
Citation: Yuanpei Xia, Weisong Zhou, Zhichun Yang. Global analysis and optimal harvesting for a hybrid stochastic phytoplankton-zooplankton-fish model with distributed delays[J]. Mathematical Biosciences and Engineering, 2020, 17(5): 6149-6180. doi: 10.3934/mbe.2020326
[1] | Xinyou Meng, Jie Li . Stability and Hopf bifurcation analysis of a delayed phytoplankton-zooplankton model with Allee effect and linear harvesting. Mathematical Biosciences and Engineering, 2020, 17(3): 1973-2002. doi: 10.3934/mbe.2020105 |
[2] | He Liu, Chuanjun Dai, Hengguo Yu, Qing Guo, Jianbing Li, Aimin Hao, Jun Kikuchi, Min Zhao . Dynamics induced by environmental stochasticity in a phytoplankton-zooplankton system with toxic phytoplankton. Mathematical Biosciences and Engineering, 2021, 18(4): 4101-4126. doi: 10.3934/mbe.2021206 |
[3] | Zhenyao Sun, Da Song, Meng Fan . Dynamics of a stoichiometric phytoplankton-zooplankton model with season-driven light intensity. Mathematical Biosciences and Engineering, 2024, 21(8): 6870-6897. doi: 10.3934/mbe.2024301 |
[4] | Sheng Wang, Lijuan Dong, Zeyan Yue . Optimal harvesting strategy for stochastic hybrid delay Lotka-Volterra systems with Lévy noise in a polluted environment. Mathematical Biosciences and Engineering, 2023, 20(4): 6084-6109. doi: 10.3934/mbe.2023263 |
[5] | Ruiqing Shi, Jianing Ren, Cuihong Wang . Stability analysis and Hopf bifurcation of a fractional order mathematical model with time delay for nutrient-phytoplankton-zooplankton. Mathematical Biosciences and Engineering, 2020, 17(4): 3836-3868. doi: 10.3934/mbe.2020214 |
[6] | Saswati Biswas, Pankaj Kumar Tiwari, Yun Kang, Samares Pal . Effects of zooplankton selectivity on phytoplankton in an ecosystem affected by free-viruses and environmental toxins. Mathematical Biosciences and Engineering, 2020, 17(2): 1272-1317. doi: 10.3934/mbe.2020065 |
[7] | Xin Zhao, Lijun Wang, Pankaj Kumar Tiwari, He Liu, Yi Wang, Jianbing Li, Min Zhao, Chuanjun Dai, Qing Guo . Investigation of a nutrient-plankton model with stochastic fluctuation and impulsive control. Mathematical Biosciences and Engineering, 2023, 20(8): 15496-15523. doi: 10.3934/mbe.2023692 |
[8] | Fangfang Zhu, Xinzhu Meng, Tonghua Zhang . Optimal harvesting of a competitive n-species stochastic model with delayed diffusions. Mathematical Biosciences and Engineering, 2019, 16(3): 1554-1574. doi: 10.3934/mbe.2019074 |
[9] | Zhichao Jiang, Xiaohua Bi, Tongqian Zhang, B.G. Sampath Aruna Pradeep . Global Hopf bifurcation of a delayed phytoplankton-zooplankton system considering toxin producing effect and delay dependent coefficient. Mathematical Biosciences and Engineering, 2019, 16(5): 3807-3829. doi: 10.3934/mbe.2019188 |
[10] | Zhiwei Huang, Gang Huang . Mathematical analysis on deterministic and stochastic lake ecosystem models. Mathematical Biosciences and Engineering, 2019, 16(5): 4723-4740. doi: 10.3934/mbe.2019237 |
In aquatic ecosystems, phytoplankton are taken as basic food source and the first trophic level while zooplankton are primary consumers of phytoplankton in food chains [1]. Some plankton models composed of phytoplankton and zooplankton were formulated, and dynamical behaviors of those models were investigated in the past two decades (e.g., [2,3,4,5,6,7,8]). Besides plankton, fish is an essential part in aquatic environments like fishponds, lakes, rivers, oceans, etc.. According to an experiment given in [9], it was clearly showed that the addition of fish to the chain of phytoplankton-zooplankton caused the reduction in the algae intake of zooplankton and the rapid growth of phytoplankton. Thus, it is meaningful to incorporate plankton-feeding fish into the plankton model to form the food chain relationship with three species involving fish, phytoplankton and zooplankton. Actually, the study of asymptotical behavior for the plankton-fish model is closely related to the sustainable development of aquatic ecosystems. Scheffe [10] originally accounted for the effects of planktivorous fish in the phytoplankton-zooplankton interaction model, and Malchow et al.[11] have extended the model to a spatial one. Recently, Prabir Panja et al.[12] formulated a toxin-producing phytoplankton-zooplankton-fish model and obtained some sufficient conditions on stability, the existence of equilibrium and bifurcation of the model. Amit Sharma et al. [13] proposed a delayed plankton-fish model with harvesting, and the bifurcation analysis of the system was carried out by taking the rate of harvesting as the bifurcation parameter. Meng and Wu [14] proposed a delayed phytoplankton-zooplankton-fish model with taxation and nonlinear fish harvesting, and gave the Hopf-bifurcation analysis for the model. Wei et al.[15] considered a time-varying phytoplankton-zooplankton-fish system, and gave some sufficient conditions ensuring global asymptotical stability. Since many omnivorous fishes (like crucian carp, grass carp, carp, engraulis japonicus, cockerel, etc.) feed on both phytoplankton and zooplankton, there are more enriching and complex behaviors for the phytoplankton-zooplankton-fish system with the food chain relationship given in Figure 1 (e.g., [12,13]).
On the other hand, delay effects and environmental disturbances are unavoidable in the real world. Time delays occur frequently in many predator-prey models because predators can increase their quantity through digestion, absorption, reproduction and other processes after ingesting the food [16,17]. Meanwhile, environmental noises often affect dynamic behaviors of the population system [18,19,20] since the birth rate, death rate, environmental carrying rate and other system parameters of species are easily disturbed by noises. These noises usually involve white noise and telegraph noise. Telegraph noise can be regarded as switching without memory between two or more states, and the time spent in switching between two states is exponentially distributed [21,22]. Therefore, it is more realistic to formulate a phytoplankton-zooplankton-fish model with time delays and hybrid stochastic noises involving Brownian motion and Markov chain, which essentially belongs to the stochastic predator-prey system. In past decades, some interesting results on stochastic predator-prey models have been investigated. In [23], the authors studied the stationary distribution and global asymptotic stability of a three-species stochastic food-chain system without time-delay. In [24], the authors considered a three-species food chain stochastic system with a hidden Markov chain and proposed two kinds of special dissipative control strategies. One can refer to recent publications on dynamical behaviors of stochastic predator-prey systems [25,26,27,28]. To the best of our knowledge, however, there are few works to discuss the dynamics for the stochastic delayed phytoplankton-zooplankton-fish model with the food chain relationship given in Figure 1.
What's more, the optimal harvesting strategy is of great significance to the development of the ecosystem. In the phytoplankton-zooplankton-fish system, the eutrophication of the water body will be controlled by harvesting plankton [29]. Ones can directly benefit from fish, but overfishing may break the balance of the ecosystem. In response to the issue of resource sustainability, Clark and Mesterton-Gibbons et al. have established several types of predator-prey ecological models with optimal harvesting strategies, and discussed how to implement harvesting strategies to maintain fisheries sustainable development [30,31,32,33]. The optimal harvesting problem of the stochastic predator-prey model with time delays was investigated by the ergodic method in [34,35,36]. In the obtained optimization strategies, authors focused on the maximum of total species that has been harvested rather than the maximum of total economic income. By using Pontryagin's maximum principle, the optimal harvesting policy with the maximized present value of revenues was given for a deterministic phytoplankton-zooplankton model [3]. Nevertheless, there are few publications to investigate the optimal harvesting problem in economic income for the stochastic phytoplankton-zooplankton-fish model with time delays.
Motivated by the above discussion, we propose the following hybrid stochastic phytoplankton-zooplankton-fish system with distributed delays and harvesting
{dx1(t)=x1(t)[a1(γ(t))−h1−c11x1(t)−c12∫0−τ12x2(t+θ)dμ12(θ)−c13∫0−τ13x3(t+θ)dμ13(θ)]dt+σ1(γ(t))x1(t)dβ1(t),dx2(t)=x2(t)[−a2(γ(t))−h2+c21∫0−τ21x1(t+θ)dμ21(θ)−c22x2(t)−c23∫0−τ23x3(t+θ)dμ23(θ)]dt+σ2(γ(t))x2(t)dβ2(t),dx3(t)=x3(t)[−a3(γ(t))−h3+c31∫0−τ31x1(t+θ)dμ31(θ)+c32∫0−τ32x2(t+θ)dμ32(θ)−c33x3(t)]dt+σ3(γ(t))x3(t)dβ3(t), | (1) |
where xi(t),i=1,2,3, is the population size of phytoplankton, zooplankton and fish at time t, respectively, a1(⋅)>0 means the growth rate of species x1,aj(⋅)>0(j=2,3) stands for the death rate of species xj, cii>0 shows the intra-specific competition of the ith species, c12,c13 and c23>0 denote the capture rates, c21,c31 and c32>0 represent the conversation rate of the food, hi≥0 is harvesting effort of phytoplankton, zooplankton and fish, respectively, τij is time delay and μij(θ) is a deterministic and nondecreasing function defined on [−τij,0] satisfying ∫0−τijdμij(θ)=1, βi(t)t≥0 is standard independent Brownian motion defined on a complete probability space (Ω,{Ft}t≥0,P) with a filtration {Ft}t≥0 satisfying the usual conditions and σ2i(⋅) represents the intensity of the stochastic noise, {γ(t),t≥0} is a continuous-time Markov chain in a finite state space S={1,⋯n} with the generator Q=(qij)n×n, which follows
P{γ(t+δ)=j∣γ(t)=i}={qijδ+o(δ),if i≠j;1+qijδ+o(δ),if i=j, |
and δ=0, qij is the transition rate from i to j satisfying qij>0,qii=−∑j≠iqij.
In this paper, we mainly study dynamical behaviors and optimal harvesting policy for the above phytoplankton-zooplankton-fish model with distributed delays, hybrid stochastic noises and harvesting. The main purpose and contribution of this paper are listed as follows. Firstly, we formulate a stochastic phytoplankton-zooplankton-fish model with distributed delays and harvesting, in which hybrid stochastic noises involve Brownian motion and Markov chain. Secondly, we give a global analysis of dynamics on persistence, extinction, stability and attractivity in terms of some system parameters for the stochastic delayed system. Lastly, we provide the optimal harvesting policy by solving the following optimization problem with the maximum of total economic income
maxΦ(H)=limt→∞3∑j=1rjhjE(xj(t))−W,s.t.limt→∞∫t0xi(s)dst>0,H=(h1,h2,h3)T≥0, | (2) |
where the harvesting effort H is the decision variable, and the total profit Φ is the objective function, the unit profit rj=pj−qj>0, pj represents the unit market price of the species xj, and qj is the cost unit price of harvesting the species xj,j=1,2,3, W stands for the total fixed cost for harvesting three species.
The remaining part of this paper is organized as follows. In section 2, we give some definitions, assumptions and basic lemmas. In section 3, we give the global analysis of dynamic behavior on stability, persistence and extinction for the system (1). We obtain the sufficient and necessary condition for the optimal harvesting strategy and the maximum of harvesting yield in section 4. Lastly, we illustrate our main results in some examples and their simulations in section 5.
In the model (1), we always suppose that Brownian motions βi(t) and the Markov chain γ(t) are independent, and the Markov chain is irreducible. According to [37], γ(t) is ergodic and has a unique stationary distribution ξ=(ξ1,⋯ξn) satisfying
ξQ=0,n∑i=1ξi=1,ξi>0,i=1,⋯,n. |
For simplicity, we define the following notions.
ˉaj=n∑k=1ξkaj(k), ˉσ2j2=n∑k=1ξkσ2j(k)2,j=1,2,3, |
d1(γ(t))=a1(γ(t))−σ21(γ(t))2,di(γ(t))=ai(γ(t))+σ2i(γ(t))2,i=2,3, |
ˉdj=n∑k=1ξkdj(k),j=1,2,3,d=(ˉd1,ˉd2,ˉd3)T,u1=a1(γ(t))−h1−σ21(γ(t))2, |
ui=ai(γ(t))+hi+σi2(γ(t))2,i=2,3,ˉuj=n∑k=1ξkuj(k),j=1,2,3, |
C=[c11c12c13−c21c22c23−c31−c32c33],R=|c11ˉa1ˉσ21/2+h1−c21−ˉa2ˉσ22/2+h2−c31−ˉa3ˉσ23/2+h3|, |
C1=|ˉa1c12c13−ˉa2c22c23−ˉa3−c32c33|,~C1=|ˉσ21/2+h1c12c13ˉσ22/2+h2c22c23ˉσ23/2+h3−c32c33|, |
C2=|c11ˉa1c13−c21−ˉa2c23−c31−ˉa3c33|,~C2=|c11ˉσ21/2+h1c13−c21ˉσ22/2+h2c23−c31ˉσ23/2+h3c33|, |
C3=|c11c12ˉa1−c21c22−ˉa2−c31−c32−ˉa3|,~C3=|c11c12ˉσ21/2+h1−c21c22ˉσ22/2+h2−c31−c32ˉσ23/2+h3|, |
Δ1=c22ˉa1+c12ˉa2, Δ2=c21ˉa1−c11ˉa2, Δ3=c31ˉa1−c11ˉa3, |
˜Δ1=c22(ˉσ212+h1)−c12(ˉσ222+h1),˜Δ2=c21(ˉσ212+h1)+c11(ˉσ222+h2),˜Δ3=c31(ˉσ212+h1)+c11(ˉσ232+h3), |
ω1=ˉa1ˉσ21/2+h1, ω2=Δ2˜Δ2, ω3=C3˜C3, Θ2=Δ3˜Δ3, Θ3=C2˜C2, |
ˆσi=maxk∈S{|σi(k)|},ˆai=maxk∈S{ai(k)},˘ai=mink∈S{ai(k)},⟨Yj(t)⟩=limt→∞1t∫t0Yj(s)ds, |
|C| represents the determinant of C, Cij stands for the complement minor of |C|,i,j=1,2,3, for m,n∈R, m∧n=min{m,n}, and let I be the unit matrix.
