Research article

A Bio-inspired trajectory planning method for robotic manipulators based on improved bacteria foraging optimization algorithm and tau theory


  • Received: 28 August 2021 Accepted: 01 November 2021 Published: 18 November 2021
  • In this paper, a novel bio-inspired trajectory planning method is proposed for robotic systems based on an improved bacteria foraging optimization algorithm (IBFOA) and an improved intrinsic Tau jerk (named Tau-J*) guidance strategy. Besides, the adaptive factor and elite-preservation strategy are employed to facilitate the IBFOA, and an improved Tau-J* with higher-order of intrinsic guidance movement is used to avoid the nonzero initial and final jerk, so as to overcome the computational burden and unsmooth trajectory problems existing in the optimization algorithm and traditional interpolation algorithm. The IBFOA is utilized to determine a small set of optimal control points, and Tau-J* is then invoked to generate smooth trajectories between the control points. Finally, the results of simulation tests demonstrate the eminent stability, optimality, and rapidity capability of the proposed bio-inspired trajectory planning method.

    Citation: Zhiqiang Wang, Jinzhu Peng, Shuai Ding. A Bio-inspired trajectory planning method for robotic manipulators based on improved bacteria foraging optimization algorithm and tau theory[J]. Mathematical Biosciences and Engineering, 2022, 19(1): 643-662. doi: 10.3934/mbe.2022029

    Related Papers:

  • In this paper, a novel bio-inspired trajectory planning method is proposed for robotic systems based on an improved bacteria foraging optimization algorithm (IBFOA) and an improved intrinsic Tau jerk (named Tau-J*) guidance strategy. Besides, the adaptive factor and elite-preservation strategy are employed to facilitate the IBFOA, and an improved Tau-J* with higher-order of intrinsic guidance movement is used to avoid the nonzero initial and final jerk, so as to overcome the computational burden and unsmooth trajectory problems existing in the optimization algorithm and traditional interpolation algorithm. The IBFOA is utilized to determine a small set of optimal control points, and Tau-J* is then invoked to generate smooth trajectories between the control points. Finally, the results of simulation tests demonstrate the eminent stability, optimality, and rapidity capability of the proposed bio-inspired trajectory planning method.



