D2-D1-D6-D2 CSC 

  D1-D6-D1 CSC 

Table 4 shows that under the TSSO-ZT approach, five closed chains were built, the first one is a 

CLC while the other four are CSCs. For example, the constructed chain “D1-D5-D6-D1” indicated 

that a worker from Department 1 was also trained in Department 5, a worker from Department 5 was 

also trained in Department 6, and a worker from Department 6 was also trained in Department 1. The 

RO-1, CF, and RO-0.6 approaches also combine the two closed-chain types (CSCs of not the same 

length and CLCs). In addition, the TSSO-PT approach constructs three closed short chains of not the 

same length but no closed long chain. This is a valuable result since it indicates that under a TSSO 

approach, where all tactical questions were answered simultaneously, various CSCs, each one 

connecting a significant number of departments, perform as well as a combination of CLCs and CSCs. 

This result extends the findings reported by Henao et al. [1] and Henao et al. [2]. 

In addition, for the RO-1, CF, and R0-0.6 approaches, the constructive heuristic seeks to maximize 

flexibility in the training plans. That is, if possible, it is avoided that the multiskilled workers belonging 

to a given department have been trained in the same additional departments. The solutions of the 

TSSO-ZT and TSSO-PT approaches show also that the flexibility is maximized. However, in the set 

of constructed closed-chains for the TSSO-ZT approach, four training arcs are repeated: “D1-D6”, 

“D5-D6”, “D6-D2”, and “D6-D1”. This is also a valuable result since it indicates that, under a TSSO 

approach, connecting pairs of departments with large demands more than once is a good strategy. 

Recall that D1, D2, D5, and D6 represent the departments with the largest sizes in our case study. This 

result also extends the findings reported by Henao et al. [1] and Henao et al. [2]. 

Finally, it is important to highlight that, given the methodology used by the RO and CF approaches, 

it would not have been possible to find these new findings with such approaches. That is, the second 
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stage of the RO and CF approaches consists of using a constructive heuristic to answer the questions 

(ii) and (iii), and thus, such a heuristic uses a set of intuitive decision rules (set by the modeler) to 

create an attractive set of CLCs and CSCs. However, being a heuristic procedure, it explores only a 

portion of the entire feasible region of solutions. This does not happen with the simultaneous TSSO 

approach, which explores the entire feasible set of solutions. This feature of the TSSO approach, 

although it comes with a high computational cost, allowed us to identify and provide new managerial 

insights to practitioners and retail decision-makers. 

6.2. Benchmarking analysis: Out-of-sample 

The out-of-sample evaluation presented in this subsection aims to fairly compare the solutions of 

the TSSO-ZT and TSSO-PT approaches with the solutions of the alternative optimization approaches, 

RO-1, RO-0.6, and CF. Besides, we evaluate the myopic approaches, i.e., ZM and TM. We remark that, 

in our case study, the solution of the DT approach is equivalent to the ZM approach. The benchmark 

evaluation is made by measuring and comparing the performance solutions of these seven approaches. 

We employ metrics that measure the incurred costs (𝜑, 𝜓) and the reliability (%𝑆𝑆𝑆) associated with 

the solutions delivered by each approach. We use a Monte Carlo simulation to generate 10000 random 

realizations of the weekly demand per store’s department and CV of demand using a normal probability 

distribution truncated at zero. Then, for each approach and CV, we compute the total weekly cost (𝜑) 

and the weekly staff surplus/shortage cost (𝜓) related to each of the 10000 demand scenarios by using 

the multiskilling structures obtained in Subsection 6.1. After, the average costs, 𝜑̄ and 𝜓̄, are calculated. 

For each approach and CV, Table 5 presents in-sample results along with out-of-sample results. 

