Steady state | Global stability conditions |
Ð0 | ℜ1≤1 and ℜ2≤1 |
Ð1 | ℜ1>1, ℜ2/ℜ1≤1 and ℜ3≤1 |
Ð2 | ℜ2>1, ℜ1/ℜ2≤1 and ℜ4≤1 |
Ð3 | ℜ3>1 and ℜ5≤1 |
Ð4 | ℜ4>1 and ℜ6≤1 |
Ð5 | ℜ5>1, ℜ8≤1 and ℜ1/ℜ2>1 |
Ð6 | ℜ6>1, ℜ7≤1 and ℜ2/ℜ1>1 |
Ð7 | ℜ7>1 and ℜ8>1 |
In the literature, several HTLV-I and HIV single infections models with spatial dependence have been developed and analyzed. However, modeling HTLV/HIV dual infection with diffusion has not been studied. In this work we derive and investigate a PDE model that describes the dynamics of HTLV/HIV dual infection taking into account the mobility of viruses and cells. The model includes the effect of Cytotoxic T lymphocytes (CTLs) immunity. Although HTLV-I and HIV primarily target the same host, CD4+T cells, via infected-to-cell (ITC) contact, however the HIV can also be transmitted through free-to-cell (FTC) contact. Moreover, HTLV-I has a vertical transmission through mitosis of active HTLV-infected cells. The well-posedness of solutions, including the existence of global solutions and the boundedness, is justified. We derive eight threshold parameters which govern the existence and stability of the eight steady states of the model. We study the global stability of all steady states based on the construction of suitable Lyapunov functions and usage of Lyapunov-LaSalle asymptotic stability theorem. Lastly, numerical simulations are carried out in order to verify the validity of our theoretical results.
Citation: A. M. Elaiw, N. H. AlShamrani. Analysis of an HTLV/HIV dual infection model with diffusion[J]. Mathematical Biosciences and Engineering, 2021, 18(6): 9430-9473. doi: 10.3934/mbe.2021464
[1] | A. M. Elaiw, N. H. AlShamrani . Stability of HTLV/HIV dual infection model with mitosis and latency. Mathematical Biosciences and Engineering, 2021, 18(2): 1077-1120. doi: 10.3934/mbe.2021059 |
[2] | Xuejuan Lu, Lulu Hui, Shengqiang Liu, Jia Li . A mathematical model of HTLV-I infection with two time delays. Mathematical Biosciences and Engineering, 2015, 12(3): 431-449. doi: 10.3934/mbe.2015.12.431 |
[3] | Ting Guo, Zhipeng Qiu . The effects of CTL immune response on HIV infection model with potent therapy, latently infected cells and cell-to-cell viral transmission. Mathematical Biosciences and Engineering, 2019, 16(6): 6822-6841. doi: 10.3934/mbe.2019341 |
[4] | A. M. Elaiw, A. S. Shflot, A. D. Hobiny . Stability analysis of general delayed HTLV-I dynamics model with mitosis and CTL immunity. Mathematical Biosciences and Engineering, 2022, 19(12): 12693-12729. doi: 10.3934/mbe.2022593 |
[5] | Xiaohong Tian, Rui Xu, Jiazhe Lin . Mathematical analysis of an age-structured HIV-1 infection model with CTL immune response. Mathematical Biosciences and Engineering, 2019, 16(6): 7850-7882. doi: 10.3934/mbe.2019395 |
[6] | Cameron Browne . Immune response in virus model structured by cell infection-age. Mathematical Biosciences and Engineering, 2016, 13(5): 887-909. doi: 10.3934/mbe.2016022 |
[7] | Jiawei Deng, Ping Jiang, Hongying Shu . Viral infection dynamics with mitosis, intracellular delays and immune response. Mathematical Biosciences and Engineering, 2023, 20(2): 2937-2963. doi: 10.3934/mbe.2023139 |
[8] | Shingo Iwami, Shinji Nakaoka, Yasuhiro Takeuchi . Mathematical analysis of a HIV model with frequency dependence and viral diversity. Mathematical Biosciences and Engineering, 2008, 5(3): 457-476. doi: 10.3934/mbe.2008.5.457 |
[9] | Yan Wang, Tingting Zhao, Jun Liu . Viral dynamics of an HIV stochastic model with cell-to-cell infection, CTL immune response and distributed delays. Mathematical Biosciences and Engineering, 2019, 16(6): 7126-7154. doi: 10.3934/mbe.2019358 |
[10] | Jian Ren, Rui Xu, Liangchen Li . Global stability of an HIV infection model with saturated CTL immune response and intracellular delay. Mathematical Biosciences and Engineering, 2021, 18(1): 57-68. doi: 10.3934/mbe.2021003 |
In the literature, several HTLV-I and HIV single infections models with spatial dependence have been developed and analyzed. However, modeling HTLV/HIV dual infection with diffusion has not been studied. In this work we derive and investigate a PDE model that describes the dynamics of HTLV/HIV dual infection taking into account the mobility of viruses and cells. The model includes the effect of Cytotoxic T lymphocytes (CTLs) immunity. Although HTLV-I and HIV primarily target the same host, CD4+T cells, via infected-to-cell (ITC) contact, however the HIV can also be transmitted through free-to-cell (FTC) contact. Moreover, HTLV-I has a vertical transmission through mitosis of active HTLV-infected cells. The well-posedness of solutions, including the existence of global solutions and the boundedness, is justified. We derive eight threshold parameters which govern the existence and stability of the eight steady states of the model. We study the global stability of all steady states based on the construction of suitable Lyapunov functions and usage of Lyapunov-LaSalle asymptotic stability theorem. Lastly, numerical simulations are carried out in order to verify the validity of our theoretical results.
Since past decades humanity has been under attack by many viruses such as hepatitis C virus (HCV), human immunodeficiency virus (HIV), hepatitis B virus (HBV), human T-lymphotropic virus type Ⅰ (HTLV-I), dengue virus and lastly coronavirus. Both HTLV-I and HIV have similar ways of transmission from infected individual to uninfected one. HTLV-I and HIV primarily target the same host, CD4+T cells. HTLV-I can lead to adult T-cell leukemia (ATL) and HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP), while HIV causes acquired immunodeficiency syndrome (AIDS). Viral infection models have become an indispensable tool to biological researchers, where they can improve the understanding of a within-host virus dynamics and help in predicting the effect of antiviral drug efficacy on disease's progression [1]. In 1996, Nowak and Bangham [2] have presented an important HIV dynamics model. After that, this model has been extended in many works (see e.g., [3,4,5,6,7,8,9,10,11,13,14,15,16,17]). All of the above mentioned models are given by ordinary or delay differential equations under the assumption that the cells and viruses are well mixed. Wang and Wang [18] have extended the model presented in [2] by incorporating spatial dependence as:
{∂S(x,t)∂t=ρ−αS(x,t)−ϰ1S(x,t)V(x,t),∂I(x,t)∂t=ϰ1S(x,t)V(x,t)−aI(x,t),∂V(x,t)∂t=dVΔV(x,t)+bI(x,t)−εV(x,t), | (1.1) |
where S(x,t), I(x,t) and V(x,t) are the concentrations of uninfected cells, active infected cells and free virus particles at position x=(x1,x2,...,xm) and time t. The parameter ρ represents the creation rate of the uninfected cells. The free virus particles infect the uninfected cells via free-to-cell (FTC) transmission at rate ϰ1SV. The infected cells produce viruses at rate bI. The uninfected cells, active infected cells and free virus particles are die with rates αS, aI and εV, respectively. Here, dV is the diffusion coefficient and Δ is the Laplacian operator. In [19], Kang et al. have studied a four-dimensional diffusive viral infection model with Crowley-Martin infection rate. Model (1.1) has been extended by including different factors; (i) time delay [19,20], (ii) different forms of the incidence rate [19,20], (iii) Cytotoxic T lymphocytes (CTLs) immune response [19], and (iv) both CTL and humoral immune responses [21].
In model (1.1), it has been assumed that the virus can only infect the target cell via FTC contact. In case of HIV, the infected cell can infect the target cell via direct infected-to-cell (ITC) contact [22]. Wang et al. [23] have extended model (1.1) by incorporating ITC transmission as:
{∂S(x,t)∂t=ρ−αS(x,t)−ϰ1S(x,t)V(x,t)−ϰ2S(x,t)I(x,t),∂I(x,t)∂t=ϰ1S(x,t)V(x,t)+ϰ2S(x,t)I(x,t)−aI(x,t),∂V(x,t)∂t=dVΔV(x,t)+bI(x,t)−εV(x,t), | (1.2) |
where the term ϰ2SI represents the ITC incidence rate. This model has been generalized in [24] by including time delay and general FTC incidence rate function in the form f(S,V). Model (1.2) assumes that the virus particles can move based on Fickian diffusion, while the cells can not. In [25,26,27,28,29,30,31], it has been assumed that the viruses, uninfected cells, infected cells and immune cells can diffuse.
Modeling and analysis of HTLV-I single infection have been addressed in several works [32,33,34,35,36]. The effect of CTLs on HTLV-I dynamics has been addressed in many works (see e.g. [37,38,39,40,41,42,43]). Lim and Maini [37] have proposed an HTLV-I dynamics model with mitotic division of active HTLV-infected cells and CTL immunity. Both mitotic division of active HTLV-infected cells and CTL immune response have been included in the HTLV-I dynamics in many papers (see e.g., [37,44,45]). All of these HTLV dynamics models did not include the diffusion of the viruses and cells. Wang and Ma [46] have introduced a diffusive HTLV-I infection model with mitotic division of active infected cells and CTL immune response:
{∂S(x,t)∂t=dSΔS(x,t)+ρ−αS(x,t)−ϰ3S(x,t)Y(x,t),∂E(x,t)∂t=dEΔE(x,t)+φϰ3S(x,t)Y(x,t)+r∗Y(x,t)−(ψ+ω)E(x,t),∂Y(x,t)∂t=dYΔY(x,t)+ψE(x,t)−δ∗Y(x,t)−μ2CY(x,t)Y(x,t),∂CY(x,t)∂t=dCYΔCY(x,t)+σ2Y(x,t)−π2CY(x,t), |
where E(x,t), Y(x,t) and CY(x,t) are the concentrations of latent HTLV-infected cells, active HTLV-infected cells and HTLV-specific CTLs at position x and time t, respectively. The uninfected CD4+T cells become HTLV-infected cells due to ITC contact at rate ϰ3SY (horizontal transmission). The fraction φ∈(0,1) represents the probability of new HTLV infections via horizontal transmission could be enter a latent period. The term r∗Y (vertical transmission) represents the rate at which active HTLV-infected cells become latent. The terms ωE and δ∗Y denote the death rates of the latent and active HTLV-infected cells, respectively. The latent HTLV-infected cells are activated with rate ψE. The active HTLV-infected cells are killed by their specific CTLs at rate μ2CYY. The linear term σ2Y represents the expansion rate of HTLV-specific CTLs. The HTLV-specific CTLs decay at rate π2CY.
During the last decades HTLV-I and HIV dual infection has been extensively reported. It has been discovered that the simultaneous infection by the two viruses affects the pathogenic development and influences the outcomes for associated chronic diseases [47]. In fact, concurrent infections with HTLV-I and HIV have occurred frequently in areas where peoples living at high risk activities such as needle injection sharing and unprotected sexual relationships. In addition, HTLV/HIV dual infection have documented in specific geographic regions where both retroviruses become endemic [48], and among those who belonged to a specific ethnic as well. For instance, the dual infection rates in peoples living in some parts of Brazil have reached 16% of HIV-infected patients [49]. In a recent work, it has been estimated that the HIV single infected patients are more exposure to be dually infected with HTLV-I at a higher rate initiating from 100 to 500 times in comparison to the uninfected peoples [50]. Moreover, some seroepidemiologic studies have reported that HTLV-infected patients are at risk to have a concurrent infection with HIV, and vice versa compared to those who are infection-free from the general population [48]. HTLV-I and HIV are mainly attack the CD4+T cells and lead to immune dysfunctional as well, however, they also conflict no doubt with respect to the etiology of their pathogenic and clinical outcomes [51]. HTLV-I and HIV dual infection appears to have an overlap on the course of associated clinical outcomes with both viruses [48]. Many researchers have reported that HIV infected individuals who are possibly infected with HTLV-I simultaneously can potentially associated with clinical progression to AIDS. In contrast, HIV can modify HTLV-I expression in dual infected patients which leads them to a higher risk of developing HTLV-I related diseases such as TSP/HAM and ATL [48,50].
While many efforts have been made to investigate mathematical modeling and analysis of both HTLV-I and HIV single infection, almost none have focused on the modeling of HTLV/HIV dual infection dynamics. The only exceptions are the very recent works presented in [52,53], however, in these papers the diffusion of the viruses and cells has been neglected. Therefore, the contributions of the present paper can be stated as follows: (i) formulate an HTLV/HIV dual infection model taking into account the mobility of cells and viruses, (ii) study the basic properties of the proposed model, (iii) calculate all possible steady states and derive their existence conditions, (iv) study the global stability of all steady states using Lyapunov-LaSalle asymptotic stability theorem, (v) perform some numerical simulations to illustrate the theoretical results.
Since an individual can be infected with two or more viruses in the same time, our model may be helpful to study different dual infections such as Coronavirus/Influenza, HIV/HCV, HIV/HBV and HIV/Malaria.
We set up a partial differential equation model that describes the change of concentrations of eight compartments with respect to position x and time t; uninfected CD4+T cells S(x,t), latent HIV-infected cells L(x,t), active HIV-infected cells I(x,t), latent HTLV-infected cells E(x,t), active HTLV-infected cells Y(x,t), free HIV particles V(x,t), HIV-specific CTLs CI(x,t), and HTLV-specific CTLs CY(x,t). We consider the following factors:
(F1) The uninfected CD4+T cells are the main target of each of HTLV-I and HIV;
(F2) There exist latent HIV-infected and HTLV-infected cells;
(F3) Bilinear specific CTL immune response for both HTLV-I and HIV;
(F4) The HIV can spread when an uninfected CD4+T cell is contacted with free HIV particle (FTC infection) or active HIV-infected cell (ITC infection);
(F5) HTLV-I can be transmitted via two routes, (i) horizontal transmission via direct ITC touch via virological synapse, and (ii) vertical transmission by mitotic division of active HTLV-infected cells.
(F6) Spatial diffusion for all compartments.
Taking into account factors (F1)-(F6) we propose the following PDEs model:
{∂S(x,t)∂t=dSΔS(x,t)+ρ−αS(x,t)−ϰ1S(x,t)V(x,t)−ϰ2S(x,t)I(x,t)−ϰ3S(x,t)Y(x,t),∂L(x,t)∂t=dLΔL(x,t)+(1−β)S(x,t)[ϰ1V(x,t)+ϰ2I(x,t)]−(λ+γ)L(x,t),∂I(x,t)∂t=dIΔI(x,t)+βS(x,t)[ϰ1V(x,t)+ϰ2I(x,t)]+λL(x,t)−aI(x,t)−μ1CI(x,t)I(x,t),∂E(x,t)∂t=dEΔE(x,t)+φϰ3S(x,t)Y(x,t)+κr∗Y(x,t)−(ψ+ω)E(x,t),∂Y(x,t)∂t=dYΔY(x,t)+ψE(x,t)+(1−κ)r∗Y(x,t)−δ∗Y(x,t)−μ2CY(x,t)Y(x,t),∂V(x,t)∂t=dVΔV(x,t)+bI(x,t)−εV(x,t),∂CI(x,t)∂t=dCIΔCI(x,t)+σ1CI(x,t)I(x,t)−π1CI(x,t),∂CY(x,t)∂t=dCYΔCY(x,t)+σ2CY(x,t)Y(x,t)−π2CY(x,t), | (2.1) |
where x∈Γ, t>0. A fraction β∈(0,1) of new HIV-infected cells will be active, and the remaining part 1−β will be latent. Latent HIV-infected cells are transmitted to be active at rate λL and die at rate γL. The term μ1CII is the killing rate of active HIV-infected cells due to their specific immunity. The term κr∗Y, κ∈(0,1) represents the rate active HTLV-infected cells that transmit to latent HTLV-infected cells and get-away from the immune system [45]. The expansion rate for HIV-specific CTLs and HTLV-specific CTLs are represented by σ1CII and σ2CYY, respectively. The HIV-specific CTLs decay at rate π1CI. All remaining parameters have the same biological meaning as explained in Section 1. The spatial domain Γ⊂Rm, m≥1 is connected and bounded with a smooth boundary ∂Γ, while dU is the diffusion coefficient where U∈{S,L,I,E,Y,V,CI,CY}. The initial conditions are given by
S(x,0)=G1(x),L(x,0)=G2(x),I(x,0)=G3(x),E(x,0)=G4(x),Y(x,0)=G5(x),V(x,0)=G6(x),CI(x,0)=G7(x),CY(x,0)=G8(x),x∈ˉΓ, | (2.2) |
where Gi(x), i=1,...,8, are non-negative and continuous functions. In addition, we take the following homogeneous Neumann boundary conditions:
∂S∂→V=∂L∂→V=∂I∂→V=∂E∂→V=∂Y∂→V=∂V∂→V=∂CI∂→V=∂CY∂→V=0,t>0,x∈∂Γ, | (2.3) |
where ∂∂→V is the outward normal derivative on the boundary ∂Γ. These boundary conditions indicate that cells and viruses cannot cross the isolated boundary [54].