Next, we will give the following assumptions.
(H1) |C|>0,Ci>0, Δj>0,j=2,3;
(H2) ˜Ci>0,i=1,2,3,C23>0,C12>0,C31<0.
According to the above assumptions, we can see that the system (1) has a positive equilibrium state if there is no stochastic noise and harvesting and that species 1 and species j,j=2,3 can coexist without stochastic noise, harvesting and other predators [38].
For delayed stochastic system (1), the initial conditions are given in the following form
X(t0+s)=ϕ(s),s∈[−τ,0],ϕ∈C([−τ,0],R3+),γ(t0)=k∈S. |
Here, we denote C([−τ,0];R3+) represents the family of all continuous functions from [−τ,0]→{x∈R3|x1>0,x2>0,x3>0} and τ=maxi≠j{τij}.
In the following, we give some definitions and lemmas to obtain our main results.
Definition 1. (see [39]) Let X(t)=(x(t),γ(t))∈R3+×S be the solution of the system (1). Then for i=1,2,3,
(a) the population xi(t) is said to be extinct if limt→∞xi(t)=0, a.s.;
(b) the population xi(t) is said to be stable in the mean if limt→∞1t∫t0xi(s)ds=c>0, a.s..
Definition 2. (see [40]) The system ({1) is said to be asymptotically stable in distribution if there exists a probability measure π(⋅×⋅) on R3+×S such that transition probability p(t,ϕ,i,dy×j) of the stochastic process y(t) converges weakly to π(dy×j) as t→∞ for every initial value ϕ∈C([−τ,0],R3+) with γ(0)=i∈S.
For the biological significance, we first give the well-posedness and boundedness of the system (1).
Lemma 1. For any given initial value ϕ∈C([−τ,0],R3+) with γ(0)=k∈S, the system (1) has a unique global positive solution X(t)=(x(t),γ(t))∈R3+×S, a.s.. Furthermore, for any p>0, there exist constants Ki(p)>0 such that
lim supt→∞E[xpi(t)]≤Ki(p),i=1,2,3. |
Proof. It is easy to see the function defined in right side of the system (1) obeys the local Lipschitz condition. Then, the system has a unique local solution X(t) on [0,τe), where τe stands for the explosion time. We may prove τe=∞ a.s.. Fix a k0>0 sufficiently large for x1(ϕ),x2(ϕ),x3(ϕ)∈(1/k0,k0). For each integer k>k0, define stopping times as follows
τk=inf{t∈[0,τe):x1(t)∉(1/k,k),x2(t)∉(1/k,k),x3(t)∉(1/k,k)}. |
It is clear that τk is increasing with k. Setting τ∞=limt→∞τk, we have τ∞≤τe a.s.. Thus, we only need to prove τ∞=∞, a.s.. For if this statement is false, there exists a T>0 and an ϵ∈(0,1) such that P(τ∞≤T)>ϵ. We can find an integer k1>k0 such that P(τk≤T)>ϵ for any k>k1. Then take three positive constants χ,κ and n>0 for
−χc11+nc21+nκc312<0,−c22+χc12+nc21+n2c32κ2n2<0,−c33κ+χc13+c23+nκ(c31+c32)2n2<0. |
We choose n sufficiently large and two positive constants κ>2c22c32 and χ>nc21+nκc312c11. Define vi(xi)=xi−1−lnxi,i=1,2,3,
v4(x1,x2,x3)=χc122∫0−τ12∫tt+θx22(s)dsdμ12(θ)+χc132∫0−τ13∫tt+θx23(s)dsdμ13(θ)+c232∫0−τ23∫tt+θx23(s)dsdμ23+c212∫0−τ21∫tt+θx21(s)dsdμ21(θ)+κc312∫0−τ31∫tt+θx21(s)dsdμ31(θ)+κc322∫0−τ32∫tt+θx22(s)dsdμ32(θ). |
In particular, vi(xi),i=1,2,3 and v4(x1,x2,x3) are independent of γ. By the generalized Itô's formula, we can obtain
dv1(x1)=L[v1(x1)]dt+σ1(γ(t))[x1−1]dβ1,dv2(x2)=L[v2(x2)]dt+σ2(γ(t))[x2−1]dβ2,dv3(x3)=L[v3(x3)]dt+σ3(γ(t))[x3−1]dβ3, |
where
L[v1(x1)]=(x1−1)[a1(γ(t))−h1−c11x1−c12∫0−τ12x2(t+θ)dμ12(θ)−c13∫0−τ13x3(t+θ)dμ13(θ)]+σ21(γ(t))2,L[v2(x2)]=(x2−1)[−a2(γ(t))−h2+c21∫0−τ21x1(t+θ)dμ21(θ)−c22x2−c23∫0−τ23x3(t+θ)dμ23(θ)]+σ22(γ(t))2,L[v3(x3)]=(x3−1)[−a3(γ(t))−h3+c31∫0−τ31x1(t+θ)dμ31(θ)+c32∫0−τ32x2(t+θ)dμ32(θ)−c33x3]+σ23(γ(t))2. |
Thus
L[v1(x1)]≤ˆσ212−(˘a1−h1)+(c12+c13)n22+(c11+^a1−h1)x1+c122n2∫0−τ12x22(t+θ)dμ12(θ)+c132n2∫0−τ13x23(t+θ)dμ13(θ)−c11x21,L[v2(x2)]≤ˆσ222+^a2+h2+n22c23+(c22−˘a2−h2)x2+(c212n−c22)x22+c232n2∫0−τ23x23(t+θ)dμ23(θ)+nc212∫0−τ21x21(t+θ)dμ21(θ),L[v3(x3)]≤ˆσ232+^a3+h3+(c31+c322n−c33)x23+(c33−˘a3−h3)x3+nc312∫0−τ31x21(t+θ)dμ31(θ)+nc322∫0−τ32x22(t+θ)dμ32(θ). |
Define V(x1,x2,x3)=χv1(x1)+v2(x2)+κv3(x3)+v4(x1,x2,x3)
dV(x1,x2,x3)=[χLv1(x1)+Lv2(x2)+κLv3(x3)+ddtv4(x1,x2,x3)]dt+χ(x1−1)σ1(γ(t))dβ1(t)+(x2−1)σ2(γ(t))dβ2(t)+κ(x3−1)σ3(γ(t))dβ3(t), |
where
χLv1(x1)+Lv2(x2)+κLv3(x3)+ddtv4(x1,x2,x3)≤ˆσ212χ−χ(˘a1−h1)+χ(c11+^a1−h1)x1+(c12+c13)n22χ+c12x22+c13x232n2χ−χc11x21+ˆσ222+^a2+h2+n2c232+(c22−˘a2−h2)x2+(c212n−c22)x22+c232n2x23+nc212x21+ˆσ232κ+κ(^a3+h3)+κ(c31+c322n−c33)x23+κ(c33−˘a3−h3)x3+κnc312x21+nκc322x22=(−χc11+nc212+κnc312)x21+χ(c11+^a1−h1)x1+(χc122n2+c212n−c22+κnc322)x22+(c22−˘a2−h2)x2+(χc13+c232n2+κ(c31+c32)2n−κc33)x23+κ(c33−˘a3−h3)x3+χˆσ21+ˆσ22+κˆσ232−χ(˘a1−h1)+χn22(c12+c13)+ˆa2+h2+n22c23+κ(˘a3+h3). |
Thus there is a L>0
dV(x1,x2,x3)≤Ldt+χ(x1−1)σ1(γ(t))dβ1(t)+(x2−1)σ2(γ(t))dβ2(t)+κ(x3−1)σ3(γ(t))dβ3(t). | (3) |
Integral on both sides of Eq (3) from 0 to τk∧T and then take expectation, for k→∞, we can get the following contradiction
∞=EV(x(τk∧T))≤V(x(0))+∫τk∧T0Ldr≤V(x(0))+LT<∞. |
Thus, τe=∞, a.s.. We next to prove lim supt→∞E[xpi(t)]≤Ki(p),i=1,2,3. Define a function U1(x1)=etxp1. According to the generalised Itô's formula
dU1(x1)=LU1(x1)dt+petxp1σ1(γ(t))dβ1(t), | (4) |
where
LU1(x1)=etx1p{1+p(p−1)σ21(γ(t))2+p[a1(γ(t))−h1−c11x1(t)−c12∫0−τ12x2(t+θ)dμ12(θ)−c13∫0−τ13x3(t+θ)dμ13(θ)]}. |
For p≥1
LU1(x1)≤et{[1+p(p−1)ˆσ212+pˆa1]xp1−pc11xp+11}≤K∗1(p)et, |
where K∗1(p)=supx1>0{[1+p(p−1)ˆσ212+p(ˆa1−h1)]xp1−pc11xp+11} is a constant. For 0<p<1
LU1(x1)≤et{(1+pˆa1)xp1−pc11xp+11}≤K∗∗1(p)et, |
where K∗∗1(p)=supx1>0{(1+pˆa1)xp1−pc11xp+11}. Integral on both sides of the Eq (4) from 0 to t and then take the expectation, We can then show that E[etxp1(t)]≤xp1(0)+K1(p)(et−1), where K1(p)=max{K∗1(p),K∗∗1(p)}. Thus, lim supt→∞E[xp1(t)]≤K1(p). Continuing this approach we define
U2(x1,x2)=c∗1U1(x1)+etx2p(t)+eτ21pn1+p1+pc21∫0−τ21∫tt+θesx11+p(s)dsdμ21(θ). |
Letting an appropriate n>0 such that c22−pc211+pn−1+pp>0,p(c33−pc311+pn−1+pp−pc321+pn−1+pp)>0. The constants c∗1,c2∗ and c3∗ satisfying
c∗1=c21c11eτ21n1+p, c∗2=eτ31c31n1+pc11(1+p), c∗3=eτ32c32n1+pc22−pc211+pn−1+pp. |
By the generalized Itô's formula, we obtain
dU2(x1,x2)=LU2(x1,x2)dt+c∗1petxp1σ1(γ(t))dβ1(t)+petx2pσ2(γ(t))dβ2(t), |
where
LU2(x1,x2)=c∗1LU1(x1)+L[etx2p]+ddt[eτ21p1+pn1+pc21∫0−τ21∫tt+θesx1+p1(s)dsdμ21(θ)]=c∗1LU1(x1)+etx2p{1+p(p−1)σ22(γ(t))2+p[−a2(γ(t))−h2+c21∫0−τ21x1(t+θ)dμ21(θ)−c22x2−c23∫0−τ23x3(t+θ)dμ23(θ)]}+eτ21pn1+p1+pc21[etx1+p1−∫0−τ21et+θx1+p1(t+θ)dμ21(θ)]. |
For p>1
LU2(x1,x2)≤c∗1et{[1+p(p−1)ˆσ122+p^a1]xp1−pc11x1+p1}+et{[1+p(p−1)ˆσ222]x2p−p(c22−pc211+pn−1+pp)x21+p+eτ21pn1+p1+pc21x1+p1}=et{c∗1[1+p(p−1)ˆσ122+p^a1]xp1+[1+p(p−1)ˆσ222]x2p−p2eτ211+pn1+pc21x1+p1−p(c22−pc211+pn−1+pp)x21+p}≤etK∗2(p), |
where K∗2(p)=supx1,x2>0{c∗1[1+p(p−1)ˆσ122+p^a1]xp1+[1+p(p−1)ˆσ222]xp2−p2eτ211+pn1+pc21x1+p1−p(c22−pc211+pn−1+pp)x1+p2}, and for 0<p<1
LU2(x1,x2)≤et{c∗1(1+p^a1)xp1+x2p−p2eτ211+pn1+pc21x1+p1−p(c22−pc211+pn−1+pp)x21+p}=etK∗∗2(p), |
where K∗∗2(p)=supx1,x2>0{c∗1(1+p^a1)xp1+xp2−p2eτ211+pn1+pc21x1+p1−p(c22−pc211+pn−1+pp)x1+p2}. Take the same method as above, we obtain there's a positive constant K2(p)=max{K∗2(p),K∗∗2(p)} such that lim supt→∞E[xp2(t)]≤K2(p). Next, we define
U3(x1,x2,x3)=c∗2U1(x1)+c∗3U2(x1,x2)+etx3p(t)+eτ32p1+pn1+pc32∫0−τ32∫tt+θesx1+p2(s)dsdμ32(θ)+eτ31p1+pn1+pc31∫0−τ31∫tt+θesx1+p1(s)dsdμ31(θ). |
Then
dU3(t)=LU3(t)dt+c∗2petxp1σ1(γ(t))dβ1(t)+c∗3petxp2σ2(γ(t))dβ2(t)+petxp3σ3(γ(t))dβ3(t), |
where
LU3(t)=c∗2LU1(t)+c∗3LU2(t)+L[etx3p(t)]+ddt[eτ32p1+pn1+pc32∫0−τ32∫tt+θesx1+p2(s)dsdμ32(θ)+eτ31p1+pn1+pc31∫0−τ31∫tt+θesx1+p1(s)dsdμ31(θ)]. |
For p>1
LU3(t)≤c∗2et{[1+p(p−1)ˆσ212+pˆa1]xp1−pc11x1+p1}+c∗3et{c∗1[1+p(p−1)ˆσ122+p^a1]xp1−p2eτ211+pn1+pc21x1+p1+[1+p(p−1)ˆσ222]xp2−p(c22−pc211+pn−1+pp)x1+p2}+et{[1+p(p−1)ˆσ322]x3p−p[c33−pc311+pn−1+pp−pc321+pn−1+pp]x31+p+pc311+pn1+p∫0−τ31x1+p1(t+θ)dμ31(θ)+pc321+pn1+p∫0−τ32x1+p2(t+θ)dμ32(θ)}+eτ32p1+pn1+pc32[etx1+p2−∫0−τ32et+θx1+p2(t+θ)dμ32(θ)]+eτ31p1+pn1+pc31[etx1+p1−∫0−τ31et+θx1+p1(t+θ)dμ31(θ)]≤et{(1+p(p−1)ˆσ212+pˆa1)(c∗2+c∗3c∗1)xp1−p2eτ21+τ32n2+2pc32c21(1+p)(c22−pc211+pn−1+pp)x1+p1+c∗3(1+p(p−1)ˆσ222)xp2−p21+peτ32c32n1+px1+p2+(1+p(p−1)ˆσ232)x3p−p(c33−pc311+pn−1+pp−pc321+pn−1+pp)x31+p}. |
For 0<p<1
LU3(t)≤et{(1+pˆa1)(c∗2+c∗3c∗1)xp1−p2eτ21+τ32n2+2pc32c21(1+p)(c22−pc211+pn−1+pp)x1+p1+c∗3xp2−p21+peτ32c32n1+px1+p2+x3p−p(c33−pc311+pn−1+pp−pc321+pn−1+pp)x31+p}. |
Similarly, there's a positive constant K3(p) satisfying LU3(t)≤K3(p)et and lim supt→∞E[x3p(t)]≤K3(p). This completes the proof.
