Radiology experts often face difficulties in mammography mass lesion labeling, which may lead to conclusive yet unnecessary and expensive breast biopsies. This paper focuses on building an automated diagnosis tool that supports radiologists in identifying and classifying mammography mass lesions. The paper's main contribution is to design a hybrid model based on Pulse-Coupled Neural Networks (PCNN) and Deep Convolutional Neural Networks (CNN). Due to the need for large datasets to train and tune CNNs, which are not available for medical images, Transfer Learning (TL) was exploited in this research. TL can be an effective approach when working with small-sized datasets. The paper's implementation was tested on three public benchmark datasets: DDMS, INbreast, and BCDR datasets for training and testing and MIAS for testing only. The results indicated the enhancement that PCNN provides when combined with CNN compared to other methods for the same public datasets. The hybrid model achieved 98.72% accuracy for DDMS, 97.5% for INbreast, and 96.94% for BCDR. To avoid overfitting, the proposed hybrid model was tested on an unseen MIAS dataset, achieving 98.77% accuracy. Other evaluation metrics are reported in the results section.
Citation: Meteb M. Altaf. A hybrid deep learning model for breast cancer diagnosis based on transfer learning and pulse-coupled neural networks[J]. Mathematical Biosciences and Engineering, 2021, 18(5): 5029-5046. doi: 10.3934/mbe.2021256
Radiology experts often face difficulties in mammography mass lesion labeling, which may lead to conclusive yet unnecessary and expensive breast biopsies. This paper focuses on building an automated diagnosis tool that supports radiologists in identifying and classifying mammography mass lesions. The paper's main contribution is to design a hybrid model based on Pulse-Coupled Neural Networks (PCNN) and Deep Convolutional Neural Networks (CNN). Due to the need for large datasets to train and tune CNNs, which are not available for medical images, Transfer Learning (TL) was exploited in this research. TL can be an effective approach when working with small-sized datasets. The paper's implementation was tested on three public benchmark datasets: DDMS, INbreast, and BCDR datasets for training and testing and MIAS for testing only. The results indicated the enhancement that PCNN provides when combined with CNN compared to other methods for the same public datasets. The hybrid model achieved 98.72% accuracy for DDMS, 97.5% for INbreast, and 96.94% for BCDR. To avoid overfitting, the proposed hybrid model was tested on an unseen MIAS dataset, achieving 98.77% accuracy. Other evaluation metrics are reported in the results section.
[1] | S. Negoita, E. Feuer, A. Mariotto, K. A Cronin, V. I Petkov, S. K Hussey, et al., Annual report to the nation on the status of cancer, part Ⅱ: Recent changes in prostate cancer trends and disease characteristics, Cancer, 124 (2018), 2801-2814. doi: 10.1002/cncr.31549 |
[2] | R. L. Siegel, K. D. Miller, A. Jemal, Cancer statistics, 2016, CA. Cancer J. Clin., 66 (2016), 7-30. doi: 10.3322/caac.21332 |
[3] | R. L. Siegel, K. D. Miller, A. Jemal, Cancer statistics, 2017, CA. Cancer J. Clin., 67 (2017), 7-30. doi: 10.3322/caac.21387 |
[4] | L. Berlin, Radiologic errors, past, present and future, Diagnosis, 1 (2014), 79-84. |
[5] | Y. Guo, X. Shang, Z. Li, Identification of cancer subtypes by integrating multiple types of transcriptomics data with deep learning in breast cancer, Neurocomputing, 324, (2019), 20-30. doi: 10.1016/j.neucom.2018.03.072 |
[6] | B. Sahiner, A. Pezeshk, L. M. Hadjiiski, X. Wang, K. Drukker, K. H. Cha, et al., Deep learning in medical imaging and radiation therapy, Med. Phys., 46 (2019), e1-e36. doi: 10.1002/mp.13264 |
[7] | H. M. Ahmad, M. J. Khan, A. Yousaf, S. Ghuffar, K. Khurshid, Deep learning: a breakthrough in medical imaging, Curr. Med. Imaging, 16, (2020), 946-956. doi: 10.2174/1573405615666191219100824 |
[8] | G. Litjens, T. Kooi, B. Bejnordi, A. Setio, F. Ciompi, M. Ghafoorian, et al., A survey on deep learning in medical image analysis, Med. Image Anal., 42 (2017), 60-88. doi: 10.1016/j.media.2017.07.005 |
[9] | A. A. Mohamed, W. A. Berg, H. Peng, Y. Luo, R. C. Jankowitz, S. Wu, A deep learning method for classifying mammographic breast density categories, Med. Phys., 45 (2018), 314-321. doi: 10.1002/mp.12683 |