We assume that r∗<min{α,ω,δ∗} [37]. It follows that (1−κ)r∗<δ∗ and then
δ∗−(1−κ)r∗>0. |
Let δ=δ∗−(1−κ)r∗ and r=κr∗. Therefore, model (2.1) can be written as:
{∂S(x,t)∂t=dSΔS(x,t)+ρ−αS(x,t)−ϰ1S(x,t)V(x,t)−ϰ2S(x,t)I(x,t)−ϰ3S(x,t)Y(x,t),∂L(x,t)∂t=dLΔL(x,t)+(1−β)S(x,t)[ϰ1V(x,t)+ϰ2I(x,t)]−(λ+γ)L(x,t),∂I(x,t)∂t=dIΔI(x,t)+βS(x,t)[ϰ1V(x,t)+ϰ2I(x,t)]+λL(x,t)−aI(x,t)−μ1CI(x,t)I(x,t),∂E(x,t)∂t=dEΔE(x,t)+φϰ3S(x,t)Y(x,t)+rY(x,t)−(ψ+ω)E(x,t),∂Y(x,t)∂t=dYΔY(x,t)+ψE(x,t)−δY(x,t)−μ2CY(x,t)Y(x,t),∂V(x,t)∂t=dVΔV(x,t)+bI(x,t)−εV(x,t),∂CI(x,t)∂t=dCIΔCI(x,t)+σ1CI(x,t)I(x,t)−π1CI(x,t),∂CY(x,t)∂t=dCYΔCY(x,t)+σ2CY(x,t)Y(x,t)−π2CY(x,t). | (2.4) |
Proposition 1. Assume that dS=dL=dI=dE=dY=dV=dCI=dCY=˜d. Then, model (2.4) with any initial satisfying (2.2) has a unique, non-negative and bounded solution defined on ˉΓ×[0,+∞).
Proof. We denote X=BUC(ˉΓ,R8) the set of all bounded and uniformly continuous functions from ˉΓ to R8, with norm ‖θ‖X=supx∈ˉΓ|θ(x)|. Define the positive cone X+=BUC(ˉΓ,R8+)⊂X which induces a partial order on X. This shows that the space (X,‖⋅‖X) is a Banach lattice [55,56].
For any initial data G=(G1,G2,G3,G4,G5,G6,G7,G8)T∈X+, we define H=(H1,H2,H3,H4,H5,H6,H7,H8)T:X+→X by
H1(G)(x)=ρ−αG1(x)−ϰ1G1(x)G6(x)−ϰ2G1(x)G3(x)−ϰ3G1(x)G5(x),H2(G)(x)=(1−β)G1(x)[ϰ1G6(x)+ϰ2G3(x)]−(λ+γ)G2(x),H3(G)(x)=βG1(x)[ϰ1G6(x)+ϰ2G3(x)]+λG2(x)−aG3(x)−μ1G7(x)G3(x),H4(G)(x)=φϰ3G1(x)G5(x)+rG5(x)−(ψ+ω)G4(x),H5(G)(x)=ψG4(x)−δG5(x)−μ2G8(x)G5(x),H6(G)(x)=bG3(x)−εG6(x),H7(G)(x)=σ1G7(x)G3(x)−π1G7(x),H8(G)(x)=σ2G8(x)G5(x)−π2G8(x). |
We note that H is locally Lipschitz on X+. System (2.4) with initial conditions (2.2) and boundary conditions (2.3) can be rewritten as the following abstract functional differential equation
{dˉUdt=ΘˉU+H(ˉU), t>0,ˉU(0)=G∈X+, |
where ˉU=(S,L,I,E,Y,V,CI,CY)T and ΘˉU=(dSΔS,dLΔL,dIΔI,dEΔE,dYΔY,dVΔV,dCIΔCI,dCYΔCY)T. It is possible to show that
limh→0+1hdist(G(0)+hH(G),X+)=0, ∀ G∈X+. |
It follows from [55,56,57] that for any G∈X+, system (2.4) with (2.2)-(2.3) has a unique non-negative mild solution (S(x,t),L(x,t),I(x,t),E(x,t),Y(x,t),V(x,t),CI(x,t),CY(x,t)) defined on ˉΓ×[0,Tm), where [0,Tm) is the maximal existence time interval on which the solution exists. In addition, this solution also is a classical solution for the given problem.
To prove the boundedness of solutions, we define
Ψ(x,t)=S(x,t)+L(x,t)+I(x,t)+1φ[E(x,t)+Y(x,t)]+a2bV(x,t)+μ1σ1CI(x,t)+μ2φσ2CY(x,t). |
Since dS=dL=dI=dE=dY=dV=dCI=dCY=˜d, then using system (2.4) we obtain
∂Ψ(x,t)∂t−˜dΔΨ(x,t)=ρ−αS(x,t)−γL(x,t)−a2I(x,t)−ωφE(x,t)−δ−rφY(x,t)−aε2bV(x,t)−μ1π1σ1CI(x,t)−μ2π2φσ2CY(x,t). |
We have δ−r=δ∗−r∗>0. Hence,
∂Ψ(x,t)∂t−˜dΔΨ(x,t)=ρ−αS(x,t)−γL(x,t)−a2I(x,t)−ωφE(x,t)−δ∗−r∗φY(x,t)−aε2bV(x,t)−μ1π1σ1CI(x,t)−μ2π2φσ2CY(x,t)≤ρ−ϕ[S(x,t)+L(x,t)+I(x,t)+1φ{E(x,t)+Y(x,t)}+a2bV(x,t)+μ1σ1CI(x,t)+μ2φσ2CY(x,t)]=ρ−ϕΨ(x,t), |
where ϕ=min{α,γ,a2,ω,δ∗−r∗,ε,π1,π2}. Thus, Ψ(x,t) satisfies the following system
{∂Ψ(x,t)∂t−˜dΔΨ(x,t)≤ρ−ϕΨ(x,t),Ψ(x,0)=G1(x)+G2(x)+G3(x)+1φ[G4(x)+G5(x)]+a2bG6(x)+μ1σ1G7(x)+μ2φσ2G8(x)≥0,∂Ψ∂→V=0. |
Let ˜Ψ(t) be a solution of the following ODE
{d˜Ψ(t)dt=ρ−ϕ˜Ψ(t),˜Ψ(0)=maxx∈ˉΓΨ(x,0). |
This gives that ˜Ψ(t)≤max{ρϕ,maxx∈ˉΓΨ(x,0)}. On the basis of comparison principle (see [58]), we obtain Ψ(x,t)≤˜Ψ(t). Then, we get
Ψ(x,t)≤max{ρϕ,maxx∈ˉΓΨ(x,0)}, |
which implies that S(x,t), L(x,t), I(x,t), E(x,t), Y(x,t), V(x,t), CI(x,t), and CY(x,t) are bounded on ˉΓ×[0,Tm). We deduce from the standard theory for semi-linear parabolic systems that Tm=+∞ [59]. This shows that solution (S(x,t),L(x,t),I(x,t),E(x,t),Y(x,t),V(x,t),CI(x,t),CY(x,t)) is defined for all x∈Γ, t>0 and also is unique and non-negative.
In this section, we calculate the steady states and derive the threshold parameters which guarantee their existence. The steady states of system (2.4) satisfying the following equations:
0=ρ−αS−ϰ1SV−ϰ2SI−ϰ3SY, | (4.1) |
0=(1−β)(ϰ1SV+ϰ2SI)−(λ+γ)L, | (4.2) |
0=β(ϰ1SV+ϰ2SI)+λL−aI−μ1CII, | (4.3) |
0=φϰ3SY+rY−(ψ+ω)E, | (4.4) |
0=ψE−δY−μ2CYY, | (4.5) |
0=bI−εV, | (4.6) |
0=(σ1I−π1)CI, | (4.7) |
0=(σ2Y−π2)CY. | (4.8) |
We find that system (2.4) has eight possible steady states.
(i) Infection-free steady state, Ð0=(S0,0,0,0,0,0,0,0), where S0=ρ/α. In this case the body is free from HIV and HTLV.
(ii) Persistent HIV single infection steady state with an ineffective immune response, Ð1=(S1,L1,I1,0,0,V1,0,0), where
S1=S0ℜ1, L1=aεα(1−β)(βγ+λ)(ϰ1b+ϰ2ε)(ℜ1−1), I1=εαϰ1b+ϰ2ε(ℜ1−1), V1=αbϰ1b+ϰ2ε(ℜ1−1). |
The parameter ℜ1 represents the basic HIV single infection reproduction number for system (2.4) and is defined as:
ℜ1=S0ϰ1b(βγ+λ)aε(γ+λ)+S0ϰ2(βγ+λ)a(γ+λ). |
The parameter ℜ1 decides whether or not a persistent HIV single infection can be established. It is clear that at the steady state Ð1 the HIV single infection persists with ineffective immune response.
(iii) Persistent HTLV single infection steady state with an ineffective immune response, Ð2=(S2,0,0,E2,Y2,0,0,0), where
S2=S0ℜ2, E2=αδϰ3ψ(ℜ2−1), Y2=αϰ3(ℜ2−1). |
The parameter ℜ2 denotes the basic HTLV single infection reproduction number for system (2.4) and is defined as:
ℜ2=φϰ3ψS0(δ−r)ψ+δω. |
The parameter ℜ2 decides whether or not a persistent HTLV single infection can be established. At the steady state Ð2 the HTLV single infection persists with an ineffective immune response.
(iv) Persistent HIV single infection steady state with only effective HIV-specific CTL, Ð3=(S3,L3,I3,0,0,V3,CI3,0), where
S3=εσ1ρπ1(ϰ1b+ϰ2ε)+αεσ1, L3=ρπ1(1−β)(ϰ1b+ϰ2ε)(γ+λ)[π1(ϰ1b+ϰ2ε)+αεσ1],I3=π1σ1, V3=bεI3=bπ1εσ1, CI3=aμ1(ℜ3−1), |
and
ℜ3=σ1ρ(βγ+λ)(ϰ1b+ϰ2ε)a(γ+λ)[π1(ϰ1b+ϰ2ε)+αεσ1], |
is the HIV-specific CTL immunity reproduction number in case of HIV single infection. The parameter ℜ3 determines whether or not the HIV-specific CTL immune response is effective in the absence of HTLV. At the steady state Ð3 the HIV single infection persists with an effective immune response.
(v) Persistent HTLV single infection steady state with only effective HTLV-specific CTL, Ð4=(S4,0,0,E4,Y4,0,0,CY4), where
S4=σ2ρπ2ϰ3+ασ2, E4=π2[r(π2ϰ3+ασ2)+ϰ3ρφσ2]σ2(ψ+ω)(π2ϰ3+ασ2),Y4=π2σ2, CY4=(δ−r)ψ+δωμ2(ψ+ω)(ℜ4−1). |
The HTLV-specific CTL immunity reproduction number in case of HTLV single infection is stated as:
ℜ4=ψσ2ρφϰ3[(δ−r)ψ+δω](π2ϰ3+ασ2). |
The parameter ℜ4 determines whether or not the HTLV-specific CTL immune response is effective in the absence of HIV. At the steady state Ð4 the HTLV single infection persists with an effective immune response.
(vi) Persistent HTLV/HIV dual infection steady state with only effective HIV-specific CTL, Ð5=(S5,L5,I5,E5,Y5,V5,CI5,0), where
S5=(δ−r)ψ+δωφϰ3ψ=S2, I5=π1σ1=I3, V5=bπ1εσ1=V3,L5=π1(1−β)(ϰ1b+ϰ2ε)[(δ−r)ψ+δω]εϰ3σ1φψ(γ+λ), E5=δ[π1(ϰ1b+ϰ2ε)+αεσ1]εϰ3σ1ψ(ℜ5−1),Y5=π1(ϰ1b+ϰ2ε)+αεσ1εϰ3σ1(ℜ5−1), CI5=aμ1(ℜ1/ℜ2−1). |
The HTLV infection reproduction number in the presence of HIV infection is stated as:
ℜ5=ρφεϰ3σ1ψ[(δ−r)ψ+δω][π1(ϰ1b+ϰ2ε)+αεσ1]. |
It is obvious that the parameter ℜ5 determines whether or not HIV-infected patients could be dually infected with HTLV. At the steady state Ð5 the HTLV/HIV dual infection persists with only HIV-specific CTL immune response.
(vii) Persistent HTLV/HIV dual infection steady state with only effective HTLV-specific CTL, Ð6=(S6,L6,I6,E6,Y6,V6,0,CY6), where
S6=aε(γ+λ)(βγ+λ)(ϰ1b+ϰ2ε)=S1, Y6=π2σ2=Y4,L6=aε(1−β)(π2ϰ3+ασ2)σ2(βγ+λ)(ϰ1b+ϰ2ε)(ℜ6−1), I6=ε(π2ϰ3+ασ2)σ2(ϰ1b+ϰ2ε)(ℜ6−1),E6=π2[r(βγ+λ)(ϰ1b+ϰ2ε)+aεφϰ3(γ+λ)]σ2(βγ+λ)(ψ+ω)(ϰ1b+ϰ2ε),V6=b(π2ϰ3+ασ2)σ2(ϰ1b+ϰ2ε)(ℜ6−1), CY6=(δ−r)ψ+δωμ2(ψ+ω)(ℜ2/ℜ1−1). |
The HIV infection reproduction number in the presence of HTLV infection is stated as:
ℜ6=ρσ2(βγ+λ)(ϰ1b+ϰ2ε)aε(γ+λ)(π2ϰ3+ασ2). |
It is clear that the parameter ℜ6 determines whether or not HTLV-infected patients could be dually infected with HIV. At the steady state Ð6 the HTLV/HIV dual infection persists with only HTLV-specific CTL immune response.
(viii) Persistent HTLV/HIV dual infection steady state with effective HIV-specific CTL and HTLV-specific CTL, Ð7=(S7,L7,I7,E7,Y7,V7,CI7,CY7), where
S7=εσ1σ2ρπ1σ2(ϰ1b+ϰ2ε)+π2ϰ3εσ1+αεσ1σ2,L7=π1σ2ρ(1−β)(ϰ1b+ϰ2ε)(γ+λ)[π1σ2(ϰ1b+ϰ2ε)+π2ϰ3εσ1+αεσ1σ2],E7=π2[π1rσ2(ϰ1b+ϰ2ε)+rεσ1(π2ϰ3+ασ2)+ϰ3εσ1σ2ρφ]σ2(ψ+ω)[π1σ2(ϰ1b+ϰ2ε)+π2ϰ3εσ1+αεσ1σ2],I7=π1σ1=I3=I5, Y7=π2σ2=Y4=Y6, V7=bπ1εσ1=V3=V5,CI7=aμ1(ℜ7−1), CY7=(δ−r)ψ+δωμ2(ψ+ω)(ℜ8−1), |
and
ℜ7=σ1σ2ρ(βγ+λ)(ϰ1b+ϰ2ε)a(γ+λ)[π1σ2(ϰ1b+ϰ2ε)+π2ϰ3εσ1+αεσ1σ2],ℜ8=φϰ3εσ1σ2ρψ[(δ−r)ψ+δω][π1σ2(ϰ1b+ϰ2ε)+π2ϰ3εσ1+αεσ1σ2]. |
The parameter ℜ7 is the competed HIV-specific CTL immunity reproduction number in case of HTLV/HIV dual infection. The parameter ℜ8 is the competed HTLV-specific CTL immunity reproduction number in case of HTLV/HIV dual infection. Clearly, Ð7 exists when ℜ7>1 and ℜ8>1.