In the following, we give some basic lemmas.
Lemma 2. [41] Let Z(t)∈R+ and g(t) be two stochastic processes satisfying limt→∞g(t)t=0, a.s.. We have the following conclusion.
(ⅰ) If there are three constants T>0,l2>0 and l1 such that for all t≥T
lnZ(t)≤l1t−l2∫t0Z(s)ds+g(t), |
then
{lim supt→∞t−1∫t0Z(s)ds≤l1/l2,a.s., ifl1≥0;limt→∞Z(t)=0a.s., ifl1<0. |
(ⅱ) If there exist three positive constants T,l1and l2 such that
lnZ(t)≥l1t−l2∫t0Z(s)ds+g(t),a.s.. |
for all t≥T, then
lim inft→∞t−1∫t0Z(s)ds≥l1/l2,a.s.. |
Consider the following auxiliary system:
{dY1(t)=Y1(t)[a1(γ(t))−h1−c11Y1(t)]dt+σ1(γ(t))Y1(t)dβ1(t),dY2(t)=Y2(t)[−a2(γ(t))−h2+c21∫0−τ21Y1(t+θ)dμ21(θ)−c22Y2(t)]dt+σ2(γ(t))Y2(t)dβ2(t),dY3(t)=Y3(t)[−a3(γ(t))−h3+c31∫0−τ31Y1(t+θ)dμ31(θ)+c32∫0−τ32Y2(t+θ)dμ32(θ)−c33Y3(t)]dt+σ3(γ(t))Y3(t)dβ3(t). | (5) |
with initial date φ∈C([−τ,0],R3+) with γ(0)=i∈S. Obviously, the system (5) has a unique global positive solution [23].
Lemma 3. For the system (5), we have the following conclusion.
(a) If ¯u1<0, then limt→∞Yj(t)=0,a.s.,j=1,2,3;
(b) If ¯u1=0, then ⟨Y1(t)⟩=0,limt→∞Yi(t)=0,a.s.,i=2,3;
(c) If ¯u1>0,Δ2−˜Δ2<0, and Δ3−˜Δ3<0, then
⟨Y1(t)⟩=¯u1c11,limt→∞Yi(t)=0,a.s.,i=2,3. |
(d) If ¯u1>0,Δ2−˜Δ2<0 and Δ3−˜Δ3≥0, then
⟨Y1(t)⟩=¯u1c11,limt→∞Y2(t)=0,⟨Y3(t)⟩=Δ3−˜Δ3c11c33,a.s.. |
(e) If ¯u1>0,Δ2−˜Δ2≥0 and c22(Δ3−˜Δ3)+c32(Δ2−˜Δ2)<0, then
⟨Y1(t)⟩=¯u1c11,⟨Y2(t)⟩=Δ2−˜Δ2c11c22,limt→∞Y3(t)=0,a.s.. |
(f) If ¯u1>0,Δ2−˜Δ2≥0 and c22(Δ3−˜Δ3)+c32(Δ2−˜Δ2)≥0, then
⟨Y1(t)⟩=¯u1c11,⟨Y2(t)⟩=Δ2−˜Δ2c11c22,⟨Y3(t)⟩=c22(Δ3−˜Δ3)+c32(Δ2−˜Δ2)c11c22c33,a.s.. |
Proof. Firstly, let us prove the conclusion (a). By the generalized Itô's formula, we have
lnY1(t)=∫t0u1(γ(s))ds−c11∫t0Y1(s)ds+∫t0σ1(γ(s))dβ1(s)+lnY1(0), | (6) |
lnY2(t)=−∫t0u2(γ(s))ds−c22∫t0Y2(s)ds+c21∫t0∫0−τ21Y1(s+θ)dμ21(θ)ds+∫t0σ2(γ(s))dβ2(s)+lnY2(0), | (7) |
lnY3(t)=−∫t0u3(γ(s))ds+c31∫t0∫0−τ31Y1(s+θ)dμ31(θ)ds+c32∫t0∫0−τ32Y2(s+θ)dμ32(θ)ds−c33∫t0Y3(s)ds+∫t0σ3(γ(s))dβ3(s)+lnY3(0). | (8) |
Because of the ergodicity of γ(t), one gets
limt→∞t−1∫t0uj(γ(s))ds=ˉuj,a.s.,j=1,2,3. | (9) |
Obviously, for any ϵ∈(0,ˉu1), there exist a set Ωϵ⊂Ω satisfying P(Ωϵ)≥1−ϵ and a positive constant T=T(ϵ) such that for t≥T
¯u1−ϵ≤t−1lnY1(0)+t−1∫t0u1(γ(s))ds≤¯u1+ϵ. | (10) |
Substituting Eq (10) into Eq (6), then
(¯u1−ϵ)t−c11∫t0Y1(s)ds+∫t0σ1(γ(s))dβ1(s)≤lnY1(t)≤(¯u1+ϵ)t−c11∫t0Y1(s)ds+∫t0σ1(γ(s))dβ1(s). | (11) |
Meanwhile, the quadratic variation of the stochastic integral ∫t0σj(γ(s))dβj(s) is ∫t0σ2j(γ(s))ds≤ˆσj2t. The strong law of large number theorem shows
limt→∞∫t0σj(γ(s))dβj(s)t=0,a.s.,j=1,2,3. | (12) |
When ¯u1<0, for Eq (12) and Lemma 2, we can show that limt→∞Y1(t)=0,limt→∞t−1∫t0Y1(s)ds=0. From Eqs (7) and (8), for t→∞, then
t−1lnY2(t)=−t−1∫t0u2(γ(s))ds−c22⟨Y2(t)⟩+t−1∫t0σ2(γ(s))dβ2(s)+t−1lnY2(0), | (13) |
t−1lnY3(t)=−t−1∫t0u3(γ(s))ds+c32t−1⟨Y2(t)⟩+c32t−1[∫0−τ32∫0θY2(s)dμ32(θ)−∫0−τ32∫tt+θY2(s)dμ32(θ)]−c33⟨Y3(t)⟩+t−1∫t0σ3(γ(s))dβ3(s)+t−1lnY3(0). | (14) |
For any ϵ∈(0,ˉu2) satisfying (−ˉu2+ϵ)<0, by Eqs (9) and (13), we have
lnY2(t)≤(−ˉu2+ϵ)t−c22∫t0Y2(s)ds+∫t0σ2(γ(s))dβ2(s)+lnY2(0). |
It follows from Lemma 2 that limt→∞Y2(t)=0 and ⟨Y2(t)⟩=0, for any t≥T. From Eq (14),
t−1lnY3(t)=−ˉu3−c33⟨Y3(t)⟩+t−1∫t0σ3(γ(s))dβ3(s)+t−1lnY3(0). |
It's easy to see limt→∞Y3(t)=0,a.s.. This completes the proof of (a).
Now we are in the position to prove (b). By Eq (11) and Lemma 2, we have
¯u1−ϵc11≤inf⟨Y1(t)⟩≤sup⟨Y1(t)⟩≤¯u1+ϵc11. |
According to the arbitraryiness of ϵ, we get ⟨Y1(t)⟩=0 when ¯u1=0. Similarly, we obtain the Eqs (13) and (14) from Eqs (7) and (8). This implies limt→∞Yj(t)=0,j=2,3. The proof of (b) is complete.
Next, we shall prove (c). It can be shown from Eq (12) that ⟨Y1(t)⟩=¯u1c11 a.s. when ¯u1>0. Fix a positive constant T, for any t≥T, we may shift Eq (8) to obtain
lnY2(t)=Δ2−˜Δ2c11t−c22∫t0Y2(s)ds+lnY2(0)+ϕ2(t), | (15) |
where ϕ2(t)=c21∫0−τ21∫0θY1(s)dsdμ21(θ)−c21∫0−τ21∫tt+θY1(s)dsdμ21(θ) and then limt→∞t−1ϕ2(t)=0. When Δ2−˜Δ2<0, we further have limt→∞Y2(t)=0,a.s. by Lemma 2. For any t≥T, Eq (8) follows
lnY3(t)=(Δ3−˜Δ3c11)t−c33∫t0Y3(s)ds+ϕ3(t)+lnY3(0), | (16) |
where ϕ3(t)=c31∫0−τ31∫0θY1(s)dsdμ31(θ)−c31∫0−τ31∫tt+θY1(s)dsdμ31(θ). Clearly, limt→∞1tϕ3(t)=0. From Lemma 2, when Δ3−˜Δ3<0,limt→∞Y3(t)=0,a.s.. Thus the required conclusion (c) follows.
Next, we shall give the proof of (d). Conclusion (c) shows ⟨Y1(t)⟩=¯u1c11 and limt→∞Y2(t)=0,a.s. for ¯u>0 and Δ2−˜Δ2<0. Assume Δ3−˜Δ3≥0, there is a conclusion that ⟨Y3(t)⟩=Δ3−˜Δ3c11c33 from Eq (16). The proof of (d) is completed.
In the following, we shall prove (e). From Eqs (11) and (15), assume Δ2−˜Δ2≥0, we get ⟨Y1(t)⟩=¯u1c11 and ⟨Y2(t)⟩=Δ2−˜Δ2c11c22. Then, for any t≥T, we have
lnY3(t)=c22(Δ3−˜Δ3)+c32(Δ2−˜Δ2)c11c22−c33∫t0Y3(s)ds+ϕ∗3(t), | (17) |
where
ϕ∗3(t)=c31∫0−τ31∫0θY1(s)dsdμ31(θ)−c31∫0−τ31∫tt+θY1(s)dsdμ31(θ)+c32∫0−τ32∫0θY2(s)dsdμ32(θ)−c32∫0−τ32∫tt+θY2(s)dsdμ32(θ). |
Then, limt→∞t−1ϕ∗3(t)=0. When c22(Δ3−˜Δ3)+c32(Δ2−˜Δ2)<0, we get limt→∞Y3(t)=0. This completes the proof of (e).
Lastly, we give the proof of (f). Let ¯u>0 and Δ2−˜Δ2>0, we can then show that ⟨Y1(t)⟩=¯u1c11 and ⟨Y2(t)⟩=Δ2−˜Δ2c11c22 a.s. by Eqs (11) and (15). From Eq (17), we directly obtain ⟨Y3(t)⟩=c22Γ3+c32Γ2c11c22c33 provided that c22(Δ3−˜Δ3)+c32(Δ2−˜Δ2)≥0.
This completes the proof of all cases.
Lemma 4. Let X(t)=(x(t),γ(t))∈R3+×S be a global positive solution of the system (1). Then the solution has the following properties
lim supt→∞lnxj(t)t≤0,limt→∞t−1∫tt−τxj(s)ds=0,a.s.,j=1,2,3. |
Proof. It is easy to see
dx1(t)≤x1(t)[a1(γ(t))−h1−c11x1(t)]dt+σ1(γ(t))x1(t)dβ1(t),dx2(t)≤x2(t)−[a2(γ(t))−h2+c21∫0−τ21x1(t+θ)dμ21(θ)−c22x2(t)]dt+σ2(γ(t))x2(t)dβ2(t),dx3(t)≤x3(t)−[a3(γ(t))−h3+c31∫0−τ31x1(t+θ)dμ31(θ)+c32∫0−τ32x2(t+θ)dμ32(θ)−c33x3(t)]dt+σ3(γ(t))x3(t)dβ3(t). |
By comparison theorem, we obtain xj(t)≤Yj(t),a.s.,j=1,2,3. It follows from Lemma 3 that limt→∞Yj(t)=0 or ⟨Yj(t)⟩=a,j=1,2,3, where the constant a≥0. From Eqs (6)–(8), then
lim supt→∞lnxj(t)t≤lim supt→∞lnYj(t)t≤0,j=1,2,3,limt→∞t−1∫tt−τxj(s)ds≤limt→∞t−1∫tt−τYj(s)ds=limt→∞t−1(∫t0Yj(s)ds−∫t−τ0Yj(s)ds)=0,a.s.. |
This completes the proof.
Lemma 5. Let condition (H2) hold. For the defined parameters R,ωi,Θi,i=1,2,3, we have the following conclusions.
(a). If R>0, then ω1>ω2>ω3.
(b). If R<0, then ω1>Θ2>Θ3.
(c). If R=0, then ω1>Θ2=Θ3.
Proof. From the definition of R,ωi,Θi,i=1,2,3, we have
ω1−ω2=ω1−Δ2˜Δ2=ˉa1˜Δ2−Δ2(ˉσ21/2+h1)˜Δ2(ˉσ21/2+h1)=c11˜Δ2(ˉσ21/2+h1)[(ˉσ22/2+h2)ˉa1+(ˉσ21/2+h1)ˉa2]>0,ω1−Θ2=ω1−Δ3˜Δ3=ˉa1˜Δ3−(ˉσ21/2+h1)Δ3(ˉσ21/2+h1)˜Δ3=c11ˉa1(ˉσ23/2+h3)+ˉa3(ˉσ21/2+h1)(ˉσ21/2+h1)˜Δ3>0,Θ3−ω2=C2˜C2−Δ2˜Δ2=C2˜Δ2−˜C2Δ2˜C2˜Δ2=C32R˜C2˜Δ2,ω2−Θ2=Δ2˜Δ2−Δ3˜Δ3=Δ2˜Δ3−˜Δ2Δ3˜Δ2˜Δ3=c11R˜Δ2˜Δ3,Θ2−ω3=Δ3˜Δ3−C3˜C3=Δ3˜C3−˜Δ3C3˜Δ3˜C3=C23R˜Δ3˜C3. |
When R>0, we can see ω1>ω2>Θ2>ω3. When R<0, then Θ3<ω2<Θ2<ω1. When R=0, then ω3=Θ3=ω2=Θ2<ω1. Thus the proof is complete.