[10] | F. F. Ting, Y. J. Tan, K. S. Sim, Convolutional neural network improvement for breast cancer classification, Expert Syst. Appl., 120 (2019), 103-115. doi: 10.1016/j.eswa.2018.11.008 |
[11] | D. M. Vo, N. -Q. Nguyen, S.-W. Lee, Classification of breast cancer histology images using incremental boosting convolution networks, Inf. Sci. (Ny)., 482 (2019), 123-138. doi: 10.1016/j.ins.2018.12.089 |
[12] | F. Ciompi, B. de Hoop, V. R Sarah, K. Chung, E. Scholten, M. Oudkerk, et al., Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box, Med. Image Anal., 26 (2015), 195-202. doi: 10.1016/j.media.2015.08.001 |
[13] | H. Shin, H. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, et al., Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning, IEEE Trans. Med. Imaging, 35 (2016), 1285-1298. doi: 10.1109/TMI.2016.2528162 |
[14] | A. Krizhevsky, I. Sutskever, G. E. Hinton, Machine learning and computer vision group deep learning with tensorflow, 2012. |
[15] | K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, in Computer Vision and Pattern Recognition, 2014. |
[16] | Z. Cömert, A. F. Kocamaz, Fetal hypoxia detection based on deep convolutional neural network with transfer learning approach, Comput. Sci. On-line Conf., (2018), 239-248. |
[17] | M. Oquab, L. Bottou, I. Laptev, J. Sivic, Learning and transferring mid-level image representations using convolutional neural networks, in Conference on Computer Vision and Pattern Recognition, (2014), 1717-1724. |
[18] | M. S. Abdel-Wahab, M. Aboul-Ela, A. Samir, Arabic sign language recognition using neural network and graph matching techniques, Proceed. Int. Conf. App. Inf. Commun., (2006), 163-168. |
[19] | A. SamirElons, M. Abull-ela, M. F. Tolba, Pulse-coupled neural network feature generation model for Arabic sign language recognition, IET Image Process., 7 (2013), 829-836. doi: 10.1049/iet-ipr.2012.0222 |
[20] | M. F. Akay, Support vector machines combined with feature selection for breast cancer diagnosis, Expert Syst. Appl., 36 (2009), 3240-3247. doi: 10.1016/j.eswa.2008.01.009 |
[21] | M. Karabatakm, M. C. Ince, An expert system for detection of breast cancer based on association rules and neural network, Expert Syst. Appl., 36 (2009), 3465-3469. doi: 10.1016/j.eswa.2008.02.064 |
[22] | M. B. Rodrigues, R. D. NóBrega, S. Alves, P. Fillho, J. Durate, A. Sangaiah, et al., Health of things algorithms for malignancy level classification of lung nodules, IEEE Access, 6 (2012), 18592-18601. |
[23] | N. Arunkumar, M. A. Mohammed, S. A. Mostafa, D. A. Ibrahim, J. Rodrigues, V. H. C. de Albuquerque, Fully automatic model‐based segmentation and classification approach for MRI brain tumor using artificial neural networks, Concurr. Comput. Pract. Expert, 32 (2020), e4962. |
[24] | C. M. J. M. Dourado, S. P. P. D. Silva, R. V. M. D. Nóbrega, P. P. R. Filho, K. Muhammad, V. H. C. D. Albuquerque, An open IoHT-based deep learning framework for online medical image recognition, IEEE J. Sel. Areas Commun., 39 (2020), 541-548. |
[25] | K. Muhammad, S. Khan, J. D. Ser, V. H. C. de Albuquerque, Deep learning for multigrade brain tumor classification in smart healthcare systems: A prospective survey, IEEE Trans. Neural Networks Learn. Syst., (2020), 1-16. |
[26] | C. A. Pena-Reyes, M. Sipper, A fuzzy-genetic approach to breast cancer diagnosis, Artif. Intell. Med., 17 (1999), 131-155. doi: 10.1016/S0933-3657(99)00019-6 |
[27] | B. N. Dontchos, A. Yala, R. Barzilay, J. Xiang, C. D. Lehman, External validation of a deep learning model for predicting mammographic breast density in routine clinical practice, Acad. Radiol., 28 (2020), 475-480. |
[28] | T. D. Truong, H. T. -T. Pham, Breast cancer histopathological image classification utilizing convolutional neural network, " in International Joint Conference on Neural Networks (IJCNN), 69 (2019), 531. |
[29] | M. Abdar, M. Zomorodi-Moghadam, X. Zhou, R. Gururajan, X. Tao, P. D. Barua, et al., A new nested ensemble technique for automated diagnosis of breast cancer, Pattern Recognit. Lett., 132 (2020), 123-131. doi: 10.1016/j.patrec.2018.11.004 |
[30] | P. Ferroni, F. M. Zanzotto, S. Riondino, N. Scarpato, F. Guadagni, M. Roselli, Breast cancer prognosis using a machine learning approach, Cancers (Basel), 11 (2019), 328. doi: 10.3390/cancers11030328 |