In this section, we analyze the global asymptotic stability of all steady states by Lyapunov method. For constructing Lyapunov functions we follow the works in [60,61]. To prove Theorems 1–8 we need the arithmetic-geometric mean inequality
1nn∑i=1χi≥n√n∏i=1χi, χi≥0, i=1,2,... |
which yields
SjS+SILjSjIjL+LIjLjI≥3, j=1,3,5,6,7, | (5.1) |
SjS+SVIjSjVjI+IVjIjV≥3, j=1,3,5,6,7, | (5.2) |
SjS+SVLjSjVjL+LIjLjI+IVjIjV≥4, j=1,3,5,6,7, | (5.3) |
SjS+SYEjSjYjE+EYjEjY≥3, j=2,4,5,6,7. | (5.4) |
Consider a function Φj(S,L,I,E,Y,V,CI,CY) and define
ˆΦj(t)=∫ΓΦj(x,t)dx,j=0,1,...,7. |
Let Υ′j be the largest invariant subset of
Υj={(S,L,I,E,Y,V,CI,CY):dˆΦjdt=0}, j=0,1,2,...,7. |
We define a function
ϝ(υ)=υ−1−lnυ. |
Numann boundary conditions (2.3) and Divergence Theorem imply that
0=∫∂Γ∇U⋅→Vdx=∫Γdiv(∇U)dx=∫ΓΔUdx,0=∫∂Γ1U∇U⋅→Vdx=∫Γdiv(1U∇U)dx=∫Γ(ΔUU−‖▽U‖2U2)dx, |
for U∈{S,L,I,E,Y,V,CI,CY}. Thus, we obtain
∫ΓΔUdx=0,∫ΓΔUUdx=∫Γ‖▽U‖2U2dx. | (5.5) |
For convenience, we drop the input notation i.e., (S,L,I,E,Y,V,CI,CY)=(S(x,t),L(x,t),I(x,t),E(x,t),Y(x,t),V(x,t),CI(x,t),CY(x,t)).
Theorem 1. If ℜ1≤1 and ℜ2≤1, then Ð0 is globally asymptotically stable (GAS).
Proof. Define Φ0(x,t) as:
Φ0(x,t)=S0ϝ(SS0)+λβγ+λL+γ+λβγ+λI+1φE+ψ+ωφψY+ϰ1S0εV+μ1(γ+λ)σ1(βγ+λ)CI+μ2(ψ+ω)φψσ2CY. |
Clearly, ˆΦ0(S,L,I,E,Y,V,CI,CY)>0 for all S,L,I,E,Y,V,CI,CY>0, and ˆΦ0(S0,0,0,0,0,0,0,0)=0. We calculate ∂Φ0∂t along the solutions of model (2.4) as:
∂Φ0∂t=(1−S0S)[dSΔS+ρ−αS−ϰ1SV−ϰ2SI−ϰ3SY]+λβγ+λ[dLΔL+(1−β)(ϰ1SV+ϰ2SI)−(λ+γ)L]+γ+λβγ+λ[dIΔI+β(ϰ1SV+ϰ2SI)+λL−aI−μ1CII]+1φ[dEΔE+φϰ3SY+rY−(ψ+ω)E]+ψ+ωφψ[dYΔY+ψE−δY−μ2CYY]+ϰ1S0ε(dVΔV+bI−εV)+μ1(γ+λ)σ1(βγ+λ)[dCIΔCI+σ1CII−π1CI]+μ2(ψ+ω)φψσ2[dCYΔCY+σ2CYY−π2CY]=(1−S0S)(ρ−αS)+ϰ2S0I+ϰ3S0Y−a(γ+λ)βγ+λI+rφY−δ(ψ+ω)φψY+ϰ1bS0εI−μ1π1(γ+λ)σ1(βγ+λ)CI−μ2π2(ψ+ω)φψσ2CY+dS(1−S0S)ΔS+λdLβγ+λΔL+dI(γ+λ)βγ+λΔI+dEφΔE+dY(ψ+ω)φψΔY+ϰ1dVS0εΔV+μ1dCI(γ+λ)σ1(βγ+λ)ΔCI+μ2dCY(ψ+ω)φψσ2ΔCY. |
Using S0=ρ/α, we obtain
∂Φ0∂t=−α(S−S0)2S+a(γ+λ)βγ+λ(ℜ1−1)I+(δ−r)ψ+δωφψ(ℜ2−1)Y−μ1π1(γ+λ)σ1(βγ+λ)CI−μ2π2(ψ+ω)φψσ2CY+dS(1−S0S)ΔS+λdLβγ+λΔL+dI(γ+λ)βγ+λΔI+dEφΔE+dY(ψ+ω)φψΔY+ϰ1dVS0εΔV+μ1dCI(γ+λ)σ1(βγ+λ)ΔCI+μ2dCY(ψ+ω)φψσ2ΔCY. |
Consequently, we calculate dˆΦ0dt as follows:
dˆΦ0dt=−α∫Γ(S−S0)2Sdx+a(γ+λ)(ℜ1−1)βγ+λ∫ΓIdx+[(δ−r)ψ+δω](ℜ2−1)φψ∫ΓYdx−μ1π1(γ+λ)σ1(βγ+λ)∫ΓCIdx−μ2π2(ψ+ω)φψσ2∫ΓCYdx+dS∫Γ(1−S0S)ΔSdx+λdLβγ+λ∫ΓΔLdx+dI(γ+λ)βγ+λ∫ΓΔIdx+dEφ∫ΓΔE+dY(ψ+ω)φψ∫ΓΔYdx+ϰ1dVS0ε∫ΓΔVdx+μ1dCI(γ+λ)σ1(βγ+λ)∫ΓΔCIdx+μ2dCY(ψ+ω)φψσ2∫ΓΔCYdx. | (5.6) |
Using equality (5.5), Eq (5.6) is reduced to the following form
dˆΦ0dt=−α∫Γ(S−S0)2Sdx+a(γ+λ)(ℜ1−1)βγ+λ∫ΓIdx+[(δ−r)ψ+δω](ℜ2−1)φψ∫ΓYdx−μ1π1(γ+λ)σ1(βγ+λ)∫ΓCIdx−μ2π2(ψ+ω)φψσ2∫ΓCYdx−dSS0∫Γ‖▽S‖2S2dx. |
Therefore, dˆΦ0dt≤0 for all S,I,Y,CI,CY>0 and dˆΦ0dt=0 with equality holding when (S,I,Y,CI,CY)=(S0,0,0,0,0). The solutions of system (2.4) converge to Υ′0. The elements of Υ′0 satisfy (S,I,Y,CI,CY)=(S0,0,0,0,0) and then ∂S∂t=∂Y∂t=ΔS=ΔY=0. The first and fifth equations of system (2.4) reduce to
0=∂S∂t=ρ−αS0−ϰ1S0V,0=∂Y∂t=ψE. |
This yields V=E=0. Further, we have ∂I∂t=ΔI=0, then the third equation of system (2.4) becomes
0=∂I∂t=λL, |
which provides that L=0. Hence, Υ′0={Ð0} and by applying Lyapunov-LaSalle asymptotic stability theorem [62,63,64] we get that Ð0 is GAS.
Theorem 2. Let ℜ1>1, ℜ2/ℜ1≤1 and ℜ3≤1, then Ð1 is GAS.
Proof. Define a function Φ1(x,t) as:
Φ1(x,t)=S1ϝ(SS1)+λβγ+λL1ϝ(LL1)+γ+λβγ+λI1ϝ(II1)+1φE+ψ+ωφψY+ϰ1S1εV1ϝ(VV1)+μ1(γ+λ)σ1(βγ+λ)CI+μ2(ψ+ω)φψσ2CY. |
Calculating ∂Φ1∂t as:
∂Φ1∂t=(1−S1S)[dSΔS+ρ−αS−ϰ1SV−ϰ2SI−ϰ3SY]+λβγ+λ(1−L1L)[dLΔL+(1−β)(ϰ1SV+ϰ2SI)−(λ+γ)L]+γ+λβγ+λ(1−I1I)[dIΔI+β(ϰ1SV+ϰ2SI)+λL−aI−μ1CII]+1φ[dEΔE+φϰ3SY+rY−(ψ+ω)E]+ψ+ωφψ[dYΔY+ψE−δY−μ2CYY]+ϰ1S1ε(1−V1V)[dVΔV+bI−εV]+μ1(γ+λ)σ1(βγ+λ)[dCIΔCI+σ1CII−π1CI]+μ2(ψ+ω)φψσ2[dCYΔCY+σ2CYY−π2CY]=(1−S1S)(ρ−αS)+ϰ2S1I+ϰ3S1Y−λ(1−β)βγ+λ(ϰ1SV+ϰ2SI)L1L+λ(γ+λ)βγ+λL1−a(γ+λ)βγ+λI−β(γ+λ)βγ+λ(ϰ1SV+ϰ2SI)I1I−λ(γ+λ)βγ+λLI1I+a(γ+λ)βγ+λI1+μ1(γ+λ)βγ+λCII1+rφY−δ(ψ+ω)φψY+ϰ1S1bIε−ϰ1S1bIεV1V+ϰ1S1V1−μ1π1(γ+λ)σ1(βγ+λ)CI−μ2π2(ψ+ω)φψσ2CY+dS(1−S1S)ΔS+λdLβγ+λ(1−L1L)ΔL+dI(γ+λ)βγ+λ(1−I1I)ΔI+dEφΔE+dY(ψ+ω)φψΔY+dVϰ1S1ε(1−V1V)ΔV+μ1dCI(γ+λ)σ1(βγ+λ)ΔCI+μ2dCY(ψ+ω)φψσ2ΔCY. |
The steady state conditions of Ð1 imply that
ρ=αS1+ϰ1S1V1+ϰ2S1I1, λ(1−β)βγ+λ(ϰ1S1V1+ϰ2S1I1)=λ(γ+λ)βγ+λL1,ϰ1S1V1+ϰ2S1I1=a(γ+λ)βγ+λI1, V1=bI1ε. |
Then, we obtain
∂Φ1∂t=(1−S1S)(αS1−αS)+(ϰ1S1V1+ϰ2S1I1)(1−S1S)+ϰ3S1Y−λ(1−β)βγ+λϰ1S1V1SVL1S1V1L−λ(1−β)βγ+λϰ2S1I1SIL1S1I1L+λ(1−β)βγ+λ(ϰ1S1V1+ϰ2S1I1)−β(γ+λ)βγ+λϰ1S1V1SVI1S1V1I−β(γ+λ)βγ+λϰ2S1I1SS1−λ(1−β)βγ+λ(ϰ1S1V1+ϰ2S1I1)LI1L1I+ϰ1S1V1+ϰ2S1I1+μ1(γ+λ)βγ+λCII1−(δ−r)ψ+δωφψY−ϰ1S1V1IV1I1V+ϰ1S1V1−μ1π1(γ+λ)σ1(βγ+λ)CI−μ2π2(ψ+ω)φψσ2CY+dS(1−S1S)ΔS+λdLβγ+λ(1−L1L)ΔL+dI(γ+λ)βγ+λ(1−I1I)ΔI+dEφΔE+dY(ψ+ω)φψΔY+dVϰ1S1ε(1−V1V)ΔV+μ1dCI(γ+λ)σ1(βγ+λ)ΔCI+μ2dCY(ψ+ω)φψσ2ΔCY=−α(S−S1)2S+λ(1−β)βγ+λϰ1S1V1(4−S1S−SVL1S1V1L−LI1L1I−IV1I1V)+λ(1−β)βγ+λϰ2S1I1(3−S1S−SIL1S1I1L−LI1L1I)+β(γ+λ)βγ+λϰ1S1V1(3−S1S−SVI1S1V1I−IV1I1V)+β(γ+λ)βγ+λϰ2S1I1(2−S1S−SS1)+(δ−r)ψ+δωφψ[φϰ3ψS1(δ−r)ψ+δω−1]Y+μ1(γ+λ)βγ+λ(I1−π1σ1)CI−μ2π2(ψ+ω)φψσ2CY+dS(1−S1S)ΔS+λdLβγ+λ(1−L1L)ΔL+dI(γ+λ)βγ+λ(1−I1I)ΔI+dEφΔE+dY(ψ+ω)φψΔY+dVϰ1S1ε(1−V1V)ΔV+μ1dCI(γ+λ)σ1(βγ+λ)ΔCI+μ2dCY(ψ+ω)φψσ2ΔCY. | (5.7) |
Therefore, Eq (5.7) becomes
∂Φ1∂t=−[α+βϰ2I1(γ+λ)βγ+λ](S−S1)2S+λ(1−β)βγ+λϰ1S1V1(4−S1S−SVL1S1V1L−LI1L1I−IV1I1V)+λ(1−β)βγ+λϰ2S1I1(3−S1S−SIL1S1I1L−LI1L1I)+β(γ+λ)βγ+λϰ1S1V1(3−S1S−SVI1S1V1I−IV1I1V)+(δ−r)ψ+δωφψ(ℜ2/ℜ1−1)Y+μ1(γ+λ)[π1(ϰ1b+ϰ2ε)+αεσ1]σ1(βγ+λ)(ϰ1b+ϰ2ε)(ℜ3−1)CI−μ2π2(ψ+ω)φψσ2CY+dS(1−S1S)ΔS+λdLβγ+λ(1−L1L)ΔL+dI(γ+λ)βγ+λ(1−I1I)ΔI+dEφΔE+dY(ψ+ω)φψΔY+dVϰ1S1ε(1−V1V)ΔV+μ1dCI(γ+λ)σ1(βγ+λ)ΔCI+μ2dCY(ψ+ω)φψσ2ΔCY. | (5.8) |
Calculating the time derivative of ˆΦ1(t) and using equality (5.5) to get
dˆΦ1dt=−[α+βϰ2I1(γ+λ)βγ+λ]∫Γ(S−S1)2Sdx+λ(1−β)βγ+λϰ1S1V1∫Γ(4−S1S−SVL1S1V1L−LI1L1I−IV1I1V)dx+λ(1−β)βγ+λϰ2S1I1∫Γ(3−S1S−SIL1S1I1L−LI1L1I)dx+β(γ+λ)βγ+λϰ1S1V1∫Γ(3−S1S−SVI1S1V1I−IV1I1V)dx+[(δ−r)ψ+δω](ℜ2/ℜ1−1)φψ∫ΓYdx+μ1(γ+λ)[π1(ϰ1b+ϰ2ε)+αεσ1](ℜ3−1)σ1(βγ+λ)(ϰ1b+ϰ2ε)∫ΓCIdx−μ2π2(ψ+ω)φψσ2∫ΓCYdx−dSS1∫Γ‖▽S‖2S2dx−λdLL1βγ+λ∫Γ‖▽L‖2L2dx−dII1(γ+λ)βγ+λ∫Γ‖▽I‖2I2dx−dVϰ1S1V1ε∫Γ‖▽V‖2V2dx. |
Since ℜ2/ℜ1≤1 and ℜ3≤1, then utilizing inequalities (5.1)–(5.3) we obtain dˆΦ1dt≤0 for all S,L,I,Y,V,CI,CY>0. Further, dˆΦ1dt=0 at (S,L,I,V,Y,CI,CY)=(S1,L1,I1,V1,0,0,0). The solutions of system (2.4) tend to Υ′1 which contains elements with Y=0, and hence ∂Y∂t=ΔY=0. The fifth equation of system (2.4) reduces to
0=∂Y∂t=ψE, |
which yields E=0. Hence, Υ′1={Ð1} and Ð1 is GAS by using Lyapunov-LaSalle asymptotic stability theorem.
Theorem 3. If ℜ2>1, ℜ1/ℜ2≤1 and ℜ4≤1, then Ð2 is GAS.