    加载中


    [1] O. Khatib, Real-time obstacle avoidance for manipulators and mobile robots, in Autonomous Robot Vehicles, Springer, (1986), 396–404.
    [2] R. Rodrigues, M. Basiri, A. Aguiar, P. Miraldo, Low-level active visual navigation: Increasing robustness of vision-based localization using potential fields, IEEE Robot. Autom. Lett., 3 (2018), 2079–2086. doi: 10.1109/LRA.2018.2809628. doi: 10.1109/LRA.2018.2809628
    [3] L. Kavraki, P. Svestka, J. Latombe, M. Overmars, Probabilistic roadmaps for path planning in high-dimensional configuration spaces, IEEE Trans. Robot. Automat., 12 (1996), 566–580. doi: 10.1109/70.508439. doi: 10.1109/70.508439
    [4] S. LaValle, Rapidly-exploring random trees: A new tool for path planning, Computer Sci. Dept., 1 (1998), 1–4.
    [5] D. Roy, Study on the configuration space based algorithmic path planning of industrial robots in an unstructured congested three-dimensional space: An approach using visibility map, J. Intell. Robot. Syst., 43 (2005), 111–145. doi: 10.1007/s10846-005-9011-7. doi: 10.1007/s10846-005-9011-7
    [6] J. López, P. Sanchez-Vilariño, M. D. Cacho, E. L. Guillén, Obstacle avoidance in dynamic environments based on velocity space optimization, Robot. Auton. Syst., 131 (2020), 1–21. doi: 10.1016/j.robot.2020.103569. doi: 10.1016/j.robot.2020.103569
    [7] B. Morrel, R. Thakker, G. Merewether, R. Reid, M. Rigter, et al., Comparison of trajectory optimization algorithms for high-speed quadrotor flight near obstacles, IEEE Robot. Autom. Lett., 3 (2018), 4399–4406. doi: 10.1109/LRA.2018.2868866. doi: 10.1109/LRA.2018.2868866
    [8] C. R. Gil, H. Calvo, H. Sossa, Learning an efficient gait cycle of a biped robot based on reinforcement learning and artificial neural networks, Appl. Sci., 9 (2019), 1–22. doi: 10.3390/app9030502. doi: 10.3390/app9030502
    [9] E. López-Lozada, E. Rubio-Espino, J. H. Sossa-Azuela, V. H. Ponce-Ponce, Reactive navigation under a fuzzy rules-based scheme and reinforcement learning for mobile robots, PeerJ Comput. Sci., 7 (2021), 1–25. doi: 10.7717/peerj-cs.556. doi: 10.7717/peerj-cs.556
    [10] S. Fong, S. Deb, A. Chaudhary, A review of metaheuristics in robotics, Comput. Electr. Eng., 43 (2015), 278–291. doi: 10.1016/j.compeleceng.2015.01.009. doi: 10.1016/j.compeleceng.2015.01.009
    [11] A. K. Kashyap, D. R. Parhi, Multi-objective trajectory planning of humanoid robot using hybrid controller for multi-target problem in complex terrain, Expert. Syst. Appl., 179 (2021), 1–23. doi: 10.1016/j.eswa.2021.115110. doi: 10.1016/j.eswa.2021.115110
    [12] J. Pierezan, R. Z. Freire, L. Weihmann, G. Reynoso-Meza, L. D. Coelho, Static force capability optimization of humanoids robots based on modified self-adaptive differential evolution, Comput. Oper. Res., 84 (2017), 205–215. doi: 10.1016/j.cor.2016.10.011. doi: 10.1016/j.cor.2016.10.011
    [13] A. K. Kashyap, D. R. Parhi, Particle swarm optimization aided pid gait controller design for a humanoid robot, ISA Trans., 114 (2021), 306–330. doi: 10.1016/j.isatra.2020.12.033. doi: 10.1016/j.isatra.2020.12.033
    [14] D. Lee, A theory of visual control of braking based on information about time-to-collision, Perception, 5 (1976), 437–459. doi: 10.1068/p050437. doi: 10.1068/p050437
    [15] D. Lee, M. N. O. Davies, P. R. Green, F. R. Weel, Visual control of velocity of approach by pigeons when landing, J. Exp. Biol., 180 (1993), 85–104. doi: 10.1242/jeb.180.1.85. doi: 10.1242/jeb.180.1.85
    [16] D. Lee, General tau theory: evolution to date, Perception, 38 (2009), 837–858.
