Citation: Yuanbin Yu, Junyu Jiang, Pengyu Wang, Jinke Li. A-EMCS for PHEV based on real-time driving cycle prediction and personalized travel characteristics[J]. Mathematical Biosciences and Engineering, 2020, 17(6): 6310-6341. doi: 10.3934/mbe.2020333
[1] | M. F. M. Sabri, K. A. Danapalasingam, M. F. Rahmat, A review on hybrid electric vehicles architecture and energy management strategies, Renew. Sustain. Energy Rev., 53 (2016), 1433-1442. doi: 10.1016/j.rser.2015.09.036 |
[2] | H. Sö lek, K. Müderrisoğlu, C. Armutlu, M. Yılmaz, Development of fuzzy logic based energy management control algorithm for a Plug-in HEV with fixed routed, 2019 International Aegean Conference on Electrical Machines and Power Electronics (ACEMP). |
[3] | R. Du, X. Hu, S. Xie, Battery aging- and temperature-aware predictive energy management for hybrid electric vehicles, J. Power Sources, 473 (2020), 228568. doi: 10.1016/j.jpowsour.2020.228568 |
[4] | F. Xu, X. Jiao, Y. Wang, Y. Jing, Battery-lifetime-conscious energy management strategy based on SP-SDP for commuter plug-in hybrid electric vehicles, IEEE J. Trans. Electr. Electron. Eng., 13 (2018), 472-479. doi: 10.1002/tee.22590 |
[5] | J. Gao, J. Zhao, S. Yang, J. Xi, Control strategy of Plug-in hybrid electric bus based on driver intention, J. Mechan. Eng., 52 (2016), 107-114. |
[6] | N. Sulaiman, M. A. Hannan, A. Mohamed, E. H. Majlana, W. R. Wan Daud, A review on energy management system for fuel cell hybrid electric vehicle: Issues and challenges, Renew. Sustain. Energy Rev., 52 (2015), 802-814. |
[7] | M. Sivertsson, L. Eriksson, Design and evaluation of energy management using map-based ECMS for the PHEV benchmark, Oil Gas Sci. Technol., 70 (2015), 159-178. doi: 10.2516/ogst/2014022 |
[8] | F. Zhang, X. Hu, R. Langaric, D. Cao, Energy management strategies of connected HEVs and PHEVs: Recent progress and outlook, Prog. Energy Combust. Sci., 73 (2019), 235-256. doi: 10.1016/j.pecs.2019.04.002 |
[9] | Z. Chen, N. Guo, J. Shen, R. Xiao, P. Dong, A hierarchical energy management strategy for power-split plug-in hybrid electric vehicles considering velocity prediction, IEEE Access, 6 (2018), 3261-3274. |
[10] | W. Zhou, L. Yang, Y. S. Cai, T. X. Ying, Dynamic programming for new energy vehicles based on their work modes Part I: Electric vehicles and hybrid electric vehicles, J. Power Sources, 406 (2018), 15166. |
[11] | Y. Zhou, A. Ravey, M. C. Péra, A survey on driving prediction techniques for predictive energy management of plug-in hybrid electric vehicles, J. Power Sources, 412 (2019), 480-495. doi: 10.1016/j.jpowsour.2018.11.085 |
[12] | L. Li, C. Yang, Y. Zhang, A rule-based energy management strategy for Plug-in Hybrid Electric vehicle energy management strategy of Plug-in hybrid electric bus for city-bus route, IEEE Trans. Veh. Technol., 64 (2015), 2792-2803. doi: 10.1109/TVT.2014.2352357 |
[13] | A. Rezaei, J. B. Burl, B. Zhou, Estimation of the ECMS equivalent factor bounds for hybrid electric vehicles, IEEE Transact. Control Systems Technol., 26 (2018), 2198-2205. doi: 10.1109/TCST.2017.2740836 |
[14] | H. Guo, G. Wei, F. Wang, C. Wang, S. Du, Self-learning enhanced energy management for Plug-in Hybrid electric bus with a target preview based SOC plan method, IEEE Access, 7 (2019), 103153-103166. doi: 10.1109/ACCESS.2019.2931509 |
[15] | R. Lian, J. Peng, Y. Wu, H. Tan, H. Zhang, Rule-interposing deep reinforcement learning based energy management strategy for power-split hybrid electric vehicle, Energy, 197 (2020), 117297. doi: 10.1016/j.energy.2020.117297 |
[16] | G. Liu, J. Zhang, An energy management of plug-in hybrid electric vehicles based on driver behavior and road information, J. Intell. Fuzzy Systems, 33 (2017), 3009-3020. doi: 10.3233/JIFS-169352 |
[17] | C. Sun, S. J. Moura, X. Hu, J. K. Hedrick, F. Sun, Dynamic traffic feedback data enabled energy management in plug-in hybrid electric vehicles, IEEE Transact. Control Systems Technol., 23 (2015), 1075-1086. doi: 10.1109/TCST.2014.2361294 |
[18] | J. Shin, M. Sunwoo, Vehicle speed prediction using a Markov chain with speed constraints, IEEE Transact. Intell. Transport. Systems, 20 (2019), 3201-3211. doi: 10.1109/TITS.2018.2877785 |