Proof. Let Φ2(x,t) be defined as:
Φ2(x,t)=S2ϝ(SS2)+λβγ+λL+γ+λβγ+λI+1φE2ϝ(EE2)+ψ+ωφψY2ϝ(YY2)+ϰ1S2εV+μ1(γ+λ)σ1(βγ+λ)CI+μ2(ψ+ω)φψσ2CY. |
We calculate ∂Φ2∂t as:
∂Φ2∂t=(1−S2S)[dSΔS+ρ−αS−ϰ1SV−ϰ2SI−ϰ3SY]+λβγ+λ[dLΔL+(1−β)(ϰ1SV+ϰ2SI)−(λ+γ)L]+γ+λβγ+λ[dIΔI+β(ϰ1SV+ϰ2SI)+λL−aI−μ1CII]+1φ(1−E2E)[dEΔE+φϰ3SY+rY−(ψ+ω)E]+ψ+ωφψ(1−Y2Y)[dYΔY+ψE−δY−μ2CYY]+ϰ1S2ε[dVΔV+bI−εV]+μ1(γ+λ)σ1(βγ+λ)[dCIΔCI+σ1CII−π1CI]+μ2(ψ+ω)φψσ2[dCYΔCY+σ2CYY−π2CY]=(1−S2S)(ρ−αS)+ϰ2S2I+ϰ3S2Y−a(γ+λ)βγ+λI+rφY−ϰ3SYE2E−rφYE2E+ψ+ωφE2−δ(ψ+ω)φψY−ψ+ωφEY2Y+δ(ψ+ω)φψY2+μ2(ψ+ω)φψCYY2+ϰ1S2bIε−μ1π1(γ+λ)σ1(βγ+λ)CI−μ2π2(ψ+ω)φψσ2CY+dS(1−S2S)ΔS+λdLβγ+λΔL+dI(γ+λ)βγ+λΔI+dEφ(1−E2E)ΔE+dY(ψ+ω)φψ(1−Y2Y)ΔY+dVϰ1S2εΔV+μ1dCI(γ+λ)σ1(βγ+λ)ΔCI+μ2dCY(ψ+ω)φψσ2ΔCY. |
Using the steady state conditions for Ð2:
ρ=αS2+ϰ3S2Y2, ϰ3S2Y2+rφY2=ψ+ωφE2=δ(ψ+ω)φψY2, | (5.9) |
we obtain
∂Φ2∂t=(1−S2S)(αS2−αS)+ϰ3S2Y2(1−S2S)+ϰ2S2I−a(γ+λ)βγ+λI−ϰ3S2Y2SYE2S2Y2E−rφY2YE2Y2E+ϰ3S2Y2+rφY2−ϰ3S2Y2EY2E2Y−rφY2EY2E2Y+ϰ3S2Y2+rφY2+μ2(ψ+ω)φψCYY2+ϰ1S2bIε−μ1π1(γ+λ)σ1(βγ+λ)CI−μ2π2(ψ+ω)φψσ2CY+dS(1−S2S)ΔS+λdLβγ+λΔL+dI(γ+λ)βγ+λΔI+dEφ(1−E2E)ΔE+dY(ψ+ω)φψ(1−Y2Y)ΔY+dVϰ1S2εΔV+μ1dCI(γ+λ)σ1(βγ+λ)ΔCI+μ2dCY(ψ+ω)φψσ2ΔCY=−α(S−S2)2S+ϰ3S2Y2(3−S2S−SYE2S2Y2E−EY2E2Y)+rφY2(2−YE2Y2E−EY2E2Y)+a(γ+λ)βγ+λ[(ϰ1b+ϰ2ε)(βγ+λ)S2aε(γ+λ)−1]I−μ1π1(γ+λ)σ1(βγ+λ)CI+μ2(ψ+ω)φψ(Y2−π2σ2)CY+dS(1−S2S)ΔS+λdLβγ+λΔL+dI(γ+λ)βγ+λΔI+dEφ(1−E2E)ΔE+dY(ψ+ω)φψ(1−Y2Y)ΔY+dVϰ1S2εΔV+μ1dCI(γ+λ)σ1(βγ+λ)ΔCI+μ2dCY(ψ+ω)φψσ2ΔCY=−α(S−S2)2S−rφ(YE2−EY2)2EE2Y+ϰ3S2Y2(3−S2S−SYE2S2Y2E−EY2E2Y)+a(γ+λ)βγ+λ(ℜ1/ℜ2−1)I−μ1π1(γ+λ)σ1(βγ+λ)CI+μ2(ψ+ω)(ασ2+ϰ3π2)φψϰ3σ2(ℜ4−1)CY+dS(1−S2S)ΔS+λdLβγ+λΔL+dI(γ+λ)βγ+λΔI+dEφ(1−E2E)ΔE+dY(ψ+ω)φψ(1−Y2Y)ΔY+dVϰ1S2εΔV+μ1dCI(γ+λ)σ1(βγ+λ)ΔCI+μ2dCY(ψ+ω)φψσ2ΔCY. | (5.10) |
Therefore, we take the time derivative of ˆΦ2(t) along the positive solutions of (2.4) and use equality (5.5) to find
dˆΦ2dt=−α∫Γ(S−S2)2Sdx−rφ∫Γ(YE2−EY2)2EE2Ydx+ϰ3S2Y2∫Γ(3−S2S−SYE2S2Y2E−EY2E2Y)dx+a(γ+λ)(ℜ1/ℜ2−1)βγ+λ∫ΓIdx−μ1π1(γ+λ)σ1(βγ+λ)∫ΓCIdx+μ2(ψ+ω)(ασ2+ϰ3π2)(ℜ4−1)φψϰ3σ2∫ΓCYdx−dSS2∫Γ‖▽S‖2S2dx−dEE2φ∫Γ‖▽E‖2E2dx−dYY2(ψ+ω)φψ∫Γ‖▽Y‖2Y2dx. |
Thus, if ℜ1/ℜ2≤1 and ℜ4≤1, then from inequality (5.4) we obtain dˆΦ2dt≤0 for all S,I,E,Y,CI,CY>0. In addition, dˆΦ2dt=0 at (S,E,Y,I,CI,CY)=(S2,E2,Y2,0,0,0). The solutions of model (2.4) tend to Υ′2 which satisfy (S,Y,I)=(S2,Y2,0) and hence ∂S∂t=ΔS=0. The first equation of system (2.4) becomes
0=∂S∂t=ρ−αS2−ϰ1S2V−ϰ3S2Y2. |
From conditions (5.9) we get V=0. Moreover, we have ∂I∂t=ΔI=0, then the third equation of system (2.4) becomes
0=∂I∂t=λL, |
which provides L=0. Thus, Υ′2={Ð2} and by applying Lyapunov-LaSalle asymptotic stability theorem we get that Ð2 is GAS.
Theorem 4. If ℜ3>1 and ℜ5≤1, then Ð3 is GAS.
Proof. Define a function Φ3(x,t) as:
Φ3(x,t)=S3ϝ(SS3)+λβγ+λL3ϝ(LL3)+γ+λβγ+λI3ϝ(II3)+1φE+ψ+ωφψY+ϰ1S3εV3ϝ(VV3)+μ1(γ+λ)σ1(βγ+λ)CI3ϝ(CICI3)+μ2(ψ+ω)φψσ2CY. |
We calculate ∂Φ3∂t as:
∂Φ3∂t=(1−S3S)[dSΔS+ρ−αS−ϰ1SV−ϰ2SI−ϰ3SY]+λβγ+λ(1−L3L)[dLΔL+(1−β)(ϰ1SV+ϰ2SI)−(λ+γ)L]+γ+λβγ+λ(1−I3I)[dIΔI+β(ϰ1SV+ϰ2SI)+λL−aI−μ1CII]+1φ[dEΔE+φϰ3SY+rY−(ψ+ω)E]+ψ+ωφψ[dYΔY+ψE−δY−μ2CYY]+ϰ1S3ε(1−V3V)[dVΔV+bI−εV]+μ1(γ+λ)σ1(βγ+λ)(1−CI3CI)×[dCIΔCI+σ1CII−π1CI]+μ2(ψ+ω)φψσ2[dCYΔCY+σ2CYY−π2CY]=(1−S3S)(ρ−αS)+ϰ2S3I+ϰ3S3Y−λ(1−β)βγ+λ(ϰ1SV+ϰ2SI)L3L+λ(γ+λ)βγ+λL3−a(γ+λ)βγ+λI−β(γ+λ)βγ+λ(ϰ1SV+ϰ2SI)I3I−λ(γ+λ)βγ+λLI3I+a(γ+λ)βγ+λI3+μ1(γ+λ)βγ+λCII3+rφY−δ(ψ+ω)φψY+ϰ1S3εbI−ϰ1S3εbIV3V+ϰ1S3V3−μ1π1(γ+λ)σ1(βγ+λ)CI−μ1(γ+λ)βγ+λCI3I+μ1π1(γ+λ)σ1(βγ+λ)CI3−μ2π2(ψ+ω)φψσ2CY+dS(1−S3S)ΔS+λdLβγ+λ(1−L3L)ΔL+dI(γ+λ)βγ+λ(1−I3I)ΔI+dEφΔE+dY(ψ+ω)φψΔY+dVϰ1S3ε(1−V3V)ΔV+μ1dCI(γ+λ)σ1(βγ+λ)(1−CI3CI)ΔCI+μ2dCY(ψ+ω)φψσ2ΔCY. |
Using the steady state conditions for Ð3:
ρ=αS3+ϰ1S3V3+ϰ2S3I3, λ(1−β)βγ+λ(ϰ1S3V3++ϰ2S3I3)=λ(γ+λ)βγ+λL3,ϰ1S3V3+ϰ2S3I3=a(γ+λ)βγ+λI3+μ1(γ+λ)βγ+λCI3I3, I3=π1σ1, V3=bεI3, |
we obtain
∂Φ3∂t=(1−S3S)(αS3−αS)+(ϰ1S3V3+ϰ2S3I3)(1−S3S)+[ϰ3S3−(δ−r)ψ+δωφψ]Y−λ(1−β)βγ+λϰ1S3V3SVL3S3V3L−λ(1−β)βγ+λϰ2S3I3SIL3S3I3L+λ(1−β)βγ+λ(ϰ1S3V3+ϰ2S3I3)−β(γ+λ)βγ+λϰ1S3V3SVI3S3V3I−β(γ+λ)βγ+λϰ2S3I3SS3−λ(1−β)βγ+λ(ϰ1S3V3+ϰ2S3I3)LI3L3I+ϰ1S3V3+ϰ2S3I3−ϰ1S3V3IV3I3V+ϰ1S3V3−μ2π2(ψ+ω)φψσ2CY+dS(1−S3S)ΔS+λdLβγ+λ(1−L3L)ΔL+dI(γ+λ)βγ+λ(1−I3I)ΔI+dEφΔE+dY(ψ+ω)φψΔY+dVϰ1S3ε(1−V3V)ΔV+μ1dCI(γ+λ)σ1(βγ+λ)(1−CI3CI)ΔCI+μ2dCY(ψ+ω)φψσ2ΔCY=−α(S−S3)2S+λ(1−β)βγ+λϰ1S3V3(4−S3S−SVL3S3V3L−LI3L3I−IV3I3V)+λ(1−β)βγ+λϰ2S3I3(3−S3S−SIL3S3I3L−LI3L3I)+β(γ+λ)βγ+λϰ1S3V3×(3−S3S−SVI3S3V3I−IV3I3V)+β(γ+λ)βγ+λϰ2S3I3(2−S3S−SS3)+(δ−r)ψ+δωφψ[φψϰ3S3(δ−r)ψ+δω−1]Y−μ2π2(ψ+ω)φψσ2CY+dS(1−S3S)ΔS+λdLβγ+λ(1−L3L)ΔL+dI(γ+λ)βγ+λ(1−I3I)ΔI+dEφΔE+dY(ψ+ω)φψΔY+dVϰ1S3ε(1−V3V)ΔV+μ1dCI(γ+λ)σ1(βγ+λ)(1−CI3CI)ΔCI+μ2dCY(ψ+ω)φψσ2ΔCY=−[α+βϰ2I3(γ+λ)βγ+λ](S−S3)2S+λ(1−β)βγ+λϰ1S3V3×(4−S3S−SVL3S3V3L−LI3L3I−IV3I3V)+λ(1−β)βγ+λϰ2S3I3(3−S3S−SIL3S3I3L−LI3L3I)+β(γ+λ)βγ+λϰ1S3V3(3−S3S−SVI3S3V3I−IV3I3V)+(δ−r)ψ+δωφψ(ℜ5−1)Y−μ2π2(ψ+ω)φψσ2CY+dS(1−S3S)ΔS+λdLβγ+λ(1−L3L)ΔL+dI(γ+λ)βγ+λ(1−I3I)ΔI+dEφΔE+dY(ψ+ω)φψΔY+dVϰ1S3ε(1−V3V)ΔV+μ1dCI(γ+λ)σ1(βγ+λ)(1−CI3CI)ΔCI+μ2dCY(ψ+ω)φψσ2ΔCY. | (5.11) |
After taking the derivative of ˆΦ3(t) with respect to time t and using equality (5.5), Eq (5.11) will take the form
dˆΦ3dt=−[α+βϰ2I3(γ+λ)βγ+λ]∫Γ(S−S3)2Sdx+λ(1−β)βγ+λϰ1S3V3∫Γ(4−S3S−SVL3S3V3L−LI3L3I−IV3I3V)dx+λ(1−β)βγ+λϰ2S3I3∫Γ(3−S3S−SIL3S3I3L−LI3L3I)dx+β(γ+λ)βγ+λϰ1S3V3∫Γ(3−S3S−SVI3S3V3I−IV3I3V)dx+[(δ−r)ψ+δω](ℜ5−1)φψ∫ΓYdx−μ2π2(ψ+ω)φψσ2∫ΓCYdx−dSS3∫Γ‖▽S‖2S2dx−λdLL3βγ+λ∫Γ‖▽L‖2L2dx−dII3(γ+λ)βγ+λ∫Γ‖▽I‖2I2dx−dVϰ1S3V3ε∫Γ‖▽V‖2V2dx−μ1dCICI3(γ+λ)σ1(βγ+λ)∫Γ‖▽CI‖2(CI)2dx. |
Since ℜ5≤1, then from inequalities (5.1)–(5.3) we obtain dˆΦ3dt≤0 for all S,L,I,Y,V,CI,CY>0. In addition dˆΦ3dt=0 when (S,L,I,V,CI,Y,CY)=(S3,L3,I3,V3,CI3,0,0). The trajectories of system (2.4) tend to Υ′3 which has elements satisfying Y=0. Hence, ∂Y∂t=ΔY=0 and the fifth equation of system (2.4) becomes
0=∂Y(x,t)∂t=ψE, |
which yields E=0 and hence, Υ′3={Ð3}. Applying Lyapunov-LaSalle asymptotic stability theorem we get Ð3 is GAS.
Theorem 5. If ℜ4>1 and ℜ6≤1, then Ð4 is GAS.