In this section, we shall investigate dynamical behaviors involving persistence, extinction, stability and attractiveness of the system (1). In terms of parameters R, ωi and Θi, we first give a global analysis of dynamical behaviors according to Lemma 5.
Theorem 1.\quad Let conditions (H1) and (H2) be satisfied and X(t)=(x(t),γ(t))∈R3+×S be a global positive solution of the system (1). We have the following conclusions.
(ⅰ). When R>0
(a). If ω1<1, then limt→∞xi(t)=0,a.s.,i=1,2,3;
(b). If ω1=1, then ⟨x1(t)⟩=0,limt→∞xj(t)=0,a.s.,j=2,3;
(c). If ω1>1>ω2, then
⟨x1(t)⟩=ˉu1c11, limt→∞xj(t)=0,a.s.,j=2,3; |
(d). If ω2=1, then
⟨x1(t)⟩=ˉu1c11, ⟨x2(t)⟩=0, limt→∞x3(t)=0,a.s.; |
(e). If ω2>1>ω3, then
⟨xi(t)⟩=Δi−˜ΔiC33,i=1,2, limt→∞x3(t)=0,a.s.; |
(f). If ω3=1, then
⟨xi(t)⟩=Δi−˜ΔiC33,i=1,2, ⟨x3(t)⟩=0,a.s.; |
(g). If ω3>1, then
⟨xi(t)⟩=Ci−˜Ci|C|,a.s.,i=1,2,3. |
(ⅱ). When R<0
(h). If ω1<1, then limt→∞xi(t)=0,a.s.,i=1,2,3;
(i). If ω1=1, then ⟨x1(t)⟩=0,limt→∞xj(t)=0,a.s.,j=2,3;
(j). If ω1>1>Θ2, then
⟨x1(t)⟩=ˉu1c11, limt→∞xj(t)=0,a.s.,j=2,3; |
(k). If Θ2=1, then
⟨x1(t)⟩=ˉu1c11, limt→∞x2(t)=0,⟨x3(t)⟩=0,a.s.; |
(l). If Θ2>1>Θ3, then
⟨x1(t)⟩=c33ˉu1+c13ˉu3C22,limt→∞x2(t)=0,⟨x3(t)⟩=Δ3−˜Δ3C22,a.s.; |
(m). If Θ3=1, then
⟨x1(t)⟩=c33ˉu1+c13ˉu3C22,⟨x2(t)⟩=0,⟨x3(t)⟩=Δ3−˜Δ3C22,a.s.; |
(n). If Θ3>1, then
⟨xi(t)⟩=Ci−˜Ci|C|,a.s.,i=1,2,3. |
(ⅲ). When R=0
(o). If ω1<1, then limt→∞xi(t)=0,a.s.,i=1,2,3;\\
(p). If ω1=1, then ⟨x1(t)⟩=0,limt→∞xj(t)=0,a.s.,j=2,3;\\
(q). If Θ2<1<ω1, then
⟨x1(t)⟩=ˉu1c11, limt→∞xj(t)=0,a.s.,j=2,3; |
(r). If Θ2=1, then
⟨x1(t)⟩=ˉu1c11, ⟨xj(t)⟩=0,a.s.,j=2,3; |
(s). If Θ2>1, then
⟨xi(t)⟩=Ci−˜Ci|C|,a.s.,i=1,2,3. |
Proof. By the stochastic comparison theorem and the condition (a) in Lemma 3. when ω1<1, we have the conclusion
limt→∞xj(t)≤limt→∞Yj(t)=0,a.s.,j=1,2,3. |
Next, we prove the conclusion (b) holds. Thanks to the condition (b) in Lemma 3, we can immediately obtain that ⟨x1(t)⟩≤⟨Y1(t)⟩=0 and limt→∞xi(t)≤limt→∞Yi(t)=0,a.s.,i=2,3.
Then, we shall prove the condition (c). When ω1>1>ω2, that is, ˉu1>0,Δ2−˜Δ2<0 and Δ3−˜Δ3<0. we further get limt→∞xj(t)≤limt→∞Yj(t)=0,a.s.,j=2,3 by condition (c) in Lemma 3. Fix a constant T>0 and any t≥T, Applying generalized Itô's formula to the system (1) leads to
lnx1(t)=∫t0u1(γ(s))ds−c11∫t0x1(s)ds−c12∫t0x2(s)ds−c13∫t0x3(s)ds+Φ1(t), | (18) |
lnx2(t)=−∫t0u2(γ(s))ds+c21∫t0x1(s)ds−c22∫t0x2(s)ds−c23∫t0x3(s)ds+Φ2(t), | (19) |
lnx3(t)=−∫t0u3(γ(s))ds+c31∫t0x1(s)ds+c32∫t0x2(s)ds−c33∫t0x3(s)ds+Φ3(t), | (20) |
where
Φ1(t)=c12∫0−τ12∫tt+θx2(s)dsdμ12(θ)−c12∫0−τ12∫0θx2(s)dsdμ12(θ)+c13∫0−τ13∫tt+θx3(s)dsdμ13(θ)−c13∫0−τ13∫0θx3(s)dsdμ13(θ)+∫t0σ1(γ(t))dβ1(t)+lnx1(0),Φ2(t)=−c21∫0−τ21∫tt+θx1(s)dsdμ21(θ)+c21∫0−τ21∫0θx1(s)dsdμ21(θ)+c23∫0−τ23∫tt+θx3(s)dsdμ23(θ)−c23∫0−τ23∫0θx3(s)dsdμ23(θ)+∫t0σ2(γ(t))dβ2(t)+lnx2(0),Φ3(t)=−c31∫0−τ31∫tt+θx1(s)dsdμ31(θ)+c31∫0−τ31∫0θx1(s)dsdμ31(θ)−c32∫0−τ32∫tt+θx2(s)dsdμ32(θ)+c32∫0−τ32∫0θx2(s)dsdμ32(θ)+∫t0σ3(γ(t))dβ3(t)+lnx3(0). |
When limt→∞xj(t),j=2,3, for Eq (18), one can observe that
t−1lnx1(t)=t−1∫t0u1(γ(s))ds−c11⟨x1(t)⟩ds+t−1lnx1(0). | (21) |
From Lemma 2, we have ⟨x1⟩=ˉu1c11. This completes the proof of (c).
Then, we shall prove the conclusion (d). Similar to the above method, when ω2=1, that is, ˉu1>0,Δ2−˜Δ2=0 and Δ3−˜Δ3<0. The condition (e) in Lemma 3 shows limt→∞Y3(t)=0 and ⟨Y2(t)⟩=0. Thus we can check that ⟨x2(t)⟩≤⟨Y2(t)⟩=0 and limt→∞x3(t)≤limt→∞Y3(t)=0. Eq (18) changes into Eq (21) then we get ⟨x1(t)⟩=ˉu1c11.
Next, we prove the conclusion (e). It is not difficult to show that limt→∞t−1Φi(t)=0,i=1,2,3. Take two negative constants m and n satisfying
{−c11m+c31n=−c21,−c13m−c33n=c23. |
Then
{m=−C12C22,n=−C32C22. |
Compute m× Eq (18) + Eq (19) + n × Eq (20)
mlnx1(t)+lnx2(t)+nlnx3(t)=m∫t0u1(γ(s))ds−∫t0u2(γ(s))ds−n∫t0u3(γ(s))ds−(mc12+c22−nc32)∫t0x2(s)ds+mΦ1(t)+Φ2(t)+nΦ3(t). | (22) |
From Lemma 4, there exists an ϵ>0 and a T=T(ϵ)>0. For t≥T, one has that
t−1lnx2(t)≤mˉu1−ˉu2−nˉu3−(mc12+c22−nc32)⟨x2(t)⟩+mΦ1(t)+Φ2(t)+nΦ3(t)t=(C2−˜C2)−|C|⟨x2(t)⟩+mΦ1(t)+Φ2(t)+nΦ3(t)t. |
Because of C2˜C2>ω2>1, it's easy to see C2−˜C2>0. we further have sup⟨x2(t)⟩≤C2−˜C2|C|. Then take two negative constants m∗ and n∗ satisfying
{−c22m∗+c32n∗=c12,−c23m∗−c33n∗=c13. |
That is
{m∗=−C21C11,n∗=C31C11. |
Compute Eq (18) + m∗× Eq (19) + n∗× Eq (20)
lnx1(t)+m∗lnx2(t)+n∗lnx3(t)=∫t0u1(γ(s))ds−m∗∫t0u2(γ(s))ds−n∗∫t0u3(γ(s))ds−(c11−m∗c21−n∗c31)∫t0x1(s)ds+Φ1(t)+m∗Φ2(t)+n∗Φ3(t). | (23) |
Thus
t−1lnx1(t)≤ˉu1−m∗ˉu2−n∗ˉu3−(c11−m∗c21−n∗c31)⟨x1(t)⟩+Φ1(t)+m∗Φ2(t)+n∗Φ3(t)t=(C1−˜C1)−|C|⟨x1(t)⟩+Φ1(t)+m∗Φ2(t)+n∗Φ3(t)t. |
From (H2), we gain C1−˜C1>0 and then sup⟨x1(t)⟩≤C1−˜C1|C|. For Eq (20)
t−1lnx3(t)≤−t−1∫t0u3(γ(s))ds+c31sup⟨x1(t)⟩+c32sup⟨x2(t)⟩−c33⟨x3(t)⟩+t−1Φ3(t)=c33C3−˜C3|C|−c33t−1∫t0x3(s)ds+t−1Φ3(t). | (24) |
Assume ω3=C3˜C3<1, we obtain limt→∞x3(t)=0. Equations (19) and (20) follow that:
t−1lnx1(t)=t−1∫t0u1(γ(s))ds−c11⟨x1(t)⟩−c12⟨x2(t)⟩+t−1Φ∗1(t), | (25) |
t−1lnx2(t)=−t−1∫t0u2(γ(s))ds+c21⟨x1(t)⟩−c22⟨x2(t)⟩+t−1Φ∗2(t), | (26) |
where
Φ∗1(t)=c12∫0−τ12∫tt+θx2(s)dsdμ12(θ)−c12∫0−τ12∫0θx2(s)dsdμ12(θ)+∫t0σ1(γ(s))dβ1(s)+lnx1(0),Φ∗2(t)=−c21∫0−τ21∫tt+θx1(s)dsdμ21(θ)+c21∫0−τ21∫0θx1(s)dsdμ21(θ)+∫t0σ2(γ(s))dβ2(s)+lnx2(0). |
Analogously, \lim\limits_{t \to \infty}t^{-1}\Phi_i^*(t) = 0, a.s., i = 1, 2. Compute c_{21} \times Eq (30) + c_{11} \times Eq (31)
\begin{eqnarray} c_{21}t^{-1}\ln x_{1}(t)+c_{11}t^{-1}\ln x_{2}(t)& = & c_{21}t^{-1}\int^{t}_{0}u_{1}\left(\gamma\left(s\right)\right)\mathrm{d}s-c_{11}t^{-1}\int^{t}_{0}u_{2}\left(\gamma\left(s\right)\right)\mathrm{d}s-C_{33}\langle x_{2}(t)\rangle\\&&+c_{21}t^{-1}\Phi_1^*(t)+c_{11}t^{-1}\Phi_2^*(t). \end{eqnarray} | (27) |
For any t \ge T
\begin{align*} c_{11}t^{-1}\ln x_{2}(t) \leq (\Delta_2-\tilde{\Delta}_2+\epsilon)-C_{33}\langle x_{2}(t)\rangle+t^{-1}c_{21}\Phi_1^*(t)+t^{-1}c_{11}\Phi_2^*(t). \end{align*} |
It means \sup \langle x_{2}(t) \rangle \leq \frac{\Delta_2-\tilde{\Delta}_2}{C_{33}} and then
\begin{align*} t^{-1}\ln x_{1}(t)&\ge t^{-1}\int^{t}_{0}u_{1}\left(\gamma\left(s\right)\right)\mathrm{d}s-c_{11}\langle x_{1}(t)\rangle-c_{12}\sup \langle x_{2}(t)\rangle+t^{-1}\Phi_1^*(t)\\ & = c_{11}\frac{\Delta_1-\tilde{\Delta}_1}{C_{33}}-c_{11}\langle x_{1}(t)\rangle+t^{-1}\Phi_1^*(t). \end{align*} |
we can see if \omega_1 > 1 ,
\begin{eqnarray} \Delta_1-\tilde{\Delta}_1 = c_{22}\left(\bar{a}_1-\bar{\sigma}_1^2/2-h_1\right)+c_{12}\left(\bar{a}_2+\bar{\sigma}_2^2/2+h_2\right) \gt 0. \end{eqnarray} |
Then \inf \langle x_{1}(t) \rangle \ge \frac{\Delta_1-\tilde{\Delta}_1}{C_{33}} and
\begin{align*} t^{-1}\ln x_{2}(t) & \ge -t^{-1}\int^{t}_{0}u_{2}\left(\gamma\left(s\right)\right)\mathrm{d}s+c_{21}\inf \langle x_{1}(t) \rangle-c_{22}\langle x_{2}(t)\rangle+t^{-1}\Phi_2^*(t)\\ & = c_{22}\frac{\Delta_2-\tilde{\Delta}_2}{C_{33}}-c_{22}\langle x_{2}(t)\rangle+t^{-1}\Phi_2^*(t). \end{align*} |
We can now easily establish \langle x_{2}(t) \rangle = \frac{\Delta_2-\tilde{\Delta}_2}{C_{33}} and then
\begin{align*} t^{-1}\ln x_{1}(t)& = t^{-1}\int^{t}_{0}u_{1}\left(\gamma\left(s\right)\right)\mathrm{d}s-c_{11}\langle x_{1}(t)\rangle-c_{12}\frac{\Delta_2-\tilde{\Delta}_2}{C_{33}}+t^{-1}\Phi_1^*(t)\\ & = c_{11}\frac{\Delta_1-\tilde{\Delta}_1}{C_{33}}-c_{11}t^{-1}\int^{t}_{0}x_{1}(s)\mathrm{d}s+t^{-1}\Phi_1^*(t). \end{align*} |
Finally, we have \langle x_{1}(t) \rangle = \frac{\Delta_1-\tilde{\Delta}_1}{C_{33}}, \langle x_{2}(t) \rangle = \frac{\Delta_2-\tilde{\Delta}_2}{C_{33}} and \lim\limits_{t \to \infty}x_{3}(t) = 0. This completes the proof of (e).