Columns 2 and 3 show the requirements of multiskilling (%𝑀𝐸, %𝑇𝑀 ) obtained in the in-sample 

results. Columns 4, 5, and 6 show the metrics related to the out-of-sample results. Column 4 indicates 

the percentage savings on the average total weekly cost of staff surplus/shortage (%𝑆𝑆𝑆 ); which 

represents a measure of reliability. Column 5 reports the average total weekly cost (𝜑̄). Finally, Column 

6 shows a metric that we call homogeneous group metric. This metric summarizes the results of an 

inferential analysis performed on the average total costs (𝜑̄) of the seven approaches. Following the 

Fisher's least significant difference (LSD) procedure, we construct 21 confidence intervals for the 

difference of the average total costs, as a result of the possible combinations between each pair of 

approaches (𝐶2
7 = 7!/2! (7 − 2)! = 21). The LSD procedure allows to detect significant difference 

between each pair of approaches. Considering a confidence level equal to 95%, the approaches with 

X’s in the same subcolumn do not present significant differences among them, whereas those that are 

not in the same subcolumn do present significant differences. Note that, approaches with X’s (in bold) 

in subcolumn “A” have the best performance (i.e., the most cost-effective approaches) in the face of 

uncertain demand. 

From Table 5, several aspects can be highlighted. First, the TSSO-ZT approach always delivers 

the solution with the lowest average total cost (i.e., 𝜑̄), whereas the ZM approach always delivers the 

solution with the highest average total cost. This result is expected given that, except for the TM 

approach, the TSSO-ZT approach has the highest conservatism level, and the ZM approach does not 

provide any protection for its solutions since %ME = %TM = 0%.  
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Table 5. Benchmarking performance between approaches for different CVs of demand. 

  In-sample metrics Out-of-sample metrics 

Approaches %ME %TM %𝑺𝑺𝑺 𝝋̄ (US$) 
Homogeneous groups 

A B C D 

CV = 5% 

TSSO-ZT 20 4 100 882 X       

RO-1 20 4 100 882 X       

CF 20 4 100 882 X       

TSSO-PT 20 4 100 882 X       

RO-0.6 20 4 100 882 X       

TM 100 100 100 1,026   X     

ZM (DT) 0 0 0 2,013     X   

CV = 10% 

TSSO-ZT 33 7 100 1,798 X       

TSSO-PT 27 5 100 1,806 X       

RO-1 27 5 99 1,813 X X     

CF 27 5 99 1,813 X X     

RO-0.6 23 5 97 1,859   X     

TM 100 100 100 1,937     X   

ZM (DT) 0 0 0 4,046       X 

CV = 20% 

TSSO-ZT 63 13 100 3,561 X       

RO-1 50 10 100 3,573 X       

TSSO-PT 40 8 98 3,649 X X     

CF 40 8 98 3,660 X X     

TM 100 100 100 3,692   X     

RO-0.6 37 7 94 3,811     X   

ZM (DT) 0 0 0 8,124       X 

CV = 30% 

TSSO-ZT 87 17 100 5,324 X       

RO-1 67 13 99 5,363 X       

CF 63 13 99 5,371 X       

TSSO-PT 60 12 99 5,413 X       

TM 100 100 100 5,445 X X     

RO-0.6 53 11 96 5,594   X     

ZM (DT) 0 0 0 12,154     X   

CV = 40% 

TSSO-ZT 100 20 100 7,190 X       

RO-1 90 18 99 7,237 X       

CF 87 17 99 7,238 X       

TM 100 100 100 7,297 X X     

TSSO-PT 73 15 98 7,344 X X     

RO-0.6 67 13 97 7,464   X     

ZM (DT) 0 0 0 16,104     X   

CV = 50% 

TSSO-ZT 100 20 99 9,309 X       

RO-1 100 20 99 9,326 X       

CF 100 20 99 9,326 X       

TSSO-PT 93 19 99 9,354 X       

TM 100 100 100 9,365 X       

RO-0.6 87 17 98 9,508 X       

ZM (DT) 0 0 0 20,170   X     

Second, for each CV, the metric %𝑆𝑆𝑆 allows us to assess the reliability and robustness of the 

solutions. As expected, the TM approach exhibits the highest possible reliability and robustness. That 

is, the TM approach reaches the maximum feasible reduction on the average total weekly cost of staff 

surplus/shortage (%𝑆𝑆𝑆 =100%), although it also needs the maximum investment in multiskilling 
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since %ME = %TM = 100%. Conversely, the ZM approach represents no investment in multiskilling, 

such that %ME = %TM = %𝑆𝑆𝑆= 0%. In addition, when the approaches TSSO-ZT, RO-1, CF, TSSO-

PT, and RO-0.6 are compared, we found that there are similar values of %𝑆𝑆𝑆  among these five 

approaches. In turn, the values of this metric were also very close to those reported for the TM approach. 