Proof. Define Φ4(x,t) as:
Φ4(x,t)=S4ϝ(SS4)+λβγ+λL+γ+λβγ+λI+1φE4ϝ(EE4)+ψ+ωφψY4ϝ(YY4)+ϰ1S4εV+μ1(γ+λ)σ1(βγ+λ)CI+μ2(ψ+ω)φψσ2CY4ϝ(CYCY4). |
Calculating ∂Φ4∂t as:
∂Φ4∂t=(1−S4S)[dSΔS+ρ−αS−ϰ1SV−ϰ2SI−ϰ3SY]+λβγ+λ[dLΔL+(1−β)(ϰ1SV+ϰ2SI)−(λ+γ)L]+γ+λβγ+λ[dIΔI+β(ϰ1SV+ϰ2SI)+λL−aI−μ1CII]+1φ(1−E4E)[dEΔE+φϰ3SY+rY−(ψ+ω)E]+ψ+ωφψ(1−Y4Y)[dYΔY+ψE−δY−μ2CYY]+ϰ1S4ε[dVΔV+bI−εV]+μ1(γ+λ)σ1(βγ+λ)[dCIΔCI+σ1CII−π1CI]+μ2(ψ+ω)φψσ2(1−CY4CY)[dCYΔCY+σ2CYY−π2CY]=(1−S4S)(ρ−αS)+ϰ2S4I+ϰ3S4Y−a(γ+λ)βγ+λI+rφY−ϰ3SYE4E−rφYE4E+ψ+ωφE4−δ(ψ+ω)φψY−ψ+ωφEY4Y+δ(ψ+ω)φψY4+μ2(ψ+ω)φψCYY4+ϰ1S4bIε−μ1π1(γ+λ)σ1(βγ+λ)CI−μ2π2(ψ+ω)φψσ2CY−μ2(ψ+ω)φψCY4Y+μ2π2(ψ+ω)φψσ2CY4+dS(1−S4S)ΔS+λdLβγ+λΔL+dI(γ+λ)βγ+λΔI+dEφ(1−E4E)ΔE+dY(ψ+ω)φψ(1−Y4Y)ΔY+dVϰ1S4εΔV+μ1dCI(γ+λ)σ1(βγ+λ)ΔCI+μ2dCY(ψ+ω)φψσ2(1−CY4CY)ΔCY. |
Using the steady state conditions for Ð4:
ρ=αS4+ϰ3S4Y4, Y4=π2σ2,ϰ3S4Y4+rφY4=ψ+ωφE4=δ(ψ+ω)φψY4+μ2(ψ+ω)φψCY4Y4. |
We obtain
∂Φ4∂t=(1−S4S)(αS4−αS)+ϰ3S4Y4(1−S4S)+ϰ2S4I−a(γ+λ)βγ+λI−ϰ3S4Y4SYE4S4Y4E−rφY4YE4Y4E+ϰ3S4Y4+rφY4−ϰ3S4Y4EY4E4Y−rφY4EY4E4Y+ϰ3S4Y4+rφY4+ϰ1S4bIε−μ1π1(γ+λ)σ1(βγ+λ)CI+dS(1−S4S)ΔS+λdLβγ+λΔL+dI(γ+λ)βγ+λΔI+dEφ(1−E4E)ΔE+dY(ψ+ω)φψ(1−Y4Y)ΔY+dVϰ1S4εΔV+μ1dCI(γ+λ)σ1(βγ+λ)ΔCI+μ2dCY(ψ+ω)φψσ2(1−CY4CY)ΔCY=−α(S−S4)2S+ϰ3S4Y4(3−S4S−SYE4S4Y4E−EY4E4Y)+rφY4(2−YE4Y4E−EY4E4Y)+a(γ+λ)βγ+λ[(ϰ1b+ϰ2ε)(βγ+λ)S4aε(γ+λ)−1]I−μ1π1(γ+λ)σ1(βγ+λ)CI+dS(1−S4S)ΔS+λdLβγ+λΔL+dI(γ+λ)βγ+λΔI+dEφ(1−E4E)ΔE+dY(ψ+ω)φψ(1−Y4Y)ΔY+dVϰ1S4εΔV+μ1dCI(γ+λ)σ1(βγ+λ)ΔCI+μ2dCY(ψ+ω)φψσ2(1−CY4CY)ΔCY=−α(S−S4)2S−rφ(YE4−EY4)2EE4Y+ϰ3S4Y4(3−S4S−SYE4S4Y4E−EY4E4Y)+a(γ+λ)βγ+λ(ℜ6−1)I−μ1π1(γ+λ)σ1(βγ+λ)CI+dS(1−S4S)ΔS+λdLβγ+λΔL+dI(γ+λ)βγ+λΔI+dEφ(1−E4E)ΔE+dY(ψ+ω)φψ(1−Y4Y)ΔY+dVϰ1S4εΔV+μ1dCI(γ+λ)σ1(βγ+λ)ΔCI+μ2dCY(ψ+ω)φψσ2(1−CY4CY)ΔCY. |
Calculating dˆΦ4dt and using equality (5.5) we to obtain
dˆΦ4dt=−α∫Γ(S−S4)2Sdx−rφ∫Γ(YE4−EY4)2EE4Ydx+ϰ3S4Y4∫Γ(3−S4S−SYE4S4Y4E−EY4E4Y)dx+a(γ+λ)(ℜ6−1)βγ+λ∫ΓIdx−μ1π1(γ+λ)σ1(βγ+λ)∫ΓCIdx−dSS4∫Γ‖▽S‖2S2dx−dEE4φ∫Γ‖▽E‖2E2dx−dYY4(ψ+ω)φψ∫Γ‖▽Y‖2Y2dx−μ2dCYCY4(ψ+ω)φψσ2∫Γ‖▽CY‖2(CY)2dx. |
Hence, if ℜ6≤1, then from inequality (5.4) we obtain dˆΦ4dt≤0 for all S,I,E,Y,CI,CY>0. Moreover, dˆΦ4dt=0 at (S,E,Y,CY,I,CI)=(S4,E4,Y4,CY4,0,0). The solutions of model (2.4) tend to Υ′4 which has elements satisfying (S,Y,I)=(S4,Y4,0), and then ∂S∂t=ΔS=0. Further, the first equation of system (2.4) becomes
0=∂S∂t=ρ−αS4−ϰ1S4V−ϰ3S4Y4, |
which yields V=0. Furthermore, we have ∂I∂t=ΔI=0 and the third equation of system (2.4) reduces to
0=∂I∂t=λL, |
which gives L=0 and hence, Υ′4={Ð4}. Applying Lyapunov-LaSalle asymptotic stability theorem we get Ð4 is GAS.
Theorem 6. If ℜ5>1, ℜ8≤1 and ℜ1/ℜ2>1, then Ð5 is GAS.
Proof. Define Φ5(x,t) as:
Φ5(x,t)=S5ϝ(SS5)+λβγ+λL5ϝ(LL5)+γ+λβγ+λI5ϝ(II5)+1φE5ϝ(EE5)+ψ+ωφψY5ϝ(YY5)+ϰ1S5εV5ϝ(VV5)+μ1(γ+λ)σ1(βγ+λ)CI5ϝ(CICI5)+μ2(ψ+ω)φψσ2CY. |
Calculating ∂Φ5∂t as:
∂Φ5∂t=(1−S5S)[dSΔS+ρ−αS−ϰ1SV−ϰ2SI−ϰ3SY]+λβγ+λ(1−L5L)[dLΔL+(1−β)(ϰ1SV+ϰ2SI)−(λ+γ)L]+γ+λβγ+λ(1−I5I)[dIΔI+β(ϰ1SV+ϰ2SI)+λL−aI−μ1CII]+1φ(1−E5E)[dEΔE+φϰ3SY+rY−(ψ+ω)E]+ψ+ωφψ(1−Y5Y)[dYΔY+ψE−δY−μ2CYY]+ϰ1S5ε(1−V5V)[dVΔV+bI−εV]+μ1(γ+λ)σ1(βγ+λ)(1−CI5CI)×[dCIΔCI+σ1CII−π1CI]+μ2(ψ+ω)φψσ2[dCYΔCY+σ2CYY−π2CY]=(1−S5S)(ρ−αS)+ϰ2S5I+ϰ3S5Y−λ(1−β)βγ+λ(ϰ1SV+ϰ2SI)L5L+λ(γ+λ)βγ+λL5−a(γ+λ)βγ+λI−β(γ+λ)βγ+λ(ϰ1SV+ϰ2SI)I5I−λ(γ+λ)βγ+λLI5I+a(γ+λ)βγ+λI5+μ1(γ+λ)βγ+λCII5+rφY−ϰ3SYE5E−rφYE5E+ψ+ωφE5−δ(ψ+ω)φψY−ψ+ωφEY5Y+δ(ψ+ω)φψY5+μ2(ψ+ω)φψCYY5+ϰ1S5bIε−ϰ1S5V5bIεV+ϰ1S5V5−μ1π1(γ+λ)σ1(βγ+λ)CI−μ1(γ+λ)βγ+λCI5I+μ1π1(γ+λ)σ1(βγ+λ)CI5−μ2π2(ψ+ω)φψσ2CY+dS(1−S5S)ΔS+λdLβγ+λ(1−L5L)ΔL+dI(γ+λ)βγ+λ(1−I5I)ΔI+dEφ(1−E5E)ΔE+dY(ψ+ω)φψ(1−Y5Y)ΔY+dVϰ1S5ε(1−V5V)ΔV+μ1dCI(γ+λ)σ1(βγ+λ)(1−CI5CI)ΔCI+μ2dCY(ψ+ω)φψσ2ΔCY. |
Using the steady state conditions for Ð5:
ρ=αS5+ϰ1S5V5+ϰ2S5I5+ϰ3S5Y5,λ(1−β)βγ+λ(ϰ1S5V5+ϰ2S5I5)=λ(γ+λ)βγ+λL5, ϰ1S5V5+ϰ2S5I5=a(γ+λ)βγ+λI5+μ1(γ+λ)βγ+λCI5I5,ϰ3S5Y5+rφY5=ψ+ωφE5=δ(ψ+ω)φψY5, I5=π1σ1, V5=bI5ε. |
We obtain
∂Φ5∂t=(1−S5S)(αS5−αS)+(ϰ1S5V5+ϰ2S5I5+ϰ3S5Y5)(1−S5S)−λ(1−β)βγ+λϰ1S5V5SVL5S5V5L−λ(1−β)βγ+λϰ2S5I5SIL5S5I5L+λ(1−β)βγ+λ×(ϰ1S5V5+ϰ2S5I5)−β(γ+λ)βγ+λϰ1S5V5SVI5S5V5I−β(γ+λ)βγ+λϰ2S5I5SS5−λ(1−β)βγ+λ(ϰ1S5V5+ϰ2S5I5)LI5L5I+ϰ1S5V5+ϰ2S5I5−ϰ3S5Y5SYE5S5Y5E−rφY5YE5Y5E+ϰ3S5Y5+rφY5−ϰ3S5Y5EY5E5Y−rφY5EY5E5Y+ϰ3S5Y5+rφY5−ϰ1S5V5IV5I5V+ϰ1S5V5+μ2(ψ+ω)φψ(Y5−π2σ2)CY+dS(1−S5S)ΔS+λdLβγ+λ(1−L5L)ΔL+dI(γ+λ)βγ+λ(1−I5I)ΔI+dEφ(1−E5E)ΔE+dY(ψ+ω)φψ(1−Y5Y)ΔY+dVϰ1S5ε(1−V5V)ΔV+μ1dCI(γ+λ)σ1(βγ+λ)(1−CI5CI)ΔCI+μ2dCY(ψ+ω)φψσ2ΔCY=−α(S−S5)2S+λ(1−β)βγ+λϰ1S5V5(4−S5S−SVL5S5V5L−LI5L5I−IV5I5V)+λ(1−β)βγ+λϰ2S5I5(3−S5S−SIL5S5I5L−LI5L5I)+β(γ+λ)βγ+λϰ1S5V5×(3−S5S−SVI5S5V5I−IV5I5V)+β(γ+λ)βγ+λϰ2S5I5(2−S5S−SS5)+ϰ3S5Y5(3−S5S−SYE5S5Y5E−EY5E5Y)+rφY5(2−YE5Y5E−EY5E5Y)+μ2(ψ+ω)φψ(Y5−π2σ2)CY+dS(1−S5S)ΔS+λdLβγ+λ(1−L5L)ΔL+dI(γ+λ)βγ+λ(1−I5I)ΔI+dEφ(1−E5E)ΔE+dY(ψ+ω)φψ(1−Y5Y)ΔY+dVϰ1S5ε(1−V5V)ΔV+μ1dCI(γ+λ)σ1(βγ+λ)(1−CI5CI)ΔCI+μ2dCY(ψ+ω)φψσ2ΔCY. | (5.12) |
Then, Eq (5.12) will be reduced to the form
∂Φ5∂t=−[α+βϰ2I5(γ+λ)βγ+λ](S−S5)2S−rφ(YE5−EY5)2EE5Y+λ(1−β)βγ+λϰ1S5V5(4−S5S−SVL5S5V5L−LI5L5I−IV5I5V)+λ(1−β)βγ+λϰ2S5I5(3−S5S−SIL5S5I5L−LI5L5I)+β(γ+λ)βγ+λϰ1S5V5(3−S5S−SVI5S5V5I−IV5I5V)+ϰ3S5Y5(3−S5S−SYE5S5Y5E−EY5E5Y)+μ2(ψ+ω)[π1σ2(ϰ1b+ϰ2ε)+π2ϰ3εσ1+αεσ1σ2]φψϰ3εσ1σ2(ℜ8−1)CY+dS(1−S5S)ΔS+λdLβγ+λ(1−L5L)ΔL+dI(γ+λ)βγ+λ(1−I5I)ΔI+dEφ(1−E5E)ΔE+dY(ψ+ω)φψ(1−Y5Y)ΔY+dVϰ1S5ε×(1−V5V)ΔV+μ1dCI(γ+λ)σ1(βγ+λ)(1−CI5CI)ΔCI+μ2dCY(ψ+ω)φψσ2ΔCY. |
Calculating dˆΦ5dt along the solution trajectories of system (2.4) and using equality (5.5) to get
dˆΦ5dt=−[α+βϰ2I5(γ+λ)βγ+λ]∫Γ(S−S5)2Sdx−rφ∫Γ(YE5−EY5)2EE5Ydx+λ(1−β)βγ+λϰ1S5V5∫Γ(4−S5S−SVL5S5V5L−LI5L5I−IV5I5V)dx+λ(1−β)βγ+λϰ2S5I5∫Γ(3−S5S−SIL5S5I5L−LI5L5I)dx+β(γ+λ)βγ+λϰ1S5V5∫Γ(3−S5S−SVI5S5V5I−IV5I5V)dx+ϰ3S5Y5∫Γ(3−S5S−SYE5S5Y5E−EY5E5Y)dx+μ2(ψ+ω)[π1σ2(ϰ1b+ϰ2ε)+π2ϰ3εσ1+αεσ1σ2](ℜ8−1)φψϰ3εσ1σ2∫ΓCYdx−dSS5∫Γ‖▽S‖2S2dx−λdLL5βγ+λ∫Γ‖▽L‖2L2dx−dII5(γ+λ)βγ+λ∫Γ‖▽I‖2I2dx−dEE5φ∫Γ‖▽E‖2E2dx−dYY5(ψ+ω)φψ∫Γ‖▽Y‖2Y2dx−dVϰ1S5V5ε∫Γ‖▽V‖2V2dx−μ1dCICI5(γ+λ)σ1(βγ+λ)∫Γ‖▽CI‖2(CI)2dx. |
Hence, if ℜ8≤1, then from inequalities (5.1)–(5.4) we obtain dˆΦ5dt≤0 for all S,L,I,E,Y,V,CI,CY>0. We have also dˆΦ5dt=0 at (S,L,I,E,Y,V,CI,CY)=(S5,L5,I5,E5,Y5,V5,CI5,0). The trajectories of system (2.4) converge to Υ′5 and hence, Υ′5={Ð5}. Applying Lyapunov-LaSalle asymptotic stability theorem we get Ð5 is GAS.
Theorem 7. If ℜ6>1, ℜ7≤1 and ℜ2/ℜ1>1, then Ð6 is GAS.