Next, we prove the case (f). For Eq (24), If \omega_3 = 1 , this is, C_3-\tilde{C}_3 = 0 , then we get \sup\limits_{t \to \infty}\langle x_3(t) \rangle \leq 0. Because of \langle x_3(t) \rangle \ge 0 , we finally derive \langle x_3(t) \rangle = 0 . Equations (18) and (19) become Eqs (25) and (26) respectively. Finally we derive \langle x_{1}(t) \rangle = \frac{\Delta_1-\tilde{\Delta}_1}{C_{33}}, \langle x_{2}(t) \rangle = \frac{\Delta_2-\tilde{\Delta}_2}{C_{33}} and \langle x_3(t) \rangle = 0 .
Lastly, we shall prove the condition (g) holds. If \omega_3 = \frac{C_3}{\tilde{C}_3} > 1 , for Eq (29), we have \sup \langle x_{3}(t) \rangle \leq \frac{C_3-\tilde{C}_3}{|C|}. and
\begin{eqnarray*} t^{-1}\ln x_{1}(t) &\ge& \int^{t}_{0}t^{-1}u_{1}\left(\gamma\left(s\right)\right)\mathrm{d}s-c_{11}\langle x_{1}(t)\rangle-c_{12}\sup\langle x_{2}(t)\rangle-c_{13}\sup\langle x_{3}(t)\rangle+t^{-1}{\Phi_{1}}(t)\notag\\ & = & \bar{u}_1-c_{11}\langle x_{1}(t)\rangle-c_{12}\frac{C_2-{\tilde{C}_2}}{|C|}-c_{13}\frac{C_3-\tilde{C}_3}{|C|}+t^{-1}{\Phi_{1}}(t)\notag\\ & = & c_{11}\frac{C_1-\tilde{C}_1}{|C|}-c_{11}\langle x_{1}(t)\rangle+t^{-1}{\Phi_{1}}(t). \end{eqnarray*} |
Thus, \frac{C_1-\tilde{C}_1}{|C|} \leq \inf \langle x_{1}(t)\rangle \leq \sup \langle x_{1}(t)\rangle \leq \frac{C_1-\tilde{C}_1}{|C|} , \langle x_{1}(t)\rangle = \frac{C_1-\tilde{C}_1}{|C|} . By the same way, for Eq (20)
\begin{eqnarray*} t^{-1}\ln x_{2}(t) &\ge& -t^{-1}\int^{t}_{0}u_{2}\left(\gamma\left(s\right)\right)\mathrm{d}s-c_{11}\langle x_{1}(t)\rangle-c_{12}\langle x_{2}(t)\rangle-c_{13}\sup\langle x_{3}(t)\rangle+t^{-1}{\Phi_{2}}(t)\notag\\ & = & -\bar{u}_2-c_{11}\frac{C_1-\tilde{C}_1}{|C|}-c_{12}\langle x_{2}(t)\rangle-c_{13}\frac{C_3-\tilde{C}_3}{|C|}+t^{-1}{\Phi_{2}}(t)\notag\\ & = & c_{12}\frac{C_2-\tilde{C}_2}{|C|}-c_{12}\langle x_{2}(t)\rangle+t^{-1}{\Phi_{2}}(t). \end{eqnarray*} |
We have \frac{C_2-\tilde{C}_2}{|C|} \leq \inf \langle x_{2}(t)\rangle \leq \sup \langle x_{2}(t)\rangle \leq \frac{C_2-\tilde{C}_2}{|C|} and then \langle x_{2}(t)\rangle = \frac{C_2-\tilde{C}_2}{|C|} . Similarly, \langle x_{3}(t)\rangle = \frac{C_3-\tilde{C}_3}{|C|} .
The proof of (ⅱ) and (ⅲ) are similar to one of (ⅰ). Here we omit the remaining part and all the proof is complete. In the following, we further give the attractiveness of all positive solutions by M -matrix.
Theorem 2. If the following matrix is a non-singular M -matrix
C_M: = \left( \begin{array}{ccc} c_{11} & -c_{21} & -c_{31}\\ -c_{12} & c_{22} & -c_{32}\\ -c_{13} & -c_{23} & c_{33} \end{array} \right) , |
then
\begin{equation} \lim\limits_{t \to \infty} E|X^{\eta,k}(t)-X^{\eta^*,k}(t)| = 0,\nonumber \end{equation} |
where X^{\eta, k}(t) and X^{\eta^*, k}(t) are two positive solutions of the system (1) with initial conditions \eta \in \mathbb{C}\left([-\tau, 0], \mathbb {R}_{+}^{3}\right), \gamma(0) = k and \eta^* \in \mathbb{C}\left([-\tau, 0], \mathbb {R}_{+}^{3}\right), \gamma(0) = k .
Proof. Notice that
\begin{eqnarray} \lim\limits_{t \to \infty} E|X^{\eta,k}(t)-X^{\eta^*,k}(t)| = \lim\limits_{t \to \infty} E\sqrt{\left(x_{1}(t;\eta)-x_{1}(t;{\eta}^{*})\right)^{2}+\left(x_{2}(t;\eta)-x_{2}(t;{\eta}^{*})\right)^{2}+\left(x_{3}(t;\eta)-x_{3}(t;{\eta}^{*})\right)^{2}}. \end{eqnarray} |
Since C_M is an non-singular M -matrix, there exists positive vector \zeta = (\zeta_1, \zeta_2, \zeta_3)^T, \zeta_{i} > 0, i = 1, 2, 3 such that C_M \zeta > 0 . We just need to proof \lim\limits_{t \to \infty}E|(x_{j}(t; \eta)-x_{j}(t; {\eta}^{*})| = 0, j = 1, 2, 3, define
\begin{eqnarray} v_{j}(x_{j}) = | \ln x_{j}(t;\eta)-\ln x_{j}(t;{\eta}^{*})|,j = 1,2,3. \end{eqnarray} | (28) |
\begin{eqnarray} v_{4}(x_{1},x_{2},x_{3})& = &\zeta_{1}c_{12}\int^{0}_{-\tau_{12}}\int^{t}_{t+\theta}| x_{2}(s,\eta)-x_{2}(s,{\eta}^{*})| \mathrm{d}s\mathrm{d}\mu_{12}(\theta) \\&&+ \zeta_{1}c_{13}\int^{0}_{-\tau_{13}}\int^{t}_{t+\theta}| x_{3}(s,\eta)-x_{3}(s,{\eta}^{*})| \mathrm{d}s \mathrm{d}\mu_{13}(\theta) \\&&+\zeta_{2}c_{21}\int^{0}_{-\tau_{21}}\int^{t}_{t+\theta}| x_{1}(s,\eta)-x_{1}(s,{\eta}^{*})| \mathrm{d}s\mathrm{d}\mu_{21}(\theta) \\&&+ \zeta_{2}c_{23}\int^{0}_{-\tau_{23}}\int^{t}_{t+\theta}|x_{3}(s,\eta)-x_{3}(s,{\eta}^{*})| \mathrm{d}s\mathrm{d}\mu_{23}(\theta) \\&&+\zeta_{3}c_{31}\int^{0}_{-\tau_{31}}\int^{t}_{t+\theta}| x_{1}(s,\eta)-x_{1}(s,{\eta}^{*})| \mathrm{d}s\mathrm{d}\mu_{31}(\theta)\\&&+ \zeta_{3}c_{32}\int^{0}_{-\tau_{32}}\int^{t}_{t+\theta}|x_{2}(s,\eta)-x_{2}(s,{\eta}^{*})| \mathrm{d}s\mathrm{d}\mu_{32}(\theta). \end{eqnarray} |
Calculating the upper right derivative of v_{j}(x_{j}) along the solution of Eq (33), it follows that
\begin{align*} \mathrm{d}^{+}v_{1}(x_{1}) = & sgn\left(x_{1}(t;\eta)-x_{1}(t;{\eta}^{*})\right) \mathrm{d}\left( \ln x_{j}(t;\eta)-\ln x_{j}(t;{\eta}^{*})\right) \\ \leq& -c_{11}|x_{1}(t;\eta)-x_{1}(t;{\eta}^{*})|+c_{12}\int^{0}_{-\tau_{12}}|x_{2}(t+\theta;\eta)-x_{2}(t+\theta;{\eta}^{*})| \mathrm{d}\mu_{12}(\theta)\nonumber\\ &+c_{13}\int^{0}_{-\tau_{13}}| x_{3}(t+\theta;\eta)-x_{3}(t+\theta;{\eta}^{*})| \mathrm{d}\mu_{13}(\theta),\\ \mathrm{d}^{+}v_{2}(x_{2}) \leq& -c_{22}| x_{2}(t;\eta)-x_{2}(t;{\eta}^{*})|+c_{21}\int^{0}_{-\tau_{21}}|x_{1}(t+\theta;\eta)-x_{1}(t+\theta;{\eta}^{*})| \mathrm{d}\mu_{21}(\theta)\\ &+c_{23}\int^{0}_{-\tau_{23}}| x_{3}(t+\theta;\eta)-x_{3}(t+\theta;{\eta}^{*})| \mathrm{d}\mu_{23}(\theta),\\ \mathrm{d}^{+}v_{3}(x_{3}) \leq& -c_{33}| x_{3}(t;\eta)-x_{3}(t;{\eta}^{*})|+c_{31}\int^{0}_{-\tau_{31}}| x_{1}(t+\theta;\eta)-x_{1}(t+\theta;{\eta}^{*})| \mathrm{d}\mu_{31}(\theta)\nonumber\\&+c_{32}\int^{0}_{-\tau_{32}}| x_{2}(t+\theta;\eta)-x_{2}(t+\theta;{\eta}^{*})| \mathrm{d}\mu_{32}(\theta). \end{align*} |
Let
\begin{equation} V(t) = \zeta_{1}v_{1}(x_{1})+\zeta_{2}v_{2}(x_{2})+\zeta_{3}v_{3}(x_{3})+v_{4}(x_{1},x_{2},x_{3}). \end{equation} | (29) |
Then
\begin{eqnarray} \mathrm{d}^{+}V(t)&\leq& -(c_{11}\zeta_{1}-c_{21}\zeta_{2}-c_{31}\zeta_{3})\mid x_{1}(t,\eta)-x_{1}(t,{\eta}^{*})\mid-(c_{22}\zeta_{2}-c_{12}\zeta_{1}-c_{32}\zeta_{3})\mid x_{2}(t,\eta)-x_{2}(t,{\eta}^{*})\mid\\ &&-(c_{33}\zeta_{3}-c_{13}\zeta_{1}-c_{23}\zeta_{2})\mid x_{3}(t,\eta)-x_{3}(t,{\eta}^{*})\mid. \end{eqnarray} |
Integrate both sides of the Eq (29) from 0 to t and then take expectation
\begin{eqnarray} E[V(t)] &\leq& E[V(0)]-(c_{11}\zeta_{1}-c_{21}\zeta_{2}-c_{31}\zeta_{3})\int^{t}_{0}E|x_{1}(s,\eta)-x_{1}(s,{\eta}^{*})|\mathrm{d}s\\&&-(c_{22}\zeta_{2}-c_{12}\zeta_{1}-c_{32}\zeta_{3})\int^{t}_{0}E|x_{2}(s,\eta)-x_{2}(s,{\eta}^{*})| \mathrm{d}s\\&& -(c_{33}\zeta_{3}-c_{13}\zeta_{1}-c_{23}\zeta_{2})\int^{t}_{0}E| x_{3}(s,\eta)-x_{3}(s,{\eta}^{*})| \mathrm{d}s. \end{eqnarray} |
From C_M\zeta > 0 , we see \int^{t}_{0}E|x_{j}(s, \eta)-x_{j}(s, {\eta}^{*})| \mathrm{d}s < \infty, j = 1, 2, 3. Next, we define function
\begin{equation} G_{j}(t) = E| x_{j}(t,\eta)-x_{j}(t,{\eta}^{*})|, j = 1,2,3.\nonumber \end{equation} |
For arbitrary t_{1}, t_{2} \in [-\tau, +\infty) ,
\begin{eqnarray} \left| G_{j}(t_{2})-G_{j}(t_{1})\right|& = & \left|E\left| x_{j}(t_{2},\eta)-x_{j}(t_{2},{\eta}^{*})\right|-E\left| x_{j}(t_{1},\eta)-x_{j}(t_{1},{\eta}^{*})\right|\right|\\&\leq& E|x_{j}(t_{2},\eta)-x_{j}(t_{1},\eta)|+E| x_{j}(t_{2},{\eta}^{*})-x_{j}(t_{1},{\eta}^{*})|. \end{eqnarray} |
Integrating both sides of the system (1) from t_{1} to t_{2} , we see