Third, for each CV, the homogeneous group metric indicates that TSSO-ZT, RO-1, CF, and TSSO-

PT always belong to the set of approaches with the lowest average total cost (see subcolumn A). In 

this group, there are not statistically significant differences from one approach to another, so these four 

approaches are the most cost-effective. Also, the RO-0.6 approach is shown as cost-effective only when 

CV=5% or CV=50%, i.e., the minimum and maximum values tested for the %CV. In turn, the TM 

approach is cost-effective only when the CV is high (≥30%). This result is interesting because it can 

reinforce the hypothesis described in the in-sample analysis, in which it was expressed that for very 

high demand variability levels, 2-chaining structures could not be enough to minimize the staff 

surplus/shortage costs. Therefore, it would be valuable to study two additional policies: (i) evaluate k-

chaining structures with 𝑘 ≥ 2; and (ii) consider multiskilling and staff size decisions simultaneously. 

Fourth, we carry out an analysis to provide understanding on how to select the most suitable 

approach(es) according to the balance between the conservatism (i.e., %ME reported in the in-sample 

analysis) and the reliability (i.e., %𝑆𝑆𝑆  reported in the out-of-sample analysis) associated with the 

solutions delivered by each approach. Figure 3 shows that as the CV of demand rises, the percentage 

of multiskilled workers (%ME) also increases for each approach. In addition, for each combination 

of %CV and approach, Figure 3 also shows the value of the %𝑆𝑆𝑆 metric. Note that, the TM and ZM 

(DT) approaches represent the upper and lower bound of the level of conservatism, respectively. In 

addition, it is interesting to note that, as indicated in Table 5 and Figure 3, even when a minimal training 

cost was assumed, the approaches TSSO-ZT, RO-1, CF, and TSSO-PT achieve between 98% and 100% 

of the possible benefits of total multiskilling but requiring much lower investments. Besides, the RO-

0.6 approach achieves savings of at least a 94% on the average total weekly cost of staff 

surplus/shortage (i.e., %𝑆𝑆𝑆 ≥ 94%,  CV), even with a lower multiskilling investment than the one 

required by the other four optimization approaches under uncertainty. 

Finally, from Figure 3, we order the approaches according to the level of conservatism as reported 

in the solutions: (1) TM (the most conservative), (2) TSSO-ZT, (3) RO-1, (4) CF, (5) TSSO-PT, (6) 

RO-0.6, and (7) ZM (DT) (the least conservative). We remark that the TSSO-ZT, TSSO-PT, and CF 

approaches assume complete knowledge of the distributional information, whereas the RO-1 and RO-

0.6 approaches do not require this full knowledge of the stochastic parameters. In addition, the TSSO 

approach can simultaneously answer the tactical questions (i), (ii), and (iii), and not sequentially as 

RO and CF approaches do. Thus, from the results, we observe that the suitable approach under demand 

uncertainty will depend on the preferred solution method (simultaneous or sequential), the 

decision-maker’s knowledge on the probability distribution, and his/her degree of risk-aversion 

over the decision. 
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Figure 3. Multiskilling levels and reliability by CV and approach. 

7. Concluding remarks 

This article studies the weekly multiskilled personnel assignment problem (MPAP) considering 

2-chaining and uncertain demand. The solution of the MPAP generates staff training plans structured 

through closed chains (CLCs, and CSCs) and where the workers could be trained for only one 

additional task type. The contribution of this paper is twofold. Firstly, we developed a TSSO approach 

to calculate the multiskilling requirements that minimize the training costs and the expected costs of 

staff surplus/shortage. Secondly, we evaluated and compared the performance of the solutions 

generated by the TSSO approach with the solutions of alternative optimization approaches under 

uncertainty (i.e., RO and CF), the solution of deterministic (DT) approach, and the solutions of myopic 

approaches (i.e., ZM and TM). 