Proof. Define Φ6(x,t) as:
Φ6(x,t)=S6ϝ(SS6)+λβγ+λL6ϝ(LL6)+γ+λβγ+λI6ϝ(II6)+1φE6ϝ(EE6)+ψ+ωφψY6ϝ(YY6)+ϰ1S6εV6ϝ(VV6)+μ1(γ+λ)σ1(βγ+λ)CI+μ2(ψ+ω)φψσ2CY6ϝ(CYCY6). |
Calculating ∂Φ6∂t as:
∂Φ6∂t=(1−S6S)[dSΔS+ρ−αS−ϰ1SV−ϰ2SI−ϰ3SY]+λβγ+λ(1−L6L)[dLΔL+(1−β)(ϰ1SV+ϰ2SI)−(λ+γ)L]+γ+λβγ+λ(1−I6I)[dIΔI+β(ϰ1SV+ϰ2SI)+λL−aI−μ1CII]+1φ(1−E6E)[dEΔE+φϰ3SY+rY−(ψ+ω)E]+ψ+ωφψ(1−Y6Y)[dYΔY+ψE−δY−μ2CYY]+ϰ1S6ε(1−V6V)[dVΔV+bI−εV]+μ1(γ+λ)σ1(βγ+λ)[dCIΔCI+σ1CII−π1CI]+μ2(ψ+ω)φψσ2(1−CY6CY)[dCYΔCY+σ2CYY−π2CY]=(1−S6S)(ρ−αS)+ϰ2S6I+ϰ3S6Y−λ(1−β)βγ+λ(ϰ1SV+ϰ2SI)L6L+λ(γ+λ)βγ+λL6−a(γ+λ)βγ+λI−β(γ+λ)βγ+λ(ϰ1SV+ϰ2SI)I6I−λ(γ+λ)βγ+λLI6I+a(γ+λ)βγ+λI6+μ1(γ+λ)βγ+λCII6+rφY−ϰ3SYE6E−rφYE6E+ψ+ωφE6−δ(ψ+ω)φψY−ψ+ωφEY6Y+δ(ψ+ω)φψY6+μ2(ψ+ω)φψCYY6+ϰ1S6bIε−ϰ1S6V6bIεV+ϰ1S6V6−μ1π1(γ+λ)σ1(βγ+λ)CI−μ2π2(ψ+ω)φψσ2CY−μ2(ψ+ω)φψCY6Y+μ2π2(ψ+ω)φψσ2CY6+dS(1−S6S)ΔS+λdLβγ+λ(1−L6L)ΔL+dI(γ+λ)βγ+λ(1−I6I)ΔI+dEφ(1−E6E)ΔE+dY(ψ+ω)φψ(1−Y6Y)ΔY+dVϰ1S6ε(1−V6V)ΔV+μ1dCI(γ+λ)σ1(βγ+λ)ΔCI+μ2dCY(ψ+ω)φψσ2(1−CY6CY)ΔCY. |
Using the steady state conditions for Ð6:
ρ=αS6+ϰ1S6V6+ϰ2S6I6+ϰ3S6Y6,λ(1−β)βγ+λ(ϰ1S6V6+ϰ2S6I6)=λ(γ+λ)βγ+λL6, Y6=π2σ2, V6=bI6ε,ϰ1S6V6+ϰ2S6I6=a(γ+λ)βγ+λI6, ϰ3S6Y6+rφY6=ψ+ωφE6=δ(ψ+ω)φψY6+μ2(ψ+ω)φψCY6Y6. |
We obtain
∂Φ6∂t=(1−S6S)(αS6−αS)+(ϰ1S6V6+ϰ2S6I6+ϰ3S6Y6)(1−S6S)−λ(1−β)βγ+λϰ1S6V6SVL6S6V6L−λ(1−β)βγ+λϰ2S6I6SIL6S6I6L+λ(1−β)βγ+λ×(ϰ1S6V6+ϰ2S6I6)−β(γ+λ)βγ+λϰ1S6V6SVI6S6V6I−β(γ+λ)βγ+λϰ2S6I6SS6−λ(1−β)βγ+λ(ϰ1S6V6+ϰ2S6I6)LI6L6I+ϰ1S6V6+ϰ2S6I6−ϰ3S6Y6SYE6S6Y6E−rφY6YE6Y6E+ϰ3S6Y6+rφY6−ϰ3S6Y6EY6E6Y−rφY6EY6E6Y+ϰ3S6Y6+rφY6−ϰ1S6V6IV6I6V+ϰ1S6V6+μ1(γ+λ)βγ+λ(I6−π1σ1)CI+dS(1−S6S)ΔS+λdLβγ+λ(1−L6L)ΔL+dI(γ+λ)βγ+λ(1−I6I)ΔI+dEφ(1−E6E)ΔE+dY(ψ+ω)φψ(1−Y6Y)ΔY+dVϰ1S6ε(1−V6V)ΔV+μ1dCI(γ+λ)σ1(βγ+λ)ΔCI+μ2dCY(ψ+ω)φψσ2(1−CY6CY)ΔCY=−α(S−S6)2S+λ(1−β)βγ+λϰ1S6V6(4−S6S−SVL6S6V6L−LI6L6I−IV6I6V)+λ(1−β)βγ+λϰ2S6I6(3−S6S−SIL6S6I6L−LI6L6I)+β(γ+λ)βγ+λϰ1S6V6×(3−S6S−SVI6S6V6I−IV6I6V)+β(γ+λ)βγ+λϰ2S6I6(2−S6S−SS6)+ϰ3S6Y6(3−S6S−SYE6S6Y6E−EY6E6Y)+rφY6(2−YE6Y6E−EY6E6Y)+μ1(γ+λ)βγ+λ(I6−π1σ1)CI+dS(1−S6S)ΔS+λdLβγ+λ(1−L6L)ΔL+dI(γ+λ)βγ+λ(1−I6I)ΔI+dEφ(1−E6E)ΔE+dY(ψ+ω)φψ(1−Y6Y)ΔY+dVϰ1S6ε(1−V6V)ΔV+μ1dCI(γ+λ)σ1(βγ+λ)ΔCI+μ2dCY(ψ+ω)φψσ2(1−CY6CY)ΔCY. | (5.13) |
Then, Eq (5.13) will be reduced to the form
∂Φ6∂t=−[α+βϰ2I6(γ+λ)βγ+λ](S−S6)2S−rφ(YE6−EY6)2EE6Y+λ(1−β)βγ+λϰ1S6V6(4−S6S−SVL6S6V6L−LI6L6I−IV6I6V)+λ(1−β)βγ+λϰ2S6I6(3−S6S−SIL6S6I6L−LI6L6I)+β(γ+λ)βγ+λϰ1S6V6(3−S6S−SVI6S6V6I−IV6I6V)+ϰ3S6Y6(3−S6S−SYE6S6Y6E−EY6E6Y)+μ1(γ+λ)[π1σ2(ϰ1b+ϰ2ε)+π2ϰ3εσ1+αεσ1σ2]σ1σ2(βγ+λ)(ϰ1b+ϰ2ε)(ℜ7−1)CI+dS(1−S6S)ΔS+λdLβγ+λ(1−L6L)ΔL+dI(γ+λ)βγ+λ(1−I6I)ΔI+dEφ(1−E6E)ΔE+dY(ψ+ω)φψ(1−Y6Y)ΔY+dVϰ1S6ε(1−V6V)ΔV+μ1dCI(γ+λ)σ1(βγ+λ)ΔCI+μ2dCY(ψ+ω)φψσ2(1−CY6CY)ΔCY. |
We calculate dˆΦ6dt along the solution trajectories of system (2.4) and then we use equality (5.5) to obtain
dˆΦ6dt=−[α+βϰ2I6(γ+λ)βγ+λ]∫Γ(S−S6)2Sdx−rφ∫Γ(YE6−EY6)2EE6Ydx+λ(1−β)βγ+λϰ1S6V6∫Γ(4−S6S−SVL6S6V6L−LI6L6I−IV6I6V)dx+λ(1−β)βγ+λϰ2S6I6∫Γ(3−S6S−SIL6S6I6L−LI6L6I)dx+β(γ+λ)βγ+λϰ1S6V6∫Γ(3−S6S−SVI6S6V6I−IV6I6V)dx+ϰ3S6Y6∫Γ(3−S6S−SYE6S6Y6E−EY6E6Y)dx+μ1(γ+λ)[π1σ2(ϰ1b+ϰ2ε)+π2ϰ3εσ1+αεσ1σ2](ℜ7−1)σ1σ2(βγ+λ)(ϰ1b+ϰ2ε)∫ΓCIdx−dSS6∫Γ‖▽S‖2S2dx−λdLL6βγ+λ∫Γ‖▽L‖2L2dx−dII6(γ+λ)βγ+λ∫Γ‖▽I‖2I2dx−dEE6φ∫Γ‖▽E‖2E2dx−dYY6(ψ+ω)φψ∫Γ‖▽Y‖2Y2dx−dVϰ1S6V6ε∫Γ‖▽V‖2V2dx−μ2dCYCY6(ψ+ω)φψσ2∫Γ‖▽CY‖2(CY)2dx. |
Hence, if ℜ7≤1, then using inequalities (5.1)–(5.4) we get dˆΦ6dt≤0 for all S,L,I,E,Y,V,CI,CY>0, where dˆΦ6dt=0 when (S,L,I,E,Y,V,CY,CI)=(S6,L6,I6,E6,Y6,V6,CY6,0). The solutions of model (2.4) tend to Υ′6 and hence Υ′6={Ð6}. Applying Lyapunov-LaSalle asymptotic stability theorem we get Ð6 is GAS.
Theorem 8. If ℜ7>1 and ℜ8>1, then Ð7 is GAS.
Proof. Define Φ7(x,t) as:
Φ7(x,t)=S7ϝ(SS7)+λβγ+λL7ϝ(LL7)+γ+λβγ+λI7ϝ(II7)+1φE7ϝ(EE7)+ψ+ωφψY7ϝ(YY7)+ϰ1S7εV7ϝ(VV7)+μ1(γ+λ)σ1(βγ+λ)CI7ϝ(CICI7)+μ2(ψ+ω)φψσ2CY7ϝ(CYCY7). |
Calculating ∂Φ7∂t as:
∂Φ7∂t=(1−S7S)[dSΔS+ρ−αS−ϰ1SV−ϰ2SI−ϰ3SY]+λβγ+λ(1−L7L)[dLΔL+(1−β)(ϰ1SV+ϰ2SI)−(λ+γ)L]+γ+λβγ+λ(1−I7I)[dIΔI+β(ϰ1SV+ϰ2SI)+λL−aI−μ1CII]+1φ(1−E7E)[dEΔE+φϰ3SY+rY−(ψ+ω)E]+ψ+ωφψ(1−Y7Y)[dYΔY+ψE−δY−μ2CYY]+ϰ1S7ε(1−V7V)[dVΔV+bI−εV]+μ1(γ+λ)σ1(βγ+λ)(1−CI7CI)[dCIΔCI+σ1CII−π1CI]+μ2(ψ+ω)φψσ2(1−CY7CY)[dCYΔCY+σ2CYY−π2CY]=(1−S7S)(ρ−αS)+ϰ2S7I+ϰ3S7Y−λ(1−β)βγ+λ(ϰ1SV+ϰ2SI)L7L+λ(γ+λ)βγ+λL7−a(γ+λ)βγ+λI−β(γ+λ)βγ+λ(ϰ1SV+ϰ2SI)I7I−λ(γ+λ)βγ+λLI7I+a(γ+λ)βγ+λI7+μ1(γ+λ)βγ+λCII7+rφY−ϰ3SYE7E−rφYE7E+ψ+ωφE7−δ(ψ+ω)φψY−ψ+ωφEY7Y+δ(ψ+ω)φψY7+μ2(ψ+ω)φψCYY7+ϰ1S7bIε−ϰ1S7V7bIεV+ϰ1S7V7−μ1π1(γ+λ)σ1(βγ+λ)CI−μ1(γ+λ)βγ+λCI7I+μ1π1(γ+λ)σ1(βγ+λ)CI7−μ2π2(ψ+ω)φψσ2CY−μ2(ψ+ω)φψCY7Y+μ2π2(ψ+ω)φψσ2CY7+dS(1−S7S)ΔS+λdLβγ+λ(1−L7L)ΔL+dI(γ+λ)βγ+λ(1−I7I)ΔI+dEφ(1−E7E)ΔE+dY(ψ+ω)φψ(1−Y7Y)ΔY+dVϰ1S7ε(1−V7V)ΔV+μ1dCI(γ+λ)σ1(βγ+λ)(1−CI7CI)ΔCI+μ2dCY(ψ+ω)φψσ2(1−CY7CY)ΔCY. |
Using the steady state conditions for Ð7:
ρ=αS7+ϰ1S7V7+ϰ2S7I7+ϰ3S7Y7, λ(1−β)βγ+λ(ϰ1S7V7+ϰ2S7I7)=λ(γ+λ)βγ+λL7,ϰ1S7V7+ϰ2S7I7=a(γ+λ)βγ+λI7+μ1(γ+λ)βγ+λCI7I7, I7=π1σ1, Y7=π2σ2, V7=bI7εϰ3S7Y7+rφY7=ψ+ωφE7=δ(ψ+ω)φψY7+μ2(ψ+ω)φψCY7Y7. |
We obtain
∂Φ7∂t=(1−S7S)(αS7−αS)+(ϰ1S7V7+ϰ2S7I7+ϰ3S7Y7)(1−S7S)−λ(1−β)βγ+λϰ1S7V7SVL7S7V7L−λ(1−β)βγ+λϰ2S7I7SIL7S7I7L+λ(1−β)βγ+λ×(ϰ1S7V7+ϰ2S7I7)−β(γ+λ)βγ+λϰ1S7V7SVI7S7V7I−β(γ+λ)βγ+λϰ2S7I7SS7−λ(1−β)βγ+λ(ϰ1S7V7+ϰ2S7I7)LI7L7I+ϰ1S7V7+ϰ2S7I7−ϰ3S7Y7SYE7S7Y7E−rφY7YE7Y7E+ϰ3S7Y7+rφY7−ϰ3S7Y7EY7E7Y−rφY7EY7E7Y+ϰ3S7Y7+rφY7−ϰ1S7V7IV7I7V+ϰ1S7V7+dS(1−S7S)ΔS+λdLβγ+λ(1−L7L)ΔL+dI(γ+λ)βγ+λ(1−I7I)ΔI+dEφ(1−E7E)ΔE+dY(ψ+ω)φψ(1−Y7Y)ΔY+dVϰ1S7ε(1−V7V)ΔV+μ1dCI(γ+λ)σ1(βγ+λ)(1−CI7CI)ΔCI+μ2dCY(ψ+ω)φψσ2(1−CY7CY)ΔCY=−[α+βϰ2I7(γ+λ)βγ+λ](S−S7)2S−rφ(YE7−EY7)2EE7Y+λ(1−β)βγ+λϰ1S7V7(4−S7S−SVL7S7V7L−LI7L7I−IV7I7V)+λ(1−β)βγ+λϰ2S7I7(3−S7S−SIL7S7I7L−LI7L7I)+β(γ+λ)βγ+λϰ1S7V7×(3−S7S−SVI7S7V7I−IV7I7V)+ϰ3S7Y7(3−S7S−SYE7S7Y7E−EY7E7Y)+dS(1−S7S)ΔS+λdLβγ+λ(1−L7L)ΔL+dI(γ+λ)βγ+λ(1−I7I)ΔI+dEφ(1−E7E)ΔE+dY(ψ+ω)φψ(1−Y7Y)ΔY+dVϰ1S7ε(1−V7V)ΔV+μ1dCI(γ+λ)σ1(βγ+λ)(1−CI7CI)ΔCI+μ2dCY(ψ+ω)φψσ2(1−CY7CY)ΔCY. |
Calculating dˆΦ7dt and using equality (5.5) we obtain
dˆΦ7dt=−[α+βϰ2I7(γ+λ)βγ+λ]∫Γ(S−S7)2Sdx−rφ∫Γ(YE7−EY7)2EE7Ydx+λ(1−β)βγ+λϰ1S7V7∫Γ(4−S7S−SVL7S7V7L−LI7L7I−IV7I7V)dx+λ(1−β)βγ+λϰ2S7I7∫Γ(3−S7S−SIL7S7I7L−LI7L7I)dx+β(γ+λ)βγ+λϰ1S7V7×∫Γ(3−S7S−SVI7S7V7I−IV7I7V)dx+ϰ3S7Y7∫Γ(3−S7S−SYE7S7Y7E−EY7E7Y)dx−dSS7∫Γ‖▽S‖2S2dx−λdLL7βγ+λ∫Γ‖▽L‖2L2dx−dII7(γ+λ)βγ+λ∫Γ‖▽I‖2I2dx−dEE7φ∫Γ‖▽E‖2E2dx−dYY7(ψ+ω)φψ∫Γ‖▽Y‖2Y2dx−dVϰ1S7V7ε∫Γ‖▽V‖2V2dx−μ1dCICI7(γ+λ)σ1(βγ+λ)∫Γ‖▽CI‖2(CI)2dx−μ2dCYCY7(ψ+ω)φψσ2∫Γ‖▽CY‖2(CY)2dx. |
Inequalities (5.1)–(5.4) imply that dˆΦ7dt≤0 for all S,L,I,E,Y,V,CI,CY>0. Moreover, dˆΦ7dt=0 when (S,L,I,E,Y,V,CI,CY)=(S7,L7,I7,E7,Y7,V7,CI7,CY7). The solutions of model (2.4) converge to Υ′7={Ð7}. Applying Lyapunov-LaSalle asymptotic stability theorem we get Ð7 is GAS.
In Table 1, we summarize the global stability results given in Theorems 1–8.
Steady state | Global stability conditions |
Ð0 | ℜ1≤1 and ℜ2≤1 |
Ð1 | ℜ1>1, ℜ2/ℜ1≤1 and ℜ3≤1 |
Ð2 | ℜ2>1, ℜ1/ℜ2≤1 and ℜ4≤1 |
Ð3 | ℜ3>1 and ℜ5≤1 |
Ð4 | ℜ4>1 and ℜ6≤1 |
Ð5 | ℜ5>1, ℜ8≤1 and ℜ1/ℜ2>1 |
Ð6 | ℜ6>1, ℜ7≤1 and ℜ2/ℜ1>1 |
Ð7 | ℜ7>1 and ℜ8>1 |
In this section, we numerically show the global stability of steady states using the values of the parameters given in Table 2. Moreover, we present comparison between single and dual infections. We choose the spatial domain as Γ=[0,2] with a step size 0.02. The step size for time is given by 0.1. Further, we choose the following initial conditions for system (2.1):
S(x,0)=500[1+0.2cos2(πx)],L(x,0)=1.5[1+0.5cos2(πx)],I(x,0)=1.5[1+0.5cos2(πx)],E(x,0)=30[1+0.5cos2(πx)],Y(x,0)=0.3[1+0.5cos2(πx)],V(x,0)=5[1+0.5cos2(πx)],CI(x,0)=1+0.5cos2(3π2x),CY(x,0)=3[1+0.5cos2(3π2x)],x∈[0,2]. | (6.1) |
Parameter | Value | Source | Parameter | Value | Source | Parameter | Value | Source |
ρ | 10 | [44,65] | π1 | 0.1 | [67] | ψ | 0.003 | [44] |
α | 0.01 | [6,44,66] | π2 | 0.1 | Assumed | dS | 0.1 | [71] |
ϰ1 | Varied | μ1 | 0.2 | [68] | dL | 0.1 | Assumed | |
ϰ2 | Varied | μ2 | 0.2 | [46] | dI | 0.01 | Assumed | |
ϰ3 | Varied | ε | 2 | [68] | dE | 0.01 | Assumed | |
a | 0.5 | [4] | β | 0.7 | [69] | dY | 0.2 | Assumed |
φ | 0.2 | [35] | γ | 0.02 | Assumed | dV | 0.01 | [72] |
κ | 0.9 | [35] | σ1 | Varied | dCI | 0.2 | Assumed | |
r∗ | 0.008 | Assumed | σ2 | Varied | dCY | 0.2 | Assumed | |
δ∗ | 0.2 | [46] | λ | 0.2 | [70] | |||
b | 5 | Assumed | ω | 0.01 | [44] |
In addition, we consider the homogeneous Neumann boundary conditions:
∂S∂→V=∂L∂→V=∂I∂→V=∂E∂→V=∂Y∂→V=∂V∂→V=∂CI∂→V=∂CY∂→V=0,t>0,x=0,2. | (6.2) |
In this subsection, we select different values of ϰ1, ϰ2, ϰ3, σ1, and σ2 under the above initial and boundary conditions which leads to the following strategies:
Strategy 1 (Stability of {\bf{ Ð}}_{0} ): \varkappa _{1} = \varkappa_{2} = 0.0001, \varkappa_{3} = 0.001, and \sigma _{1} = \sigma_{2} = 0.2 . For this set of parameters, we have \Re_{1} = 0.68 < 1 and \Re_{2} = 0.23 < 1 . Figure 1 shows that the solution of system (2.1) converges the steady state {\text{Ð}}_{0} = (1000, 0, 0, 0, 0, 0, 0, 0) . This shows that {\text{Ð}}_{0} is GAS according to Theorem 1. In this case both HTLV-I and HIV will be cleared.