\begin{eqnarray} x_{1}(t_{2},\eta)-x_{1}(t_{1},\eta)& = &\int^{t_{2}}_{t_{1}}\bigg[x_{1}(s,\eta)\bigg(a_{1}\left(\gamma\left(s\right)\right) -h_{1}-c_{11}x_{1}(s,\eta)-c_{12}\int^{0}_{-\tau_{12}}x_{2}(s+\theta,\eta)\mathrm{d}\mu_{12}(\theta)\\&&-c_{13}\int^{0}_{-\tau_{13}}x_{3}(s+\theta,\eta)\mathrm{d}\mu_{13}(\theta)\bigg)\bigg]\mathrm{d}s+\int^{t_{2}}_{t_{1}}\sigma_{1}\left(\gamma\left(s\right)\right) x_{1}(s,\eta)\mathrm{d}\beta_{1}(s),\\ x_{2}(t_{2},\eta)-x_{2}(t_{1},\eta)& = &\int^{t_{2}}_{t_{1}}\bigg[x_{2}(s,\eta)\bigg(-a_{2}\left(\gamma\left(s\right)\right) -h_{2}+c_{21}\int^{0}_{-\tau_{21}}x_{1}(s+\theta,\eta)\mathrm{d}\mu_{21}(\theta)-c_{22}x_{2} (s,\eta)\\&&-c_{23}\int^{0}_{-\tau_{23}}x_{3}(s+\theta,\eta)\mathrm{d}\mu_{23}(\theta)\bigg)\bigg]\mathrm{d}s+\int^{t_{2}}_{t_{1}}\sigma_{2}\left(\gamma\left(s\right)\right) x_{2}(s,\eta)\mathrm{d}\beta_{2}(s),\\ x_{3}(t_{2},\eta)-x_{3}(t_{1},\eta)& = &\int^{t_{2}}_{t_{1}}\bigg[x_{3}(s,\eta)\bigg(-a_{3}\left(\gamma\left(s\right)\right) -h_{3}+c_{31}\int^{0}_{-\tau_{31}}x_{1}(s+\theta,\eta)\mathrm{d}\mu_{31}(\theta)\\&&+c_{32}\int^{0}_{-\tau_{32}}x_{2}(s+\theta,\eta)\mathrm{d}\mu_{32}(\theta)-c_{33}x_{3}(s,\eta)\bigg)\bigg]\mathrm{d}s+\int^{t_{2}}_{t_{1}}\sigma_{3}\left(\gamma\left(s\right)\right) x_{3}(s,\eta)\mathrm{d}\beta_{3}(s). \end{eqnarray} |
For any t_{2} > t_{1}, p > 0
\begin{eqnarray} {\left[E|x_{1}(t_{2},\eta)-x_{1}(t_{1},\eta)|\right]}^{p}&\leq& E{\left| x_{1}(t_{2},\eta)-x_{1}(t_{1},\eta)\right|}^{p} \\&\leq&E\bigg\{\int^{t_{2}}_{t_{1}}\bigg[x_{1}(s,\eta)\big| a_{1}(\gamma(t))-h_{1}-c_{11}x_{1}(s,\eta)-c_{12}\int^{0}_{-\tau_{12}}x_{2}(s+\theta,\eta)\mathrm{d}\mu_{12}(\theta)\\&&-c_{13}\int^{0}_{-\tau_{13}}x_{3}(s+\theta,\eta)\mathrm{d}\mu_{13}(\theta)\big|\bigg] \mathrm{d}s+\big|\int^{t_{2}}_{t_{1}}\sigma_{1}\left(\gamma\left(s\right)\right) x_{1}(s,\eta)\mathrm{d}\beta_{1}(s)\big|\bigg\}^{p} \\&\leq& 2^{p}E\Bigg\{\int^{t_{2}}_{t_{1}}\bigg[x_{1}(s,\eta)\big|\hat{a_{1}}-h_{1}-c_{11}x_{1}(s,\eta)-c_{12}\int^{0}_{-\tau_{12}}x_{2}(s+\theta,\eta)\mathrm{d}\mu_{12}(\theta)\\&&-c_{13}\int^{0}_{-\tau_{13}}x_{3}(s+\theta,\eta)\mathrm{d}\mu_{13}(\theta)\big| \bigg]\mathrm{d}s\Bigg\}^{p}+2^{p}E\big|\int^{t_{2}}_{t_{1}}\sigma_{1}\left(\gamma\left(s\right)\right) x_1(s)\mathrm{d}\beta_{1}(s)\big|^{p}.\\ \end{eqnarray} | (30) |
Moreover,
\begin{eqnarray} &&E\left\{\int^{t_{2}}_{t_{1}}\bigg[x_{1}(s,\eta)\big|\hat{a_{1}}-h_{1}-c_{11}x_{1}(s,\eta)-c_{12}\int^{0}_{-\tau_{12}}x_{2}(s+\theta,\eta)\mathrm{d}\mu_{12}(\theta) -c_{13}\int^{0}_{-\tau_{13}}x_{3}(s+\theta,\eta)\mathrm{d}\mu_{13}(\theta)\big|\bigg] \mathrm{d}s\right\}^{p} \\ &\leq& E\bigg\{\int^{t_{2}}_{t_{1}}\bigg[x_{1}(s,\eta)|\hat{a_{1}}-h_{1}|+c_{11}{x_{1}^{2}(s,\eta)}+c_{12}\int^{0}_{-\tau_{12}}x_{1}(s,\eta)x_{2}(s+\theta,\eta)\mathrm{d}\mu_{12}(\theta) \\ &&+c_{13}\int^{0}_{-\tau_{13}}x_{1}(s,\eta)x_{3}(s+\theta,\eta)\mathrm{d}\mu_{13}(\theta)\bigg]\mathrm{d}s\bigg\}^{p} \\ &\leq& (t_{2}-t_{1})^{p-1}E\int^{t_{2}}_{t_{1}}4^{p}\bigg[x_{1}^{p}(s,\eta){|\hat{a_{1}}-h_{1}|}^{p}+c_{11}^{p}{x_{1}^{2p}(s,\eta)} +c_{12}^{p}\left(\int^{0}_{-\tau_{12}}x_{1}(s,\eta)x_{2}(s+\theta,\eta)\mathrm{d}\mu_{12}(\theta)\right)^{p} \\&& +c_{13}^{p}\left(\int^{0}_{-\tau_{13}}x_{1}(s,\eta)x_{3}(s+\theta,\eta)\mathrm{d}\mu_{13}(\theta)\right)^{p}\bigg]\mathrm{d}s \\ & = & 4^{p}(t_{2}-t_{1})^{p-1}{|\hat{a_{1}}-h_{1}|}^{p}\int^{t_{2}}_{t_{1}}E[x_{1}^{p}(s,\eta)]\mathrm{d}s + 4^{p}(t_{2}-t_{1})^{p-1}c_{11}^{p}\int^{t_{2}}_{t_{1}}E[x_{1}^{2p}(s,\eta)]\mathrm{d}s \\&& +4^{p}(t_{2}-t_{1})^{p-1}c_{12}^{p}E\int^{t_{2}}_{t_{1}}\left(\int^{0}_{-\tau_{12}}x_{1}(s,\eta)x_{2}(s+\theta,\eta)\mathrm{d}\mu_{12}(\theta)\right)^{p}\mathrm{d}s \\&& +4^{p}(t_{2}-t_{1})^{p-1}c_{13}^{p}E\int^{t_{2}}_{t_{1}}\left(\int^{0}_{-\tau_{13}}x_{1}(s,\eta)x_{3}(s+\theta,\eta)\mathrm{d}\mu_{12}(\theta)\right)^{p}\mathrm{d}s, \end{eqnarray} | (31) |
where
\begin{eqnarray} &&E\int^{t_{2}}_{t_{1}}\left(\int^{0}_{-\tau_{12}}x_{1}(s,\eta)x_{2}(s+\theta,\eta)\mathrm{d}\mu_{12}(\theta)\right)^{p}\mathrm{d}s\\ &\leq & E\int^{t_{2}}_{t_{1}}\left[\frac{x_{1}^{2}(s,\eta)}{2}+\frac{1}{2}\int^{0}_{-\tau_{12}}{x^{2}_{2}}(s+\theta,\eta)\mathrm{d}\mu_{12}(\theta)\right]^{p}\mathrm{d}s \\ &\leq& \int^{t_{2}}_{t_{1}}E[{x^{2p}_{1}}(s,\eta)]+\int^{t_{2}}_{t_{1}}\int^{0}_{-\tau_{12}}E[{x^{2p}_{2}}(s+\theta,\eta)]\mathrm{d}\mu_{12}(\theta)\mathrm{d}s. \end{eqnarray} | (32) |
Similarly,
\begin{align} E \int^{t_{2}}_{t_{1}}\left(\int^{0}_{-\tau_{13}}x_{1}(s,\eta)x_{3}(s+\theta,\eta)\mathrm{d}\mu_{13}(\theta)\right)^{p}\mathrm{d}s \leq \int^{t_{2}}_{t_{1}}E[{x^{2p}_{1}}(s,\eta)]+\int^{t_{2}}_{t_{1}}\int^{0}_{-\tau_{13}}E[{x^{2p}_{3}}(s+\theta,\eta)]\mathrm{d}\mu_{13}(\theta)\mathrm{d}s. \end{align} | (33) |
In view of the Theorem 2.11 in [40], for any t_{2} > t_{1} and p\ge 2 , we have
\begin{eqnarray} E\left|\int^{t_{2}}_{t_{1}} x(s;\eta)\mathrm{d}\beta(s)\right|^{p} \leq (\frac{p(p-1)}{2})^{\frac{p}{2}}(t_{1}-t_{2})^{\frac{p-2}{2}}\int^{t_{2}}_{t_{1}}E[x^{p}(s,\eta)]\mathrm{d}s. \end{eqnarray} | (34) |
From Lemma 1 and Eqs (30)–(34), for p \ge 2 , we get
\begin{eqnarray} {\left[E|x_{1}(t_{2},\eta)-x_{1}(t_{1},\eta)|\right]}^{p} &\leq& 2^{p}|\hat \sigma_1|^{p}(\frac{p(p-1)}{2})^{\frac{p}{2}}| t_{2}-t_{1}|^{\frac{p}{2}}K_{1}(p) +8^{p}\bigg\{|\hat{a_{1}}-h_{1}|^{p}| t_{2}-t_{1}|^{p}K_{1}(p)\\&& +| t_{2}-t_{1}|^{p}c_{11}^{p}K_{1}(2p)+| t_{2}-t_{1}|^{p}c_{12}^{p}K_{1}(2p)+| t_{2}-t_{1}|^{p}c_{12}^{p}K_{2}(2p) \\&&+| t_{2}-t_{1}\mid^{p}c_{13}^{p}K_{1}(2p)+| t_{2}-t_{1}|^{p}c_{13}^{p}K_{3}(2p)\bigg\}\\ &\leq& L_{1}| t_{2}-t_{1}|^{\frac{p}{2}}, \end{eqnarray} |
where, for |t_2-t_1| < \epsilon , the constant
\begin{align*} L_{1} = &2^{p}|\hat \sigma_1|^{p}(\frac{p(p-1)}{2})^{\frac{p}{2}}K_{1}(p) +(64\epsilon)^{\frac{p}{2}}\big[|\hat{a_{1}}-h_{1}|^{p}K_{1}(p)+(c_{11}^{p}+c_{12}^{p}+c_{13}^{p})K_1(2p)\\ &+c_{12}^{p}K_2(2p)+c_{13}^{p}K_3(2p)\big] \gt 0. \end{align*} |
By the same method, we get {\left[E|x_{1}(t_{2}, \eta^*)-x_{1}(t_{1}, \eta^*)|\right]}^{p} \leq L_{1}|t_{2}-t_{1}|^{\frac{p}{2}}. Thus |G_{1}(t_{2})-G_{1}(t_{1})| \leq 2{L_{1}}^\frac{1}{p}\sqrt{|t_{2}-t_{1}|}. Similarly, there exist two constants L_{2} > 0 and L_{3} > 0 such that
\begin{eqnarray} | G_{2}(t_{2})-G_{2}(t_{1})| \leq 2{L_{2}}^\frac{1}{p}\sqrt{|t_{2}-t_{1}|}, | G_{3}(t_{2})-G_{3}(t_{1})|\leq 2{L_{3}}^\frac{1}{p}\sqrt{|t_{2}-t_{1}|},\quad a.s.. \end{eqnarray} |
So the G_{j}(t), j = 1, 2, 3, is uniformly continuous function. According to Barb\v{a}lat Lemma [42], we have the conclusion. The proof is complete.
In this section, we shall provide the sufficient and necessary conditions ensuring the existence of optimal solution of the system (1) with harvesting.
Assume y(t) is the stochastic process of (X(t), \gamma(t)) and p(t, \phi, i, \mathrm{d}y \times \{j\}) is the transition probability of the process \gamma(t) . P(t, \phi, i, A \times D) stands for the probability of event \{y(t) \in A \times D\} with the initial condition \phi \in \mathbb{C}\left([-\tau, 0], \mathbb {R}_{+}^{3}\right), \gamma(0) = i and
\begin{equation*} P(t,\phi,i,A\times D) = \sum\limits_{j\in D}\int_{A}p(t,\phi,i,\mathrm{d}y \times \{j\}). \end{equation*} |
Now, let \mathcal{P} stands for all probability measures on \mathbb{C}\left([-\tau, 0], \mathbb {R}_{+}^{3}\right) \times \mathbb{S} . For any measures P_{1}, P_{2} \in \mathcal{P} define the metric
\begin{equation} d_{\mathbb{L}}(P_{1},P_{2}) = \mathop{\sup}\limits_{f \in \mathbb{L}}|\sum\limits_{i = 1}^{n}\int_{\mathbb {R}_{+}^{3}}f(\phi,i)P_{1}(\mathrm{d}\phi,i)-\sum\limits_{i = 1}^{n}\int_{\mathbb {R}_{+}^{3}}f(\phi,i)P_{2}(\mathrm{d}\phi,i)|,\nonumber \end{equation} |
where
\begin{equation} \mathbb{L} = \left\{f:\mathbb{C}\left([-\tau , 0], \mathbb {R}_{+}^{3}\right) \to \mathbb {R}:\mid f(\phi,i)-f(\psi,j)\mid \leq |\phi-\psi|+\mid i-j\mid,\mid f(\cdot \times \cdot )\mid \leq 1 \right\}.\nonumber \end{equation} |
Theorem 3.\quad Let all positive solutions of (1) be globally attractive. Then the solution (X(t), \gamma(t)) has a unique ergodic invariant distribution \bar{v}(\cdot \times \cdot) defined on \mathbb{C}\left([-\tau, 0], \mathbb {R}_{+}^{3}\right) \times \mathbb{S} .