[31] | D. A. Omondiagbe, S. Veeramani, A. S. Sidhu, Machine learning classification techniques for breast cancer diagnosis, in IOP Conference Series: Materials Science and Engineering., 495 (2019), 12033. |
[32] | Y Tseng, C. Huang, C. Wen, P. Lai, M. Wu, Y. Sun, et al., Predicting breast cancer metastasis by using serum biomarkers and clinicopathological data with machine learning technologies, Int. J. Med. Inform., 128 (2019), 79-86. doi: 10.1016/j.ijmedinf.2019.05.003 |
[33] | M. Abdar, V. Makarenkov, CWV-BANN-SVM ensemble learning classifier for an accurate diagnosis of breast cancer, Measurement, 146 (2019), 557-570. doi: 10.1016/j.measurement.2019.05.022 |
[34] | E. H. Houssein, M. M. Emam, A. A. Ali, P. N. Suganthan, Deep and machine learning techniques for medical imaging-based breast cancer: A comprehensive review, Expert Syst. Appl., (2020), 114161. |
[35] | J. Yosinski, J. Clune, Y. Bengio, H. Lipson, How transferable are features in deep neural networks?, Adv. Neural Inf. Process. Syst., 4 (2014), 3320-3328. |
[36] | K. Bowyer, D. Kopans, W. Kegelmeyer, R. Moore, M. Sallam, K. Chang, et al., The digital database for screening mammography, in Proceedings of the Fifth International Workshop on Digital Mammography, 58 (1996), 27. |
[37] | I. C. Moreira, I. Amaral, I. Domingues, A. Cardoso, M. J. Cardoso, J. S. Cardoso, INbreast: toward a full-field digital mammographic database, Acad. Radiol., 19 (2012), 236-248. doi: 10.1016/j.acra.2011.09.014 |
[38] | J. Suckling, J. Parker, D. Dance, S. Astley, I. Hutt, C. Boggis, et al., Mammographic Image Analysis Society (MIAS) Database v1. 21[Dataset], 2015. |
[39] | Y. LeCun, The MNIST Database of Handwritten Digits, 1998. |
[40] | Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, et al., Caffe: Convolutional architecture for fast feature embedding, in Proceedings of the 22nd ACM international conference on Multimedia, (2014), 675-678. |
[41] | O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, et al., ImageNet large scale visual recognition challenge, Int. J. Comput. Vis., 115 (2015), 211-252. doi: 10.1007/s11263-015-0816-y |
[42] | B. Q. Huynh, H. Li, M. L. Giger, Digital mammographic tumor classification using transfer learning from deep convolutional neural networks, J. Med. Imaging, 3 (2016), 034501. doi: 10.1117/1.JMI.3.3.034501 |
[43] | J. D. Gallego-Posada, D. A. Montoya-Zapata, O. L. Quintero-Montoya, D. A. Montoya-Zapa, Detection and diagnosis of breast tumors using deep convolutional neural networks, in Conference Proceedings of XVⅡ Latin American Conference in Automatic Control, (2016), 17. |
[44] | P. Xi, C. Shu, R. Goubran, Abnormality detection in mammography using deep convolutional neural networks, Comput. Sci., 2018. |
[45] | D. Lévy, A. Jain, Breast mass classification from mammograms using deep convolutional neural networks, Comput. Sci., 2016. |
[46] | H. S. Ranganath, G. Kuntimad, J. L. Johnson, Pulse coupled neural networks for image processing, in Proceedings IEEE Southeastcon 95 Visualize the Future, (1995), 37-43. |
[47] | H. Jia, X. Peng, L. Kang, Y. Li, Z. Jiang, K. Sun, Pulse coupled neural network based on Harris hawks optimization algorithm for image segmentation, Multimed. Tools Appl., 79 (2020), 28369-28392. doi: 10.1007/s11042-020-09228-3 |
[48] | T. Kalaiselvi, K. Rahimunnisa, A. S. Begum, Department of electronics and instrumentation engineering, easwari, Pulse, 29 (2020), 4411-4415. |
[49] | A. Binder, M. Bockmayr, M. Hägele, S. Wienert, D. Heim, K. Hellweg, et al., Morphological and molecular breast cancer profiling through explainable machine learning, Nat. Mach. Intell., 3 (2021), 355-366. doi: 10.1038/s42256-021-00303-4 |
[50] | Y. -D. Zhang, S. C. Satapathy, D. S. Guttery, J. M. Górriz, S. -H. Wang, Improved breast cancer classification through combining graph convolutional network and convolutional neural network, Inf. Process. Manag., 58 (2021), 102439. doi: 10.1016/j.ipm.2020.102439 |
[51] | M. Abdar, F. Pourpanah, S. Hussain, D. Rezazadegan, L. Liu, M. Ghavamzadeh, et al., A review of uncertainty quantification in deep learning: techniques, applications and challenges, Inf. Fus., 2021. |
[52] | R. Alizadehsani, M. Roshanzamir, S. Hussain, A. Khosravi, A. Koohestani, M. H Zangooei, et al., Handling of uncertainty in medical data using machine learning and probability theory techniques: a review of 30 years (1991-2020), Ann. Oper. Res., (2021), 1-42. |