The methodology was tested for a case study associated with a retail store operating in Chile. 

Through in-sample and out-of-sample analyses employing real and simulated data, we evaluated and 

compared the different approaches by testing six representative levels of staff demand per department. 

On the in-sample analysis, we evaluated the performance of the optimization approaches under 

uncertainty TSSO, RO, and CF, such that the findings can be grouped under the following two aspects. 

First, given the reported computational times, the RO and CF approaches can be useful for larger 

problems; more store departments and workers. Second, the obtained results under the TSSO approach 
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and its comparison with the other approaches allow us to incorporate new guidelines to design practical 

and effective policies that answer the following three tactical questions: (i) How many multiskilled 

workers are needed per department? (ii) In which second department should be trained each of the 

workers identified as multiskilled? (iii) How many CLCs and/or CSCs are needed, and which store 

departments should belong to each of the chains? We remark that, unlike RO and CF approaches, the 

TSSO approach simultaneously answers the tactical questions (i), (ii), and (iii). 

Regarding the first question, the results of the TSSO, RO, and CF approaches showed that, even 

when the cost of training was considered almost free, total multiskilling is impractical and is not 

required to achieve the full possible benefits associated with multiskilling. In addition, our results 

(intuitively) showed that the required number of multiskilled workers rises as the department size and 

the level of demand variability grow. Finally, we found a less intuitive result when the solutions to the 

optimization approaches under uncertainty were compared. The solutions of the TSSO approach where 

the demand parameters follow a zero-truncated normal distribution (i.e., TSSO-ZT) were more 

conservative than the solutions of the RO approach with the maximum uncertainty budget (i.e., worst-

case scenario). Note that, the higher are the required multiskilling levels associated with an approach, 

the higher is its level of conservatism. 

Regarding the second and third questions, we found that the most profitable staff is one where 

there is a mix of single-skilled and multiskilled workers. This result is observed with all optimization 

approaches under uncertainty. In turn, and in a novel way, we also found that under a TSSO approach, 

various CSCs, each one connecting a significant number of departments, perform as well as a 

combination of CLCs and CSCs. Finally, under the RO and CF approaches, it seeks to maximize 

flexibility in the training plans, that is, avoiding that the multiskilled workers belonging to a given 

department were trained in the same additional departments. However, under the TSSO approach, we 

discovered that closed chains connecting pairs of departments with large demands more than once also 

exhibited excellent performance. 

On the out-of-sample analysis, we evaluated the performance of the optimization approaches 

under uncertainty TSSO, RO, and CF, the deterministic approach DT, and the two myopic approaches 

TM and ZM. The findings provided understanding on how to select the most suitable approach(es) 

according to the balance between the conservatism and the reliability associated with the solutions 

delivered by each approach. Particularly, it was shown that the TSSO-ZT approach always delivers the 

solution with the lowest average total cost. However, the main finding was that TSSO-ZT, RO-1, CF, 

and TSSO-PT always belong to the set of approaches with the lowest average total cost. That is, in this 

group, there are not statistical differences from one approach to another, so these approaches are the 

most cost-effective. This finding showed that there is not only one approach to effectively solve the 

MPAP with 2-chaining under uncertain demand. Finally, considering the overall results, we concluded 

that the choice of the most suitable approach would depend on the preferred solution method (i.e., 

simultaneous or sequential methodology), the available information of the distribution of probability 

associated with the uncertain demand, and the level of risk tolerance of the store manager. 

As for future research, the methodology could incorporate new additional features, or some 

assumptions could be relaxed. (1) Assess k-chaining structures with 𝑘 ≥ 2 where a number of workers 

are trained to perform in two or more departments. (2) Solve simultaneously a staffing and personnel 

assignment problem considering closed-chained multiskilling structures. (3) Solve the MPAP under 

uncertain demand by a distributionally robust optimization, which is a suitable approach for ambiguity-

averse decision-makers. 
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