Proof. We observe from Lemma 1 that for any initial data \phi \in \mathbb{C}\left([-\tau, 0], \mathbb {R}_{+}^{3}\right) with \gamma(0) = i \in \mathbb{S} , the family of transition probability \{p(t, \phi, i, \mathrm{d}y \times \{j\}): t\ge 0\} is tight by the Chebyshev inequality. That is to say, for a compact subset K = K(\epsilon, \phi, i) and any \epsilon > 0
\begin{equation*} P(t,\phi,i,K \times \mathbb{S}) \ge 1-\epsilon \end{equation*} |
Next, based on the Theorem 2, for any \epsilon > 0, t\ge T and any compact subset K \in \mathbb{C}\left([-\tau, 0], \mathbb {R}_{+}^{3}\right) , we have
\begin{equation*} \lim\limits_{t \to \infty}d_{\mathbb{L}}\left(p(t,\phi,i,\cdot \times \cdot),p(t,\tilde{\phi},j,\cdot \times \cdot)\right) = 0 \end{equation*} |
uniformly in \phi, \tilde{\phi} \in K and i, j \in \mathbb{S} . The proof is similar as Lemma 5.6 in [40], here we omit it. And then for an arbitrary initial data \eta \in \mathbb{C}\left([-\tau, 0], \mathbb {R}_{+}^{3}\right) with \gamma(0) = j \in \mathbb{S} , the \{p(t, \eta, j, \cdot \times \cdot):t\ge 0\} is cauchy in the metric space \mathcal{P}(\mathbb{C}\left([-\tau, 0], \mathbb {R}_{+}^{3}\right) \times \mathbb{S}) (see Lemma 5.7 in [40]). Hence, there exists a unique probability measure \bar{v}(\cdot) such that
\lim\limits_{t \to \infty}d_{\mathbb{L}}\left(p(t,\eta,j,\cdot \times \cdot),\bar{v}(\cdot)\right) = 0. |
The last, for any initial value \phi \in \mathbb{C}\left([-\tau, 0], \mathbb {R}_{+}^{3}\right) with \gamma(0) = i \in \mathbb{S} , we obtain that
\begin{eqnarray} \lim\limits_{t \to \infty}d_{\mathbb{L}}\left(p(t,\phi,i,\cdot \times \cdot),\bar{v}(\cdot)\right) \leq \lim\limits_{t \to \infty}d_{\mathbb{L}}\left(p(t,\phi,i,\cdot \times \cdot),p(t,\eta,j,\cdot \times \cdot\right)+\lim\limits_{t \to \infty}d_{\mathbb{L}}\left(p(t,\eta,j,\cdot \times \cdot),\bar{v}(\cdot)\right) = 0. \end{eqnarray} |
It means that the p(t, \phi, i, \cdot \times \cdot) converges weakly to \bar{v}(\cdot) . [43] (Corollary 3.4.3 and Theorem 3.2.6) show \bar{v}(\cdot) is strong mixing and ergodic.
This completes the proof.
When C_M is a non-singular matrix, it follows from Theorems 2 and 3 that any positive solution (X(t), \gamma(t)) of the system (1) has a unique ergodic invariant distribution \bar{v}(\cdot \times \cdot) defined on \mathbb{C}\left([-\tau, 0], \mathbb {R}_{+}^{3}\right)\times \mathbb{S} . This guarantees that \lim\limits_{t \to \infty}\sum\limits^{3}_{j = 1}E(h_{j}x_{j}(t)) exists for the positive solution x(t) = (x_1(t), x_2(t), x_3(t))^T . That is, the harvesting effort H^{*} = (h_{1}^{*}, h_{2}^{*}, h_{3}^{*})^T is the optimal solution of Eq (2) if
(i) \Phi(H^*) is the maximum value of \Phi ;
(ii) All species in the system (1) are stable in mean (see also Definition 1).
The following theorem gives sufficient and necessary conditions ensuring the existence of optimal solution H^* = (h_{1}^{*}, h_{2}^{*}, h_{3}^{*})^T for Eq (2).
Theorem 4. Let C_M be a non-singular matrix. Then the system (1) has the optimal harvesting policy if and only if (a), (b) and (c) all hold.
\begin{eqnarray} &(a) & \quad \tilde{C}_i\mid_{h^*_{j}} \gt 0, h^*_{j} \ge 0, i,j = 1,2,3;\\ &(b) & \quad R\mid_{h^*_{j}} \gt 0, \omega_3\mid_{h^*_{j}} \gt 1,\;\ \text{or}\;\ R\mid_{h^*_{j}} \lt 0, \Theta_3\mid_{h^*_{j}} \gt 1,\;\ \text{or}\;\ R\mid_{h^*_{j}} = 0, \omega_2 \gt 1,j = 1,2,3; \\ &(c) & \quad C^{-1}+(C^{-1})^{T} \text{ is positive definite.} \end{eqnarray} |
Furthermore, we obtain the optimal harvesting effort H^{*} = \left[\left(C(C^{-1})^{T}+I\right)\tilde{R}\right]^{-1}d and the maximum of sustainable yield \Phi(H^{*}) = (H^*)^{T}\tilde{R}C^{-1}(d-\tilde{R}H^*)-W , where \tilde{R} = diag\{r_1, r_2, r_3\} .
Proof. Denote \mu = \{H = (h_{1}, h_{2}, h_{3})^{T} \in \mathbb R^3\mid (a), (b)\; \ \text{all hold}\} . If we take h_1 = h_2 = h_3 = 0, r_1 = r_2 = r_3 = 1 and choose the appropriate parameters, we can see \mu is not empty. Denote \rho means the stationary probability density of model (1) and x(t) = (x_1(t), x_2(t), x_3(t))^T . For notation convenience, we use x instead of x(t) , so we get
\begin{equation} \Phi(H) = \lim\limits_{t \to \infty}\sum^{3}_{j = 1}r_j h_{j}E(x_{j}(t))-W = \sum\limits_{k \in \mathbb{S}}\int_{\mathbb R^3_{+}}H^{T}\tilde{R}x\rho(x,k)\mathrm{d}x-W.\nonumber \end{equation} |
Theorem 3 shows the system (1) has a unique stable distribution \bar{v} . Due to the one-to-one corresponded between \rho and \bar{v} , we have the following relations (see Theorem 3.3.1 in [43])
\begin{equation} \lim\limits_{t \to \infty}t^{-1}\int^{t}_{0}x(s)\mathrm{d}s = \sum\limits_{k \in \mathbb{S}}\int_{\mathbb R^3_{+}}x\rho(x,k)\mathrm{d}x = \sum\limits_{k \in \mathbb{S}}\int_{\mathbb R^3_{+}}x\bar{v}(\mathrm{d}x,k).\nonumber \end{equation} |
For arbitrary (h_{1}, h_{2}, h_{3})^{T} \in \mu , we have
\begin{equation} \Phi(H) = \sum\limits^{3}_{j = 1}r_jh_{j}\lim\limits_{t \to \infty}t^{-1}\int^{t}_{0}x_{j}(s)\mathrm{d}s-W = \sum\limits^{3}_{j = 1}r_jh_{j}\frac{C_j-\tilde{C}_j}{|C|} = H^{T}\tilde{R}C^{-1}(d-\tilde{R}H)-W.\notag \end{equation} |
Thus
\begin{equation} \Phi(H) = H^{T}\tilde{R}C^{-1}(d-\tilde{R}H)-W.\nonumber \end{equation} |
Next
\begin{equation} \frac{\mathrm{d}\Phi(H)}{\mathrm{d}H} = \tilde{R}C^{-1}d-\left[\tilde{R}\left(C^{-1}+(C^{-1})^{T}\right)\tilde{R}\right]H.\nonumber \end{equation} |
Assume H^* = (h^*_{1}, h^*_{2}, h^*_{3})^{T} is the solution of
\begin{equation} \frac{\mathrm{d}\Phi(H)}{\mathrm{d}H} = 0.\nonumber \end{equation} |
Thus one get
\begin{equation} H^* = \left[\left(C(C^{-1})^{T}+I\right)\tilde{R}\right]^{-1}d.\notag \end{equation} |
The Hessian matrix
\begin{equation} \frac{\mathrm{d}}{\mathrm{d}H^{T}}[\frac{\mathrm{d}\Phi(H)}{\mathrm{d}H}] = -\tilde{R}\left(C^{-1}+(C^{-1})^{T}\right)\tilde{R}.\notag \end{equation} |
Due to C^{-1}+(C^{-1})^{T} is positive definite, then H^* is a unique extreme point of \Phi(H) . And then the optimal harvesting effort H^* = \left[\left(C(C^{-1})^{T}+I\right)\tilde{R}\right]^{-1}d and the maximum value of expectation of sustainable yield \Phi(H^{*}) = (H^*)^{T}\tilde{R}C^{-1}(d-\tilde{R}H^*)-W .
If conditions (a) and (b) do not hold, the species of the system (1) will not stable in mean or to be extinct. Then the optimal harvesting policy does not exist. What's more, if (c) not hold. That is to say C^{-1}+(C^{-1})^{T} is not positive definite. Set Q = C^{-1}+(C^{-1})^{T} , then we can see
Q_{11} = \frac{2(c_{22}c_{33})}{c_{11}c_{22}c_{33}+c_{11}c_{23}c_{32}+c_{12}c_{21}c_{33}-c_{12}c_{23}c_{31}+c_{13}c_{21}c_{32}+c_{13}c_{22}c_{31}} = \frac{2(c_{22}c_{33})}{|C|}\; \gt \; 0. |
So Q must not be negative definite, and Q is indefinite. This implies that \Phi(H) has no extreme point. Thus, the optimal harvesting policy does not exist. The proof is complete.
In this section, we shall give some numerical examples and their simulations to illustrate the effectiveness of the obtained results for the hybrid stochastic phytoplankton-zooplankton-fish model with distributed delays (1). For the practical biological significance, some parameter values of the system (1) are given such as the growth rate of phytoplankton, the death rate of zooplankton and fish [44,45,46]. According to these publications, we take the mean growth rate of phytoplankton ranged from 0.26d^{-1} to 1.04d^{-1} , the death rate of diaphanosoma brachyurum (a kind of zooplankton) ranged from 0.01 d^{-1} to 0.92 d^{-1} , and the death rate of fish ranged from 0.15 d^{-1} to 0.95 d^{-1} . Due to technical reasons, the rate of intra-specific competition, capture and food conversation are not easy to be obtained. In the following examples, we will refer to the value range of system parameters.
Example 1. Consider the stochastic delayed phytoplankton-zooplankton-fish model (1) with \mathbb{S} = \{1, 2\}, \xi = (0.3, 0.7) , and parameters a_{1}(1) = 0.56, a_{2}(1) = 0.27, a_{3}(1) = 0.45 , a_{1}(2) = 0.80, a_{2}(2) = 0.33, a_{3}(2) = 0.64 , h_{1} = h_{2} = h_{3} = 0 , c_{11} = 0.35, c_{12} = 0.2, c_{13} = 0.1, c_{21} = 0.15, c_{22} = 0.65, c_{23} = 0.3, c_{31} = 0.28, c_{32} = 0.1, c_{33} = 0.55 , \sigma_{1}^2(1) = \sigma_{1}^2(2) = 0.02, \sigma_{2}^2(1) = \sigma_{2}^2(2) = 0.01, \sigma_{3}^2(1) = \sigma_{3}^2(2) = 0.012 .
We compute that C_{23} = 0.021 > 0, C_{31} = -0.005 < 0, C_{12} = 0.0015 > 0, |C| = 0.155025 > 0 , \bar{a}_{1} = 0.73, \bar{a}_{2} = 0.31, \bar{a}_{3} = 0.58, C_1 = 0.323, C_2 = 0.00015, C_3 = 0.00097, \tilde{C}_1 = 0.0032, \tilde{C}_2 = 0.000367, \tilde{C}_3 = 0.0034, R = 0.000001 > 0, \omega_3 = 0.2845 < 1, \omega_2 = 0.3077 < 1, \omega_1 = 73 > 1 . It follows from Case (c) of Theorem 1 that
\begin{eqnarray} \lim\limits_{t \to \infty}x_{j}(t) = 0,j = 2,3, \;\;\lim\limits_{t \to \infty}t^{-1}\int^{t}_{0}x_{1}(s)\mathrm{d}s = \frac{u_1}{C_{11}} = 2.05. \end{eqnarray} |
Figure 2 is shown to illustrate the species x_2, x_3 are extinct and x_1 is stable in mean. So, there is no optimal solution for the optimization problem (2).
The above example shows the effect of time delay and environmental noise on the survival and extinction of species without harvesting. According to Theorem 1, the time delay has no effect on the survival and extinction of the three species, but the harvesting and environmental noise have great influence on it. This is also verified by our numerical experiments. The results of example 1 showed that when Zooplankton and Fish were extinct, Phytoplankton could still stable in mean under certain environmental noise. But it is meaningless to discuss the optimal harvesting policy in the case of species extinction.
In order to demonstrate some results about optimal harvesting policy for the system (1), we give the following example.
Example 2. uad Consider the stochastic delayed phytoplankton-zooplankton-fish model (1) with \mathbb{S} = \{1, 2\}, \xi = (0.9, 0.1) , a_{1}(1) = 0.9789, a_{2}(1) = 0.0211, a_{3}(1) = 0.1044 , a_{1}(2) = 0.59, a_{2}(2) = 0.01, a_{3}(2) = 0.06 , we compute \bar{a}_{1} = 0.94, \bar{a}_{2} = 0.02, \bar{a}_{3} = 0.1 .