Strategy 2 (Stability of {\bf{ Ð}}_{1} ): \varkappa_{1} = 0.0005, \varkappa_{2} = 0.0003, \varkappa_{3} = 0.0005, \sigma_{1} = 0.003, and \sigma_{2} = 0.2 . With such choice we get \Re_{2} = 0.12 < 1 < 3.02 = \Re_{1} , \Re_{3} = 0.49 < 1 and hence \Re_{2}/\Re _{1} = 0.04 < 1 . Theorem 2 implies that {\text{Ð}}_{1} = \left(331.63, 9.11, 13, 0, 0, 32.51, 0, 0\right) is GAS. This will lead to the situation of persistent HIV single infection but with an ineffective CTL immune response.
Strategy 3 (Stability of {\bf{ Ð}} _{2} ): \varkappa_{1} = 0.0001, \varkappa_{2} = 0.0002, \varkappa_{3} = 0.01 , \sigma_{1} = 0.001, and \sigma_{2} = 0.05 . Then, we calculate \Re _{1} = 0.88 < 1 < 2.33 = \Re_{2} , \Re_{4} = 0.78 < 1 and then \Re_{1}/\Re_{2} = 0.38 < 1 . The numerical results show that {\text{Ð}}_{2} = \left(428, 0, 0, 88.74, 1.34, 0, 0, 0\right) exists and is GAS according to Theorem 3. It means that, a persistent HTLV single infection with an ineffective CTL immune response will be reached.
Strategy 4 (Stability of {\bf{ Ð}} _{3} ): \varkappa_{1} = 0.001, \varkappa_{2} = 0.0001, \varkappa_{3} = 0.005, and \sigma_{1} = \sigma_{2} = 0.01 . Then, we calculate \Re_{3} = 1.41 > 1 and \Re_{5} = 0.32 < 1 . The numerical results show that {\text{Ð}}_{3} = \left(277.78, 9.85, 10, 0, 0, 25, 1.01, 0\right) is GAS based on Theorem 4. Hence, a persistent HIV single infection with effective HIV-specific CTL immune response is attained.
Strategy 5 (Stability of {\bf{ Ð}} _{4} ): \varkappa_{1} = 0.0007, \varkappa_{2} = 0.0001, \varkappa_{3} = 0.1 , \sigma_{1} = 0.05, and \sigma_{2} = 0.3 . Then, we calculate \Re_{4} = 5.38 > 1 and \Re_{6} = 0.83 < 1 . According to these data {\text{Ð}}_{4} exists with {\text{Ð}}_{4} = \left(230.77, 0, 0,118.53, 0.33, 0, 0, 4.34\right) and it is GAS based on Theorem 5. In this case, a persistent HTLV single infection with effective HTLV-specific CTL immunity is reached.
Strategy 6 (Stability of {\bf{ Ð}} _{5} ): \varkappa_{1} = 0.001, \varkappa_{2} = 0.0001, \varkappa_{3} = 0.01 , \sigma_{1} = 0.05, and \sigma_{2} = 0.08 . Then, we calculate \Re_{5} = 1.53 > 1 , \Re_{8} = 0.84 < 1 and \Re_{1}/\Re_{2} = 2.17 > 1 . The numerical results show that {\text{Ð}}_{5} = \left(428, 3.03, 2, 54.21, 0.82, 5, 2.91, 0\right) exists and it is GAS and this supports Theorem 6. This case leads to a persistent dual infection with HTLV and HIV where the HIV-specific CTL immunity is effective and the HTLV-specific CTL immunity is ineffective.
Strategy7 (Stability of {\bf{ Ð}} _{6} ): \varkappa_{1} = 0.0006, \varkappa_{2} = 0.0001, \varkappa_{3} = 0.04 , \sigma_{1} = 0.01, and \sigma_{2} = 0.5 . We compute \Re_{6} = 1.73 > 1 , \Re_{7} = 0.92 < 1 and \Re_{2}/\Re_{1} = 2.99 > 1 . The numerical outcomes show that {\text{Ð}}_{6} = \left(321.26, 5.75, 8.2, 39.65, 0.2, 20.51, 0, 1.98\right) is GAS which support Theorem 7. This situation leads to a persistent dual infection with HTLV and HIV where the HTLV-specific CTL immunity is effective and the HIV-specific CTL immunity is not working.
Strategy 8 (Stability of {\bf{ Ð}} _{7} ): \varkappa_{1} = 0.0006, \varkappa_{2} = 0.0002, \varkappa_{3} = 0.04 , \sigma_{1} = 0.05, and \sigma_{2} = 0.5 . These data give \Re_{7} = 1.55 > 1 and \Re_{8} = 4.35 > 1 . Figure 2 illustrates that {\text{Ð}}_{7} = \left(467.29, 2.17, 2, 57.62, 0.2, 5, 1.36, 3.33\right) is GAS which confirms Theorem 8. In this case, a persistent dual infection with HTLV and HIV is reached where both the immune response is well working.
In this subsection, we compare between single and dual infections dynamics
Influence of HTLV infection on the dynamics of HIV single infection
To study the effect of HTLV infection on the dynamics of HIV single infection, we make a comparison between model (2.1) and the following HIV single infection model:
\begin{equation} \left \{ \begin{array} [c]{l} \frac{\partial S(x, t)}{\partial t} = d_{S}\Delta S(x, t)+\rho-\alpha S(x, t)-\varkappa_{1}S(x, t)V(x, t)-\varkappa_{2}S(x, t)I(x, t), \\ \frac{\partial L(x, t)}{\partial t} = d_{L}\Delta L(x, t)+\left( 1-\beta \right) S(x, t)\left[ \varkappa_{1}V(x, t)+\varkappa_{2}I(x, t)\right] -\left( \lambda+\gamma \right) L(x, t), \\ \frac{\partial I(x, t)}{\partial t} = d_{I}\Delta I(x, t)+\beta S(x, t)\left[ \varkappa_{1}V(x, t)+\varkappa_{2}I(x, t)\right] +\lambda L(x, t)-aI(x, t)-\mu _{1}C^{I}(x, t)I(x, t), \\ \frac{\partial V(x, t)}{\partial t} = d_{V}\Delta V(x, t)+bI(x, t)-\varepsilon V(x, t), \\ \frac{\partial C^{I}(x, t)}{\partial t} = d_{C^{I}}\Delta C^{I}(x, t)+\sigma _{1}C^{I}(x, t)I(x, t)-\pi_{1}C^{I}(x, t). \end{array} \right. \end{equation} | (6.3) |
We fix the parameters \varkappa_{1} = 0.0006 , \varkappa_{2} = 0.0001 , \sigma_{1} = 0.05 , and \sigma_{2} = 0.5 and consider initial conditions (6.1) and boundary conditions (6.2). We choose \varkappa _{3} = 0.04 (HTLV/HIV dual infection). Figure 3 shows that when an individual who has only HIV infection is dually infected with HTLV then the numbers of uninfected (and latent) CD 4^{+} T cells and HIV-specific CTLs are declined. In contrast, the numbers of free HIV particles in both HIV single infection and HTLV/HIV dual infection limits to a same value. In fact, this observation is consistent with the recent study [73], where it has found that there is no worthy differences in the concentration of HIV particles in comparison between HIV single infected and HTLV/HIV dual infected patients.
Influence of HIV infection on the dynamics of HTLV single infection
To see the effect of HIV infection on the dynamics of HTLV single infection, we perform a comparison between model (2.1) and the following HTLV single infection model:
\begin{equation} \left \{ \begin{array} [c]{l} \frac{\partial S(x, t)}{\partial t} = d_{S}\Delta S(x, t)+\rho-\alpha S(x, t)-\varkappa_{3}S(x, t)Y(x, t), \\ \frac{\partial E(x, t)}{\partial t} = d_{E}\Delta E(x, t)+\varphi \varkappa _{3}S(x, t)Y(x, t)+\kappa r^{\ast}Y(x, t)-\left( \psi+\omega \right) E(x, t), \\ \frac{\partial Y(x, t)}{\partial t} = d_{Y}\Delta Y(x, t)+\psi E(x, t)+\left( 1-\kappa \right) r^{\ast}Y(x, t)-\delta^{\ast}Y(x, t)-\mu_{2}C^{Y}(x, t)Y(x, t), \\ \frac{\partial C^{Y}(x, t)}{\partial t} = d_{C^{Y}}\Delta C^{Y}(x, t)+\sigma _{2}C^{Y}(x, t)Y(x, t)-\pi_{2}C^{Y}(x, t). \end{array} \right. \end{equation} | (6.4) |
We fix parameters \varkappa_{3} = 0.01 ; \sigma_{1} = 0.05 , and \sigma _{2} = 0.5 and consider initial conditions (6.1) and boundary conditions (6.2). We choose \varkappa_{1} = 0.001 and \varkappa_{2} = 0.0002 (HTLV/HIV dual infection). Figure 5 displays the solutions of two systems (2.1) and (6.4). We observe that the concentrations of uninfected CD 4^{+} T cells, latent HTLV-infected cells and HTLV-specific CTLs are smaller in case of dual infection than that of HTLV single infection. In contrast, the concentration of active HTLV-infected cells reaches the same value in both HTLV single and HTLV/HIV dual infections.
This work proposes and investigates a within host HTLV/HIV dual infection model taking into account the mobility of viruses and cells. The model was given by 8-dimentional nonlinear PDEs which describe the evolution of eight compartments with respect to position and time; uninfected CD4 ^{+} T cells, latent HIV-infected cells, active HIV-infected cells, latent HTLV-infected cells, active HTLV-infected cells, free HIV particles, HIV-specific CTLs, and HTLV-specific CTLs. We considered two ways of HIV transmission, free-to-cell and infected-to-cell. We also included two directions of HTLV transmission, horizontal via infected-to-cell contact, and vertical transmission through mitosis of active HTLV-infected cells. We first showed the existence of global solutions and the boundedness of the model's solutions. We showed that the model has eight steady states and their existence and stability are governed by eight threshold parameters. The global asymptotic stability of all steady states was investigated by formulating suitable Lyapunov functions and utilizing Lyapunov-LaSalle asymptotic stability theorem. We conducted some numerical simulations to clearify the theoretical results. We made a comparison between the dynamical behavior of dual HTLV/HIV infection and single HTLV (or HIV) infection. We found that HTLV/HIV dual infected patients have less uninfected CD 4^{+} T cells counts in comparison with HTLV or HIV single infected patients.
The authors declare that they have no conflict interests.
[1] | M. A. Nowak, R. M. May, Virus Dynamics: Mathematical Principles of Immunology and Virology, Oxford University Press, Oxford, 2000. |
[2] |
M. A. Nowak, C. R. M. Bangham, Population dynamics of immune responses to persistent viruses, Science, 272 (1996), 74–79. doi: 10.1126/science.272.5258.74
![]() |
[3] |
A. S. Perelson, P. Essunger, Y. Cao, M. Vesanen, A. Hurley, K. Saksela, et al., Decay characteristics of HIV-1-infected compartments during combination therapy, Nature, 387 (1997), 188–191. doi: 10.1038/387188a0
![]() |
[4] |
A. S. Perelson, P. W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo, SIAM Rev., 41 (1999), 3–44. doi: 10.1137/S0036144598335107
![]() |
[5] |
R. V. Culshaw, S. Ruan, A delay-differential equation model of HIV infection of CD4^{+} T-cells, Math. Biosci., 165 (2000), 27–39. doi: 10.1016/S0025-5564(00)00006-7
![]() |
[6] |
D. S. Callaway, A. S. Perelson, HIV-1 infection and low steady state viral loads, Bull. Math. Biol., 64 (2002), 29–64. doi: 10.1006/bulm.2001.0266
![]() |
[7] |
A. M. Elaiw, Global properties of a class of HIV models, Nonlinear Anal. Real World Appl., 11 (2010), 2253–2263. doi: 10.1016/j.nonrwa.2009.07.001
![]() |
[8] |
G. Huang, X. Liu, Y. Takeuchi, Lyapunov functions and global stability for age-structured HIV infection model, SIAM J. Appl. Math., 72 (2012), 25–38. doi: 10.1137/110826588
![]() |
[9] |
A. M. Elaiw, S. F. Alshehaiween, A. D. Hobiny, Global properties of delay-distributed HIV dynamics model including impairment of B-cell functions, Math., 7 (2019), 837. doi: 10.3390/math7090837
![]() |
[10] |
A. M. Elaiw, E. Kh. Elnahary, Analysis of general humoral immunity HIV dynamics model with HAART and distributed delays, Math., 7 (2019), 157. doi: 10.3390/math7020157
![]() |
[11] |
R. V. Culshaw, S. Ruan, G. Webb, A mathematical model of cell-to-cell spread of HIV-1 that includes a time delay, J. Math. Biol., 46 (2003), 425–444. doi: 10.1007/s00285-002-0191-5
![]() |
[12] |
X. Lai, X. Zou, Modelling HIV-1 virus dynamics with both virus-to-cell infection and cell-to-cell transmission, SIAM J. Appl. Math., 74 (2014), 898–917. doi: 10.1137/130930145
![]() |
[13] | A. Mojaver, H. Kheiri, Mathematical analysis of a class of HIV infection models of CD4^{+}T-cells with combined antiretroviral therapy, Appl. Math. Comput., 259 (2015), 258–270. |
[14] |
D. Adak, N. Bairagi, Analysis and computation of multi-pathways and multi-delays HIV-1 infection model, Appl. Math. Model., 54 (2018) 517–536. doi: 10.1016/j.apm.2017.09.051
![]() |
[15] |
T. Guo, Z. Qiu, The effects of CTL immune response on HIV infection model with potent therapy, latently infected cells and cell-to-cell viral transmission, Math. Biosci. Eng., 16 (2019), 6822–6841. doi: 10.3934/mbe.2019341
![]() |
[16] |
H. Liu, J. F. Zhang, Dynamics of two time delays differential equation model to HIV latent infection, Phys. A., 514 (2019), 384–395. doi: 10.1016/j.physa.2018.09.087
![]() |
[17] |
W. Chen, N. Tuerxun, Z. Teng, The global dynamics in a wild-type and drug-resistant HIV infection model with saturated incidence, Adv. Differ. Equations, 2020 (2020), 25. doi: 10.1186/s13662-020-2497-2
![]() |
[18] |
K. Wang, W. Wang, Propagation of HBV with spatial dependence, Math. Biosci., 210 (2007), 78–95. doi: 10.1016/j.mbs.2007.05.004
![]() |
[19] | C. Kang, H. Miao, X. Chen, J. Xu, D. Huang, Global stability of a diffusive and delayed virus dynamics model with Crowley-Martin incidence function and CTL immune response, Adv. Differ. Equations, 324 (2017). |
[20] |
C. C. McCluskey, Y. Yang, Global stability of a diffusive virus dynamics model with general incidence function and time delay, Nonlinear Anal. Real World Appl., 25 (2015), 64–78. doi: 10.1016/j.nonrwa.2015.03.002
![]() |
[21] | H. Miao, Z. Teng, X. Abdurahman, Z. Li, Global stability of a diffusive and delayed virus infection model with general incidence function and adaptive immune response, Comput. Appl. Math., 37 (2017), 3780–3805. |
[22] |
A. Sigal, J. T. Kim, A. B. Balazs, E. Dekel, A. Mayo, R. Milo, et al., Cell-to-cell spread of HIV permits ongoing replication despite antiretroviral therapy, Nature, 477 (2011), 95–98. doi: 10.1038/nature10347