[19] | D. Hodgson, B. C. Mecrow, S. M. Gadoue, H. J. Slater, P. G. Barrass, D. Glaouris, Effect of vehicle mass changes on the accuracy of Kalman filter estimation of electric vehicle speed, IET Electr.l Systems Transport., 3 (2013), 67-78. doi: 10.1049/iet-est.2012.0027 |
[20] | Z. Lei, D. Qin, L. Hou, J. Peng, Y. Liu, An adaptive equivalent consumption minimization strategy for Plug-in hybrid electric vehicles based on traffic information, Energy, 190 (2020). |
[21] | P. Wang, J. Li, Y. Yu, X. Xiong, S. Zhao, W. Shen, Energy management of plug-in hybrid electric vehicle based on trip characteristic prediction, Proc. IMechE Part D J. Autom. Eng., 234 (2020), 2239-2259. doi: 10.1177/0954407020904464 |
[22] | H. Y. Tong, Development of a driving cycle for a supercapacitor electric bus route in Hong Kong, Sustain. Cities Soc., 48 (2019), 101588. doi: 10.1016/j.scs.2019.101588 |
[23] | J. Zhang, Z. Wang, P. Liu, Z. Zhang, X. Li, C. Qu, Driving cycles construction for electric vehicles considering road environment: A case study in Beijing, Appl. Energy, 253 (2019), 113514. doi: 10.1016/j.apenergy.2019.113514 |
[24] | P. Seers, G. Nachin, M. Glaus, Development of two driving cycles for utility vehicles, Transport. Res. Part D Transport Environ., 41 (2015), 377-385. doi: 10.1016/j.trd.2015.10.013 |
[25] | S. Zhan, D. Qin, Y. Zeng, Energy management strategy of HEV based on driving cycle recognition using genetic optimized K-means clustering algorithm, China J. Highway Transport, 29 (2016), 130-152. |
[26] | H. Yu, F. Tseng, R. Mcgee, Driving pattern identification for EV range estimation, IEEE Intern. Electr. Vehicle Conference 2012, pp. 1-7. |
[27] | L. Xie, J. Tao, Q. Zhang, H. Zhou, CNN and KPCA-based automated feature extraction for real time driving pattern recognition, IEEE Access, 7 (2019), 123765-123775. doi: 10.1109/ACCESS.2019.2938768 |
[28] | Y.Zhou, A. Ravey, M. C. Pera, A survey on driving prediction techniques for predictive energy management of plug-in hybrid electric vehicles, J. Power Sources, 412 (2019), 480-495. doi: 10.1016/j.jpowsour.2018.11.085 |
[29] | J. Lian, S. Liu, L. Li, X. Liu, Y. Zhou, F. Yang, et al. A mixed logical dynamical-model predictive control (MLD-MPC) energy management control strategy for Plug-in hybrid electric vehicles (PHEVs), Energies, 10 (2017), 74. doi: 10.3390/en10010074 |
[30] | F. Shi, Y. Wang, J. Chen, J. Wang, Y. Hao, Y. He, Short-term vehicle speed prediction by time series neural network in high altitude areas, IOP Conference Series Earth Environ. Science, 304 (2019), 032072. doi: 10.1088/1755-1315/304/3/032072 |
[31] | K. W. Wang, C. Deng, J. P. Li, Y. Y. Zhang, X. Y. Li, M. C. Wu, Hybrid methodology for tuberculosis incidence time-series forecasting based on ARIMA and a NAR neural network, Epidem. Infect., 145(2017), 1118-1129. |
[32] | C. Musardo, G. Rizzoni, Y. Guezennec, B. Staccia. A-ECMS: An adaptive algorithm for hybrid electric vehicle energy management. European J. Control, 11 (2005), 509-524. |
[33] | C. Yang, S. Du, L. Li, S. You, Y. Yang, Y. Zhao, Adaptive real-time optimal energy management strategy based on equivalent factors optimization for plug-in hybrid electric vehicle, Appl. Energy, 2017,883-896. |
[34] | C. Sun, F. Sun, H. He, Investigating adaptive-ECMS with velocity forecast ability for hybrid electric vehicles, Appl. Energy, 185 (2017), 1644-1653. doi: 10.1016/j.apenergy.2016.02.026 |
[35] | T. Amir, V. Mahyar, A. Nasser, M. John, A comparative analysis of route-based energy management systems for Phevs, Asian J. Control, 18 (2016), 29-39. doi: 10.1002/asjc.1191 |
[36] | Y. Zhang, L. Chu, Z. Fu, Optimal energy management strategy for parallel plug-in hybrid electric vehicle based on driving behavior analysis and real time traffic information prediction, Mechatronics, 46 (2017), 177-192. doi: 10.1016/j.mechatronics.2017.08.008 |
[37] | Suprihatin, I. T. R. Yanto, N. Irsalinda, T. H. Purwaningsih, A. P. Wibawa, A performance of modified fuzzy C-means (FCM) and chicken swarm optimization (CSO), 3rd international conference on science in information technology (ICSITech), Bandung, 2017: pp. 171-175. |