    [17] Z. Zhang, S. Zhang, P. Xie, O. Ma, Bioinspired 4D trajectory generation for a UAS rapid point-to-point movement, J. Bionic. Eng., 11 (2014), 72–81. doi: 10.1016/S1672-6529(14)60021-4. doi: 10.1016/S1672-6529(14)60021-4
    [18] S. Zhang, Z. Zhang., J. Qian, Bio-inspired trajectory planning for robot catching movements based on tau theory, J. Mech. Eng., 50 (2014), 1–8.
    [19] Z. Yang, Z. Fang, P. Li, Bio-inspired collision-free 4D trajectory generation for UAVs using tau strategy, J. Bionic Eng., 13 (2016), 84–97. doi: 10.1016/S1672-6529(14)60162-1. doi: 10.1016/S1672-6529(14)60162-1
    [20] Z. Yang, Z. Fang, P. Li, Decentralized 4D trajectory generation for UAVs based on improved intrinsic tau guidance strategy, Int. J. Adv. Robot Sys., 13 (2016), 1–13. doi: 10.5772/63431. doi: 10.5772/63431
    [21] Z. Zhang, X. Yang, Bio-inspired motion planning for reaching movement of a manipulator based on intrinsic tau jerk guidance, Adv. Manuf., 7 (2019), 315–325. doi: 10.1007/s40436-019-00268-z. doi: 10.1007/s40436-019-00268-z
    [22] Z. Zhang, R. He, K. Yang, A bioinspired path planning approach for mobile robots based on improved sparrow search algorithm, Adv. Manuf., 1 (2021), 1–17. doi: 10.1007/s40436-021-00366-x. doi: 10.1007/s40436-021-00366-x
    [23] K. Abainia, Y. M. B. Ali, Bio-inspired approach for inverse kinematics of 6-dof robot manipulator with obstacle avoidance, in 2018 3rd International Conference on Pattern Analysis and Intelligent Systems (PAIS), (2018), 1–8. doi: 10.1109/PAIS.2018.8598489.
    [24] Z. Feng, L. Chen, C. Chen, M. Liu, M. Yuan, Motion planning for redundant robotic manipulators using a novel multi-group particle swarm optimization, Evol. Intell., 13 (2020), 677–686. doi: 10.1007/s12065-020-00382-z. doi: 10.1007/s12065-020-00382-z
    [25] S. Perez-Carabaza, E. Besada-Portas, J. A. Lopez-Orozco, M. Jesus, Ant colony optimization for multi-uav minimum time search in uncertain domains, Appl. Soft Comput., 62 (2018), 789–806. doi: 10.1016/j.asoc.2017.09.009. doi: 10.1016/j.asoc.2017.09.009
    [26] J. Huang, P. Hu, K. Wu, M. Zeng, Optimal time-jerk trajectory planning for industrial robots, Mech. Mach. Theory, 121 (2018), 530–544. doi: 10.1016/j.mechmachtheory.2017.11.006. doi: 10.1016/j.mechmachtheory.2017.11.006
    [27] H. V. H. Ayala, L. D. S. Coelho, Tuning of pid controller based on a multiobjective genetic algorithm applied to a robotic manipulator, Expert Syst. Appl., 39 (2012), 8968–8974. doi: 10.1016/j.eswa.2012.02.027. doi: 10.1016/j.eswa.2012.02.027
    [28] S. Bureerat, N. Pholdee, T. Radpukdee, P. Jaroenapibal, Self-adaptive MRPBIL-DE for 6D robot multi-objective trajectory planning, Expert Syst. Appl., 136 (2019), 133–144. doi: 10.1016/j.eswa.2019.06.033. doi: 10.1016/j.eswa.2019.06.033
    [29] K. Passino, Biomimicry of bacterial foraging for distributed optimization and control, IEEE Control Syst. Mag., 22 (2002), 52–67. doi: 10.1109/MCS.2002.1004010. doi: 10.1109/MCS.2002.1004010
    [30] S. Dasgupta, S. Das, A. Abraham, A. Biswas, Adaptive computational chemotaxis in bacterial foraging optimization: An analysis, IEEE Trans. Evolut. Comput., 13 (2009), 919–941. doi: 10.1109/TEVC.2009.2021982. doi: 10.1109/TEVC.2009.2021982
    [31] H. Chen, L. Wang, J. Di, S. Ping, Bacterial foraging optimization based on self-adaptive chemotaxis strategy, Comput. Intel. Neurosc., 1 (2020), 1–15. doi: 10.1155/2020/2630104. doi: 10.1155/2020/2630104
    [32] W. Cao, Y. Tian, M. Huang, Y. Luo, Adaptive bacterial foraging optimization based on roulette strategy, in International Conference on Swarm Intelligence (ICSI), (2020). 1–8. doi: 10.1007/978-3-030-53956-6_27.