When there is no harvesting, i.e. h_i = 0, i = 1, 2, 3 , we compute that C_1 = 0.3672, C_2 = 0.0062, C_3 = 0.1599, \tilde{C}_1 = 0.0032, \tilde{C}_2 = 0.000367, \tilde{C}_3 = 0.0034, R = -0.000243 < 0, \Theta_3 = \frac{C_2}{\tilde{C}_2} = 16.8163 > 1 . It follows from Case (n) of Theorem 1 that
\begin{eqnarray} \lim\limits_{t \to \infty}t^{-1}\int^{t}_{0}x_{1}(s)\mathrm{d}s = \frac{C_1-\tilde{C}_1}{|C|} = 2.3474,\\ \lim\limits_{t \to \infty}t^{-1}\int^{t}_{0}x_{2}(s)\mathrm{d}s = \frac{C_2-\tilde{C}_2}{|C|} = 0.0375,\\ \lim\limits_{t \to \infty}t^{-1}\int^{t}_{0}x_{3}(s)\mathrm{d}s = \frac{C_3-\tilde{C}_3}{|C|} = 1.0091. \end{eqnarray} |
Figure 3 is shown to illustrate the species x_i, i = 1, 2, 3 are stable in mean for the system (1) with no harvesting.
Furthermore, we select the appropriate values of the unit profit parameters r_1 = 0.6, r_2 = 2.7, r_3 = 4 , and fixed cost W = 0.2 . Then, all the conditions in Theorem 4 are checked as follows: d = (0.93, 0.025, 0.106)^{T}, H^* = (h^*_{1}, h^*_{2}, h^*_{3})^{T} = \left[\left(C(C^{-1})^{T}+I\right)\tilde{R}\right]^{-1}d = (0.6915, 0.0713, 0.0764)^{T}, \tilde{C}_1|_{H = H^*} = 0.2622, \tilde{C}_2|_{H = H^*} = 0.0059, \tilde{C}_3|_{H = H^*} = 0.1578, R|_{H = H^*} = 0.000225 > 0, \omega_3 = \frac{C_3}{\tilde{C}_3} = 1.0129 > 1 and C_M^{-1}\geq 0 . Thus, the optimal harvesting effort is H^{*} = (0.6915, 0.0713, 0.0764)^T and the maximum of total economic income is 0.4792. Under the optimal harvesting condition, by Case (g) in Theorem 1, we see that
\begin{eqnarray} \lim\limits_{t \to \infty}t^{-1}\int^{t}_{0}x_{1}(s)\mathrm{d}s = \frac{C_1-\tilde{C}_1}{|C|} = 0.6767,\\ \lim\limits_{t \to \infty}t^{-1}\int^{t}_{0}x_{2}(s)\mathrm{d}s = \frac{C_2-\tilde{C}_2}{|C|} = 0.0019,\\ \lim\limits_{t \to \infty}t^{-1}\int^{t}_{0}x_{3}(s)\mathrm{d}s = \frac{C_3-\tilde{C}_3}{|C|} = 0.0131. \end{eqnarray} |
Figure 4 is shown to illustrate the species x_i, i = 1, 2, 3 are stable in mean for the system (1) with the optimal harvesting H^* .
In example 2, we see that all species are stable in mean without harvesting. According to Theorem 4, we get the maximum harvesting effort H^* , and verify that all species are still stable in mean. This means that the system (1) has an optimal harvesting strategy with the maximum of total economic income. However, excessive harvesting or strong enough environmental noise may cause the extinction of species, and the optimal harvesting strategy does not exist.
This work is partially supported by the National Natural Science Foundation of China (NSFC) under Grant No.11971081, No. 11701060, the Fundamental and Frontier Research Project of Chongqing under Grant No. cstc2018jcyjAX0144, the Science and Technology Research Program of Chongqing Municipal Education Commission under Grant No. KJZD-M202000502, the Program of Chongqing Graduate Research and Innovation Project under Grant CYS19290, the Open Project of Key Laboratory No.CSSXKFKTM202007, Mathematical College, Chongqing Normal University, the Doctor Start-up Funding of Chongqing University of Posts and Telecommunications under Grant A2016-80. The authors thank all anonymous reviewers for their helpful comments and valuable suggestions.
The authors declare there is no conflict of interest.
[1] | J. Steele, Stability of Plankton Ecosystem, Chapman and Hall, London, 1974. |
[2] | T. Saha, M. Bandyopadhyay, Dynamical analysis of toxin producing phytoplankton-zooplankton interactions, Nonlinear Anal. Real World Appl., 10 (2009), 314-332. |
[3] | Y. Lv, Y. Pei, S. Gao, C. Li, Harvesting of a phytoplankton-zooplankton model, Nonlinear Anal. Real World Appl., 11 (2010), 3608-3619. |
[4] | C. Liu, L. Wang, Q. Zhang, Y. Yun, Dynamical analysis in a bioeconomic phytoplankton zooplankton system with double time delays and environmental stochasticity, Phys. A, 482 (2017), 682-698. |
[5] | X. Meng, J. Li, Stability and Hopf bifurcation analysis of a delayed phytoplankton-zooplankton model with Allee effect and linear harvesting, Math. Biosci. Eng., 17 (2019), 1973-2002. |
[6] | G. Denaro, D. Valenti, B. Spagnolo, G. Basilone, S. Mazzola, S. W. Zgoz, et al., Dynamics of two picophytoplankton groups in mediterranean sea: Analysis of the deep chlorophyll maximum by a stochastic advection-reaction-diffusion model, PLoS One, 8 (2013), e66765. |
[7] | G. Denaro, D. Valenti, A. La Cognata, B. Spagnolo, A. Bonanno, G. Basilone, et al., Spatio-temporal behaviour of the deep chlorophyll maximum in Mediterranean Sea: Development of a stochastic model for picophytoplankton dynamics, Ecol. Complex, 13 (2013), 21-34. |
[8] | D. Valenti, G. Denaro, A. L. Cognata, B. Spagnolo, Picophytoplankton dynamics in noisy marine environment, Acta. Phys. Pol B, 43 (2012), 1227-1240. |
[9] | A. S. Heiskanen, T. Tamminen, K. Gundersen, Impact of planktonic food web structure on nutrient retention and loss from a late summer pelagic system in the coastal northern Baltic Sea, Mar. Ecol. Prog. Ser., 145 (1996), 195-208. |
[10] | M. Scheffe, Fish and nutrients interplay determines algal biomass: a minimal model, Oikos, 62 (1991), 271-282. |
[11] | A. B. Medvinsky, S. V. Petrovskii, I. A. Tikhonova, H. Malchow, B. L. Li, Spatio-temporal complexity of plankton and fish dynamics, SIAM Rev., 44 (2002), 311-370. |
[12] | P. Panja, S. K. Mondal, Stability analysis of coexistence of three species prey-predator model, Nonlinear Anal., 81 (2015), 373-382. |
[13] | A. Sharma, A. K. Sharma, K. Agnihotri, Complex dynamic of plankton-fish interaction with quadratic harvesting and time delay, Model Earth Syst. Environ., 2 (2016), 1-17. |
[14] | X. Y. Meng, Y.Q. Wu, Bifurcation and control in a singular phytoplankton-zooplankton-fish model with nonlinear fish harvesting and taxation, Int. J. Bifurcat. Chaos, 28 (2018), 1850042. |
[15] | Z. Wei, J. Sugie, Global asymptotic stability and equiasymptotic stability for a time-varying phytoplankton-zooplankton-fish system, Nonlinear Anal. Real World Appl., 46 (2019), 116-136. |
[16] | B. Buonomo, M. Cerasuolo, The effect of time delay in plant-pathogen interactions with host demography, Math. Biosci. Eng., 12 (2015), 473-490. |
[17] | B. Tian, Y. Qiu, N. Chen, Periodic and almost periodic solution for a non-autonomous epidemic predator-prey system with time-delay, Appl. Math. Copmut., 215 (2009), 779-790. |
[18] | O. A. Chichigina, A. A. Dubkov, D, Valenti, B. Spagnolo, Stability in a system subject to noise with regulated periodicity, Phys. Rev. E, 84 (2011), 021134. |
[19] | D. Valenti, L. Tranchina, M. Brai, A. Caruso, C. Cosentino, B. Spagnolo, Environmental metal pollution considered as noise: Effects on the spatial distribution of benthic foraminifera in two coastal marine areas of Sicily (Southern Italy), Ecol. Model, 213 (2008), 449-462. |
[20] | A. A. Dubkov, B. Spagnolo, Verhulst model with Lévy white noise excitation, Eur. Phys. J. B, 65 (2008), 361-367. |
[21] | Q. Luo, X. Mao, Stochastic population dynamics under regime switching, J. Math. Anal. Appl., 355 (2009), 577-593. |
[22] | M. Slatkin, The dynamics of a Population in a Markovian environment, Ecology, 59 (1978), 249-256. |
[23] | H. Qiu, W. Deng, Stationary distribution and global asymptotic stability of a three-species stochastic food-chain system, Turk. J. Math., 41 (2017), 1292-1307. |
[24] | Y. Ma, Q. Zhang, L. Wang, T. Kang, Dissipative control of a three-species food chain stochastic system with a hidden Markovchain, Adv. Differ. Equ-Ny., 2017 (2017), 1-22. |
[25] | Y. Lin, D. Jiang, Long-time behavior of a stochastic predator-prey model with modified Leslie-Gower and Holling-type II schemes, Int. J. Biomath, 9 (2016), 1650039. |
[26] | J. Lv, K. Wang, Asymptotic properties of a stochastic predator-prey system with Holling II functional response, Commun. Nonlinear. Sci. Numer Simulat., 16 (2011), 4037-4048. |
[27] | Z. Liu, N. Shi, D. Jiang, C. Ji, The Asymptotic behavior of a stochastic predator-prey system with Holling II functional response, Abstr. Appl. Anal., 2012 (2012), 1-14. |
[28] | G. Gilioli, S. Pasquali, F. Ruggeri, Nonlinear functional response parameter estimation in a stochastic predator-prey model, Math. Biosci. Eng., 9 (2012), 75-96. |
[29] | C. S. Reynolds, The Ecology of Freshwater Phytoplankton, Cambridge University Press, Cambridge, 1984. |
[30] | C. W. Clark, Mathematical Bio-Economics: The Optimal Management of Renewable Resources, Wiley, New York, 1976. |
[31] | C. W. Clark, Bioeconomic Modeling and Resource Management, in Applied Mathematical Ecology (eds. S. A. Levin), Springer, 1989, 11-57. |
[32] | M. Mesterton-Gibbons, On the optimal policy for combining harvesting of predator and prey, Nat. Resour. Model, 3 (1988), 63-90. |
[33] | M. Mesterton-Gibbons, A technique for finding optimal two-species harvesting policies, Ecol. Model, 92 (1996), 235-244 |
[34] | S. Wang, L. Wang, T. Wei, Optimal harvesting for a stochastic predator-prey model with S-type distributed time delays, Methodol Comput. Appl., 20 (2016), 37-68. |
[35] | M. Liu, C. Bai, Analysis of a stochastic tri-trophic food-chain model with harvesting, J. Math. Biol., 73 (2016), 597-625. |
[36] | M. Liu, X. He, J. Yu, Dynamics of a stochastic regime-switching predator-prey model with harvesting and distributed delay, Nonlinear Anal. Hybrid Syst., 28 (2018), 87-104. |
[37] | W. J. Anderson, Continuous-Time Markov Chains, Springer, New York, 1991. |
[38] | R. M. May, Stability and Complexity in Model Ecosystems, Princeton University Press, Princeton, 1975. |
[39] | X. Zhang, W. Li, M. Liu, K. Wang, Dynamics of a stochastic Holling II one-predator two-prey system with jumps, Phys. A, 421 (2015), 571-582. |
[40] | X. Mao, C. Yuan, Stochastic Differential Equations with Markovian Switching, Imperial College Press, London, 2006. |
[41] | M. Liu, J. Yu, P. S. Mandal, Dynamics of a stochastic delay competitive model with harvesting and Markovian switching, Appl. Math. Comput., 337 (2018), 335-349. |
[42] | V. M. Popov, Hyperstability of Control Systems, Springer-Verlag, New York, 1973. |
[43] | D. Prato, J. Zabczyk, Ergodicity for Infinite Dimensional Systems, Cambridge University Press, Cambridge, 1996. |
[44] | L. Thomas, Estimating Phytoplankton Growth Rates from Compositional Data, in Oceanography/Biological Oceanography Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, Massachusetts Institute Of Technology, 2008. |
[45] | T. Nanazato, M. Yasuno, Population dynamics and production of cladoceran zooplankton in the highly eutrophic Lake Kasumigaura, Hydrobiologia, 124 (1981), 13-22. |
[46] | Y. Wang, Q. Liu, Estimating natural mortality from stock size and catch data (in Chinese), Period. Ocean Univ. China, 35 (2005), 020-024. |
1. | Yuqin Liang, Yunfeng Jia, Stability and Hopf bifurcation of a diffusive plankton model with time-delay and mixed nonlinear functional responses, 2022, 163, 09600779, 112533, 10.1016/j.chaos.2022.112533 | |
2. | Yu Zhao, Chunjin Wei, Dynamics of a Toxin Producing Plankton-Fish Model with Three-Dimensional Patch and Time Delay, 2022, 32, 0218-1274, 10.1142/S0218127422501838 | |
3. | He Liu, Chuanjun Dai, Hengguo Yu, Qing Guo, Jianbing Li, Aimin Hao, Jun Kikuchi, Min Zhao, Dynamics induced by environmental stochasticity in a phytoplankton-zooplankton system with toxic phytoplankton, 2021, 18, 1551-0018, 4101, 10.3934/mbe.2021206 | |
4. | Tong Guo, Jing Han, Cancan Zhou, Jianping Zhou, Multi-leader-follower group consensus of stochastic time-delay multi-agent systems subject to Markov switching topology, 2022, 19, 1551-0018, 7504, 10.3934/mbe.2022353 | |
5. | Tao Tao, Hao Wang, Xinyuan Na, Yan Liu, Nannan Zhang, Xinxin Lu, Yawen Fan, Temperate urban wetland plankton community stability driven by environmental variables, biodiversity, and resource use efficiency: A case of Hulanhe Wetland, 2023, 11, 2296-701X, 10.3389/fevo.2023.1148580 | |
6. | Yue Zhang, Xiju Wu, Dynamic behavior and sliding mode control on a stochastic epidemic model with alertness and distributed delay, 2023, 124, 10075704, 107299, 10.1016/j.cnsns.2023.107299 | |
7. | Yue Zhang, Xiju Wu, Sliding Model Control on a Stochastic Epidemic Model with Alertness and Distributed Delay, 2022, 1556-5068, 10.2139/ssrn.4194713 |