![]() |
[23] |
J. Wang, J. Yang, T. Kuniya, Dynamics of a PDE viral infection model incorporating cell-to-cell transmission, J. Math. Anal. Appl., 444 (2016), 1542–1564. doi: 10.1016/j.jmaa.2016.07.027
![]() |
[24] |
H. Sun, J. Wang, Dynamics of a diffusive virus model with general incidence function, cell-to-cell transmission and time delay, Comput. Math. Appl., 77 (2019), 284–301. doi: 10.1016/j.camwa.2018.09.032
![]() |
[25] |
Y. Gao, J. Wang, Threshold dynamics of a delayed nonlocal reaction-diffusion HIV infection model with both cell-free and cell-to-cell transmissions, J. Math. Anal. Appl., 488 (2020), 124047. doi: 10.1016/j.jmaa.2020.124047
![]() |
[26] |
S. Tang, Z. Teng, H. Miao, Global dynamics of a reaction-diffusion virus infection model with humoral immunity and nonlinear incidence, Comput. Math. Appl., 78 (2019), 786–806. doi: 10.1016/j.camwa.2019.03.004
![]() |
[27] |
Y. Luo, L. Zhang, T. Zheng, Z. Teng, Analysis of a diffusive virus infection model with humoral immunity, cell-to-cell transmission and nonlinear incidence, Phys. A, 535 (2019), 122415. doi: 10.1016/j.physa.2019.122415
![]() |
[28] |
A. D. AlAgha, A. M. Elaiw, Stability of a general reaction-diffusion HIV-1 dynamics model with humoral immunity, Eur. Phys. J. Plus, 134 (2019), 1–18. doi: 10.1140/epjp/i2019-12286-x
![]() |
[29] | A. M. Elaiw, A. D. A. Agha, Stability of a general HIV-1 reaction-diffusion model with multiple delays and immune response, Phys. A. Stat. Mech. Appl., 536 (2019), 1–20. |
[30] |
W. Wang, X. Wang, K. Guo, W. Ma, Global analysis of a diffusive viral model with cell-to-cell infection and incubation period, Math. Methods Appl. Sci., 43 (2020), 5963–5978. doi: 10.1002/mma.6339
![]() |
[31] |
X. Ren, Y. Tian, L. Liu, X. Liu, A reaction-diffusion within-host HIV model with cell-to-cell transmission, J. Math. Biol., 76 (2018), 1831–1872. doi: 10.1007/s00285-017-1202-x
![]() |
[32] |
N. I. Stilianakis, J. Seydel, Modeling the T-cell dynamics and pathogenesis of HTLV-I infection, Bull. Math. Biol., 61 (1999), 935–947. doi: 10.1006/bulm.1999.0117
![]() |
[33] |
H. Gomez-Acevedo, M. Y. Li, Backward bifurcation in a model for HTLV-I infection of CD4^+ T cells, Bull. Math. Biol., 67 (2005), 101–114. doi: 10.1016/j.bulm.2004.06.004
![]() |
[34] | C. Vargas-De-Leon, The complete classification for global dynamics of amodel for the persistence of HTLV-1 infection, Appl. Math. Comput., 237 (2014), 489–493. |
[35] |
M. Y. Li, A. G. Lim, Modelling the role of Tax expression in HTLV-1 persisence in vivo, Bull. Math. Biol., 73 (2011), 3008–3029. doi: 10.1007/s11538-011-9657-1
![]() |
[36] |
L. Wang, M. Y. Li, D. Kirschner, Mathematical analysis of the global dynamics of a model for HTLV-I infection and ATL progression, Math. Biosci., 179 (2002), 207–217. doi: 10.1016/S0025-5564(02)00103-7
![]() |
[37] |
A. G. Lim, P. K. Maini, HTLV-Iinfection: A dynamic struggle between viral persistence and host immunity, J. Theor. Biol., 352 (2014), 92–108. doi: 10.1016/j.jtbi.2014.02.022
![]() |
[38] |
X. Pan, Y. Chen, H. Shu, Rich dynamics in a delayed HTLV-I infection model: Stability switch, multiple stable cycles, and torus, J. Math. Anal. Appl., 479 (2019), 2214–2235. doi: 10.1016/j.jmaa.2019.07.051
![]() |
[39] |
H. Gomez-Acevedo, M. Y. Li, S. Jacobson, Multi-stability in a model for CTL response to HTLV-I infection and its consequences in HAM/TSP development, and prevention, Bull. Math. Biol., 72 (2010), 681–696. doi: 10.1007/s11538-009-9465-z
![]() |
[40] |
J. Lang, M. Y. Li, Stable and transient periodic oscillations in a mathematical model for CTL response to HTLV-I infection, J. Math. Biol., 65 (2012), 181–199. doi: 10.1007/s00285-011-0455-z
![]() |
[41] |
M. Y. Li, H. Shu, Multiple stable periodic oscillations in a mathematical model of CTL response to HTLV-I infection, Bull. Math. Biol., 73 (2011), 1774–1793. doi: 10.1007/s11538-010-9591-7
![]() |
[42] | L. Wang, Z. Liu, Y. Li, D. Xu, Complete dynamical analysis for a nonlinear HTLV-I infection model with distributed delay, CTL response and immune impairment, Discrete Cont. Dyn. Syst. Ser. B, 25 (2020), 917–933. |
[43] |
Y. Wang, J. Liu, J. M. Heffernan, Viral dynamics of an HTLV-I infection model with intracellular delay and CTL immune response delay, J. Math. Anal. Appl., 459 (2018), 506–527. doi: 10.1016/j.jmaa.2017.10.027
![]() |
[44] |
F. Li, W. Ma, Dynamics analysis of an HTLV-1 infection model with mitotic division of actively infected cells and delayed CTL immune response, Math. Methods Appl. Sci., 41 (2018), 3000–3017. doi: 10.1002/mma.4797
![]() |
[45] |
S. Li, Y. Zhou, Backward bifurcation of an HTLV-I model with immune response, Discrete Cont. Dyn. Syst. Ser. B, 21 (2016), 863–881. doi: 10.3934/dcdsb.2016.21.863
![]() |
[46] | W. Wang, W. Ma, Global dynamics of a reaction and diffusion model for an HTLV-I infection with mitotic division of actively infected cells, J. Appl. Anal. Comput., 7 (2017), 899–930. |
[47] | C. Casoli, E. Pilotti, U. Bertazzoni, Molecular and cellular interactions of HIV-1/HTLV coinfection and impact on AIDS progression, AIDS Rev., 9 (2007), 140–149. |
[48] | M. T. Silva, O. M. Espíndola, A. C. B. Leite, A. Araújo, Neurological aspects of HIV/human T lymphotropic virus coinfection, AIDS Rev., 11 (2009), 71–78. |
[49] | C. Brites, J. Sampalo, A. Oliveira, HIV/human T-cell lymphotropic virus coinfection revisited: impact on AIDS progression, AIDS Rev., 11 (2009), 8–16. |
[50] |
C. Isache, M. Sands, N. Guzman, D. Figueroa, HTLV-1 and HIV-1 co-infection: A case report and review of the literature, IDCases, 4 (2016), 53–55. doi: 10.1016/j.idcr.2016.03.002
![]() |
[51] |
M. A. Beilke, K. P. Theall, M. O'Brien, J. L. Clayton, S. M. Benjamin, E. L. Winsor, et al., Clinical outcomes and disease progression among patients coinfected with HIV and human T lymphotropic virus types 1 and 2, Clin. Infect. Dis., 39 (2004), 256–263. doi: 10.1086/422146
![]() |
[52] | A. M. Elaiw, N. H. AlShamrani, Analysis of a within-host HIV/HTLV-I co-infection model with immunity, Virus Res., 295 (2020), 198204. |
[53] | A. M. Elaiw, N. H. AlShamrani, HTLV/HIV dual infection: Modeling and analysis, Mathematics, 9 (2021), 51. |
[54] | Z. Wang, Z. Guo, H. Peng, Dynamical behavior of a new oncolytic virotherapy model based on gene variation, Discrete Contin. Dyn. Syst. Ser. S, 10 (2017), 1079–1093. |
[55] |
Z. Xu, Y. Xu, Stability of a CD4^{+} T cell viral infection model with diffusion, Int. J. Biomath., 11 (2018), 1850071. doi: 10.1142/S1793524518500717
![]() |
[56] |
Y. Zhang, Z. Xu, Dynamics of a diffusive HBV model with delayed Beddington-DeAngelis response, Nonlinear Anal. Real World Appl., 15 (2014), 118–139. doi: 10.1016/j.nonrwa.2013.06.005
![]() |
[57] | H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, American Mathematical Society, USA, 1995. |
[58] | M. H. Protter, H. F. Weinberger, Maximum Principles in Differential Equations, Prentice-Hall, New York, 1967. |
[59] | D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, New York, 1993. |
[60] | A. M. Elaiw, A. D. AlAgha, Global dynamics of reaction-diffusion oncolytic M1 virotherapy with immune response, Appl. Math. Comput., 367 (2020), 124758. |
[61] |
A. M. Elaiw, A. D. AlAgha, Analysis of a delayed and diffusive oncolytic M1 virotherapy model with immune response, Nonlinear Anal. Real World Appl., 55 (2020), 103116. doi: 10.1016/j.nonrwa.2020.103116
![]() |
[62] | E. A. Barbashin, Introduction to the Theory of Stability, Springer-Verlag, Groningen, 1970. |
[63] | J. P. LaSalle, The Stability of Dynamical Systems, SIAM, Philadelphia, 1976. |
[64] |
A. M. Lyapunov, The general problem of the stability of motion, Int. J. Control, 55 (1992), 531–773. doi: 10.1080/00207179208934253
![]() |
[65] |
A. S. Perelson, D. E. Kirschner, R. D. boer, Dynamics of HIV Infection of CD4^{+}T cells, Math. Biosci., 114 (1993), 81–125. doi: 10.1016/0025-5564(93)90043-A
![]() |
[66] |
H. Mohri, S. Bonhoeffer, S. Monard, A. S. Perelson, D. D. Ho, Rapid turnover of T lymphocytes in SIV-infected rhesus macaques, Science, 279 (1998), 1223–1227. doi: 10.1126/science.279.5354.1223
![]() |
[67] |
D. Wodarz, Mathematical models of immune effector responses to viral infections: Virus control versus the development of pathology, J. Comput. Appl. Math., 184 (2005), 301–319. doi: 10.1016/j.cam.2004.08.016
![]() |
[68] |
C. Qin, Y. Chen, X. Wang, Global dynamics of a delayed diffusive virus infection model with cell-mediated immunity and cell-to-cell transmission, Math. Biosci. Eng., 17 (2020), 4678–4705. doi: 10.3934/mbe.2020257
![]() |
[69] |
L. Rong, A. S. Perelson, Modeling latently infected cell activation: viral and latent reservoir persistence, and viral blips in HIV-infected patients on potent therapy, PLoS Comput. Biol., 5 (2009), e1000533. doi: 10.1371/journal.pcbi.1000533
![]() |
[70] |
S. K. Sahani, Yashi, Effects of eclipse phase and delay on the dynamics of HIV infection, J. Biol. Syst., 26 (2018), 421–454. doi: 10.1142/S0218339018500195
![]() |
[71] |
J. Liu, Q. Zhang, C. Tian, Effect of time delay on spatial patterns in a airal infection model with diffusion, Math. Model. Anal., 21 (2016), 143–158. doi: 10.3846/13926292.2016.1137503
![]() |
[72] |
X. Wang, X. Tang, Z. Wang, X. Li, Global dynamics of a diffusive viral infection model with general incidence function and distributed delays, Ric. Mat., 69 (2020), 683–702. doi: 10.1007/s11587-020-00481-0
![]() |
[73] | A. Vandormael, F. Rego, S. Danaviah, L. C. J. Alcantara, D. R. Boulware, T. Oliveira, CD4^{+} T-cell count may not be a useful strategy to monitor antiretroviral therapy response in HTLV-1/HIV co-infected patients, Curr. HIV Res., 15 (2017), 225–231. |
1. | Noura H. AlShamrani, Ahmed Elaiw, Aeshah A. Raezah, Khalid Hattaf, Global Dynamics of a Diffusive Within-Host HTLV/HIV Co-Infection Model with Latency, 2023, 11, 2227-7390, 1523, 10.3390/math11061523 |
Steady state | Global stability \text{ conditions} |
{\text{Ð}}_{0} | \Re_{1}\leq1 and \Re_{2}\leq1 |
{\text{Ð}}_{1} | \Re_{1} > 1 , \Re_{2}/\Re_{1}\leq1 and \Re _{3}\leq1 |
{\text{Ð}}_{2} | \Re_{2} > 1 , \Re_{1}/\Re_{2}\leq1 and \Re _{4}\leq1 |
{\text{Ð}}_{3} | \Re_{3} > 1 and \Re_{5}\leq1 |
{\text{Ð}}_{4} | \Re_{4} > 1 and \Re_{6}\leq1 |
{\text{Ð}}_{5} | \Re_{5} > 1 , \Re_{8}\leq1 and \Re_{1}/\Re_{2} > 1 |
{\text{Ð}}_{6} | \Re_{6} > 1 , \Re_{7}\leq1 and \Re_{2}/\Re_{1} > 1 |
{\text{Ð}}_{7} | \Re_{7} > 1 and \Re_{8} > 1 |
Parameter | Value | Source | Parameter | Value | Source | Parameter | Value | Source |
\rho | 10 | [44,65] | \pi_{1} | 0.1 | [67] | \psi | 0.003 | [44] |
\alpha | 0.01 | [6,44,66] | \pi_{2} | 0.1 | Assumed | d_{S} | 0.1 | [71] |
\varkappa_{1} | Varied | \mu_{1} | 0.2 | [68] | d_{L} | 0.1 | Assumed | |
\varkappa_{2} | Varied | \mu_{2} | 0.2 | [46] | d_{I} | 0.01 | Assumed | |
\varkappa_{3} | Varied | \varepsilon | 2 | [68] | d_{E} | 0.01 | Assumed | |
a | 0.5 | [4] | \beta | 0.7 | [69] | d_{Y} | 0.2 | Assumed |
\varphi | 0.2 | [35] | \gamma | 0.02 | Assumed | d_{V} | 0.01 | [72] |
\kappa | 0.9 | [35] | \sigma_{1} | Varied | d_{C^{I}} | 0.2 | Assumed | |
r^{\ast} | 0.008 | Assumed | \sigma_{2} | Varied | d_{C^{Y}} | 0.2 | Assumed | |
\delta^{\ast} | 0.2 | [46] | \lambda | 0.2 | [70] | |||
b | 5 | Assumed | \omega | 0.01 | [44] |
Steady state | Global stability \text{ conditions} |
{\text{Ð}}_{0} | \Re_{1}\leq1 and \Re_{2}\leq1 |
{\text{Ð}}_{1} | \Re_{1} > 1 , \Re_{2}/\Re_{1}\leq1 and \Re _{3}\leq1 |
{\text{Ð}}_{2} | \Re_{2} > 1 , \Re_{1}/\Re_{2}\leq1 and \Re _{4}\leq1 |
{\text{Ð}}_{3} | \Re_{3} > 1 and \Re_{5}\leq1 |
{\text{Ð}}_{4} | \Re_{4} > 1 and \Re_{6}\leq1 |
{\text{Ð}}_{5} | \Re_{5} > 1 , \Re_{8}\leq1 and \Re_{1}/\Re_{2} > 1 |
{\text{Ð}}_{6} | \Re_{6} > 1 , \Re_{7}\leq1 and \Re_{2}/\Re_{1} > 1 |
{\text{Ð}}_{7} | \Re_{7} > 1 and \Re_{8} > 1 |
Parameter | Value | Source | Parameter | Value | Source | Parameter | Value | Source |
\rho | 10 | [44,65] | \pi_{1} | 0.1 | [67] | \psi | 0.003 | [44] |
\alpha | 0.01 | [6,44,66] | \pi_{2} | 0.1 | Assumed | d_{S} | 0.1 | [71] |
\varkappa_{1} | Varied | \mu_{1} | 0.2 | [68] | d_{L} | 0.1 | Assumed | |
\varkappa_{2} | Varied | \mu_{2} | 0.2 | [46] | d_{I} | 0.01 | Assumed | |
\varkappa_{3} | Varied | \varepsilon | 2 | [68] | d_{E} | 0.01 | Assumed | |
a | 0.5 | [4] | \beta | 0.7 | [69] | d_{Y} | 0.2 | Assumed |
\varphi | 0.2 | [35] | \gamma | 0.02 | Assumed | d_{V} | 0.01 | [72] |
\kappa | 0.9 | [35] | \sigma_{1} | Varied | d_{C^{I}} | 0.2 | Assumed | |
r^{\ast} | 0.008 | Assumed | \sigma_{2} | Varied | d_{C^{Y}} | 0.2 | Assumed | |
\delta^{\ast} | 0.2 | [46] | \lambda | 0.2 | [70] | |||
b | 5 | Assumed | \omega | 0.01 | [44] |