    [33] E. Ali, S. Abd-Elazim, Bacteria foraging optimization algorithm based load frequency controller for interconnected power system, Int. J. Elec. Power, 33 (2011), 633–638. doi: 10.1016/j.ijepes.2010.12.022. doi: 10.1016/j.ijepes.2010.12.022
    [34] S. Abd-Elazim, E. Ali, A hybrid particle swarm optimization and bacterial foraging for optimal power system stabilizers design, Int. J. Elec. Power, 46 (2013), 334–341. doi: 10.1016/j.ijepes.2012.10.047. doi: 10.1016/j.ijepes.2012.10.047
    [35] E. Ali, S. Abd-Elazim, BFOA based design of PID controller for two area load frequency control with nonlinearities, Int. J. Elec. Power, 51 (2013), 224–231. doi: 10.1016/j.ijepes.2013.02.030. doi: 10.1016/j.ijepes.2013.02.030
    [36] S. Panda, B. Mohanty, P. Hota, Hybrid BFOA–PSO algorithm for automatic generation control of linear and nonlinear interconnected power systems, Appl. Soft Comput., 13 (2013), 4718–4730. doi: 10.1016/j.asoc.2013.07.021. doi: 10.1016/j.asoc.2013.07.021
    [37] B. Huynh, S. Su, Y. Kuo, Vision/position hybrid control for a hexa robot using bacterial foraging optimization in real-time pose adjustment, Symmetry, 12 (2020), 1–20. doi: 10.3390/sym12040564. doi: 10.3390/sym12040564
    [38] Y. Long, Y. Su, B. Shi, Z. Zuo, J. Li, A multi-subpopulation bacterial foraging optimisation algorithm with deletion and immigration strategies for unmanned surface vehicle path planning, Intel. Serv. Robot., 14 (2021), 303–312. doi: 10.1007/s11370-021-00361-y. doi: 10.1007/s11370-021-00361-y
    [39] Y. Guan, K. Yokoi, O. Stasse, A. Kheddar, On robotic trajectory planning using polynomial interpolations, in 2005 IEEE International Conference on Robotics and Biomimetics - ROBIO, (2005), 111–116. doi: 10.1109/ROBIO.2005.246411.
    [40] C. Lin, P. Chang, J. Luh, Formulation and optimization of cubic polynomial joint trajectories for industrial robots, IEEE Trans. Automat. Control, 28 (1983), 1066–1074. doi: 10.1109/TAC.1983.1103181. doi: 10.1109/TAC.1983.1103181
    [41] S. Macfarlane, E. Croft, Design of jerk bounded trajectories for online industrial robot applications, in Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (ICRA), (2001), 979–984. doi: 10.1109/ROBOT.2001.932677.
    [42] J. Carrasco, S. García, M. Rueda, S. Das, F. Herrera, Recent trends in the use of statistical tests for comparing swarm and evolutionary computing algorithms: practical guidelines and a critical review, Swarm Evol. Comput., 54 (2020), 1–20. doi: 10.1016/j.swevo.2020.100665. doi: 10.1016/j.swevo.2020.100665
    [43] J. Derrac, S. García, S. Hui, P. N. Suganthan, F. Herrera, Analyzing convergence performance of evolutionary algorithms: A statistical approach, Inf. Sci., 289 (2014), 41–58. doi: 10.1016/j.ins.2014.06.009. doi: 10.1016/j.ins.2014.06.009
    [44] J. Derrac, S. García, D. Molina, F. Herrera, A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms, Swarm Evol. Comput., 1 (2011), 3–18. doi: 10.1016/j.swevo.2011.02.002. doi: 10.1016/j.swevo.2011.02.002
    [45] S. García, D. Molina, M. Lozano, F. Herrera, A study on the use of non-parametric tests for analyzing the evolutionary algorithms' behaviour: a case study on the CEC'2005 special session on real parameter optimization, J. Heuristics, 15 (2009), 617–644. doi: 10.1007/s10732-008-9080-4. doi: 10.1007/s10732-008-9080-4
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2624) PDF downloads(116) Cited by(9)

Article outline

Figures and Tables

Figures(8)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog