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Abstract: In this paper, we formulate a phytoplankton-zooplankton-fish model with distributed
delays and hybrid stochastic noises involving Brownian motion and Markov chain, and propose an
optimal harvesting problem pursuing the maximum of total economic income. By global analysis
in terms of some system parameters, we investigate the dynamical behaviors on the well-posedness,
bounded- ness, persistence, extinction, stability and attractiveness of the solutions for the stochastic
delayed system. Moreover, we provide sufficient and necessary condition ensuring the existence of
the optimization solution for the optimization problem and obtain the optimal harvesting effect and
the maximum of sustainable yield. Lastly, two numerical examples and their simulations are given to
illustrate the effectiveness of our results.
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1. Introduction

In aquatic ecosystems, phytoplankton are taken as basic food source and the first trophic level
while zooplankton are primary consumers of phytoplankton in food chains [1]. Some plankton
models composed of phytoplankton and zooplankton were formulated, and dynamical behaviors of
those models were investigated in the past two decades (e.g., [2—8]). Besides plankton, fish is an
essential part in aquatic environments like fishponds, lakes, rivers, oceans, etc.. According to an
experiment given in [9], it was clearly showed that the addition of fish to the chain of
phytoplankton-zooplankton caused the reduction in the algae intake of zooplankton and the rapid
growth of phytoplankton. Thus, it is meaningful to incorporate plankton-feeding fish into the plankton
model to form the food chain relationship with three species involving fish, phytoplankton and
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zooplankton. Actually, the study of asymptotical behavior for the plankton-fish model is closely
related to the sustainable development of aquatic ecosystems. Scheffe [10] originally accounted for
the effects of planktivorous fish in the phytoplankton-zooplankton interaction model, and
Malchow et al. [11] have extended the model to a spatial one. Recently, Prabir Panja et al. [12]
formulated a toxin-producing phytoplankton-zooplankton-fish model and obtained some sufficient
conditions on stability, the existence of equilibrium and bifurcation of the model.
Amit Sharma et al. [13] proposed a delayed plankton-fish model with harvesting, and the bifurcation
analysis of the system was carried out by taking the rate of harvesting as the bifurcation parameter.
Meng and Wu [14] proposed a delayed phytoplankton-zooplankton-fish model with taxation and
nonlinear fish harvesting, and gave the Hopf-bifurcation analysis for the model. Wei et al. [15]
considered a time-varying phytoplankton-zooplankton-fish system, and gave some sufficient
conditions ensuring global asymptotical stability. Since many omnivorous fishes (like crucian carp,
grass carp, carp, engraulis japonicus, cockerel, etc.) feed on both phytoplankton and zooplankton,
there are more enriching and complex behaviors for the phytoplankton-zooplankton-fish system with
the food chain relationship given in Figure 1 (e.g., [12, 13]).

Phytoplankton«

‘l \

Figure 1. The food chain of the phytoplankton, zooplankton and fish.

On the other hand, delay effects and environmental disturbances are unavoidable in the real world.
Time delays occur frequently in many predator-prey models because predators can increase their
quantity through digestion, absorption, reproduction and other processes after ingesting the
food [16, 17]. Meanwhile, environmental noises often affect dynamic behaviors of the population
system [18-20] since the birth rate, death rate, environmental carrying rate and other system
parameters of species are easily disturbed by noises. These noises usually involve white noise and
telegraph noise. Telegraph noise can be regarded as switching without memory between two or more
states, and the time spent in switching between two states is exponentially distributed [21, 22].
Therefore, it is more realistic to formulate a phytoplankton-zooplankton-fish model with time delays
and hybrid stochastic noises involving Brownian motion and Markov chain, which essentially belongs
to the stochastic predator-prey system. In past decades, some interesting results on stochastic
predator-prey models have been investigated. In [23], the authors studied the stationary distribution

Mathematical Biosciences and Engineering Volume 17, Issue 5, 6149-6180.



6151

and global asymptotic stability of a three-species stochastic food-chain system without time-delay.
In [24], the authors considered a three-species food chain stochastic system with a hidden Markov
chain and proposed two kinds of special dissipative control strategies. One can refer to recent
publications on dynamical behaviors of stochastic predator-prey systems [25-28]. To the best of our
knowledge, however, there are few works to discuss the dynamics for the stochastic delayed
phytoplankton-zooplankton-fish model with the food chain relationship given in Figure 1.

What’s more, the optimal harvesting strategy is of great significance to the development of the
ecosystem. In the phytoplankton-zooplankton-fish system, the eutrophication of the water body will
be controlled by harvesting plankton [29]. Ones can directly benefit from fish, but overfishing may
break the balance of the ecosystem. In response to the issue of resource sustainability, Clark and
Mesterton-Gibbons et al. have established several types of predator-prey ecological models with
optimal harvesting strategies, and discussed how to implement harvesting strategies to maintain
fisheries sustainable development [30-33]. The optimal harvesting problem of the stochastic
predator-prey model with time delays was investigated by the ergodic method in [34-36]. In the
obtained optimization strategies, authors focused on the maximum of total species that has been
harvested rather than the maximum of total economic income. By using Pontryagin’s maximum
principle, the optimal harvesting policy with the maximized present value of revenues was given for a
deterministic phytoplankton-zooplankton model [3]. Nevertheless, there are few publications to
investigate the optimal harvesting problem in economic income for the stochastic
phytoplankton-zooplankton-fish model with time delays.

Motivated by the above discussion, we propose the following hybrid stochastic phytoplankton-
zooplankton-fish system with distributed delays and harvesting

0 0

dxy(0) =x1 (0] ar oy (0) = by = eq1x0(0) = €1 f i + 0)dua(0) — e f

x3(t+ H)duls(é’)]dt
o1 (v (0) 1 (DB (),

0 0

dos(0) :xz(t): () —ha + e f X 0 0) — et~ e f s Q)d,u23(0)]dt "
+ 02 (v (1) x2(0)dBa(2),

des(t) =x3(0)| = a3 (y () = s + €31 f D+ O (@) + o f "t + O)din®) — exsrs(0)|dr
+ 03 (v (1) x3()dB3 (1), N h

where x;(r),i = 1,2,3, is the population size of phytoplankton, zooplankton and fish at time ¢,
respectively, a;(-) > 0 means the growth rate of species xi,a;(-) > 0(j = 2, 3) stands for the death rate
of species x;, ¢;; > 0 shows the intra-specific competition of the ith species, ¢y, ¢13 and ¢,3 > 0 denote
the capture rates, c,1, c3; and c3; > 0 represent the conversation rate of the food, #; > 0 is harvesting
effort of phytoplankton, zooplankton and fish, respectively, 7;; is time delay and p;;(6) is a
deterministic and nondecreasing function defined on [-7;;, 0] satisfying f_ OT,-- duij(0) = 1, Bi(t),5 is
standard independent Brownian motion defined on a complete probability spajce (Q,{Fi}s0, P) with a

filtration {7}, satisfying the usual conditions and 0'1.2(.) represents the intensity of the stochastic
noise, {y(f),t > 0} is a continuous-time Markov chain in a finite state space S = {1, ---n} with the
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generator Q = (¢;;j)nxn, Which follows

. . Qijé + 0(5), if i+ j;
Plyt+0)=jly@ =i} = .
1+ q,J(S + 0(5), if i= Js

and 6>0, g;; 1s the transition rate from i to j satisfying ¢;; > 0, g;; = — . g;j.
J#i
In this paper, we mainly study dynamical behaviors and optimal harvesting policy for the above

phytoplankton-zooplankton-fish model with distributed delays, hybrid stochastic noises and
harvesting. The main purpose and contribution of this paper are listed as follows. Firstly, we
formulate a stochastic phytoplankton-zooplankton-fish model with distributed delays and harvesting,
in which hybrid stochastic noises involve Brownian motion and Markov chain. Secondly, we give a
global analysis of dynamics on persistence, extinction, stability and attractivity in terms of some
system parameters for the stochastic delayed system. Lastly, we provide the optimal harvesting policy
by solving the following optimization problem with the maximum of total economic income

3
max ®(H) = lim " rih;E(x;(1) - W,
—00
j=1

fot x;(s)ds

s.t. lim >0, H=h,hy,h3)" >0, (2)

t—00
where the harvesting effort H is the decision variable, and the total profit @ is the objective function,
the unit profit r; = p; — g; > 0, p; represents the unit market price of the species x;, and g; is the cost
unit price of harvesting the species x;, j = 1,2, 3, W stands for the total fixed cost for harvesting three
species.

The remaining part of this paper is organized as follows. In section 2, we give some definitions,
assumptions and basic lemmas. In section 3, we give the global analysis of dynamic behavior on
stability, persistence and extinction for the system (1). We obtain the sufficient and necessary condition
for the optimal harvesting strategy and the maximum of harvesting yield in section 4. Lastly, we
illustrate our main results in some examples and their simulations in section 5.

2. Preliminary

In the model (1), we always suppose that Brownian motions S;(¢) and the Markov chain y(r) are
independent, and the Markov chain is irreducible. According to [37], y(?) is ergodic and has a unique
stationary distribution & = (&1, - - - €,) satisfying

£0=0,) &=1.6>0i=1,.n.
i=1

For simplicity, we define the following notions.

u a2 no o2(k)
a;= ) &ajb). == &%
k=1

k=1

aj: 1’2337
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2 (v (¢ 2
d (y(0) = ay (y (1) - %W,di Y (0) = ai (y 1)) + wz =2.3,
- 1 o 2 ¢
di= > &di).j = 1.2.3.d = (d.dod) sy = a (y (D) — by ~ %())

k=1

2
T (;y(t))’i _5

i = ai(y() + h; + 3= ) Gk, j=1,2,3,
k=1

~ )
it Ci2 Ci13 cii ar  0y/2+h
= - = =2
C=|-cu cn 3 |, R=|-cy —a 75/2+h |,
- =2
—C31 —Cx €33 —c31 —az 05/2+h3
~ )
a Ci2 €13 0i/2+h cin o3
_|_7 ST )
Ci=|-a, cn cn|,Ci=|05/2+hy cn 3|,
~ =2
—a3; —Cn €33 05/2+hy —c3n c33
- )
ci1  ar €13 cii 072+ h cis
_ ~ 5 _ )
Cy=|—ca —ay cn|,Co=|-ca 03/2+hy |,
~ =2
—C31 —as (33 —C3] 0'3/2+h3 €33
~ )
it Cr2 a4 cii o 2 072+ Mh
= 7 S, = =2
Cy=|-ca ¢ -—-@f,C3=|-cn 0'2/2+h2 >
~ =2
—C31 —Cx»n —a3 —c31 —Cxn 03/2+h

Ay = cpa) + cipay, Ay = cnay —cnay, Az = cya; — cnas,
- o o - o o - o 73
A= 022(7 +hy) - C12(7 +h), Ay = 021(7 +hy) + C11(7 +hy), Az = C31(7 +hy) + C11(7 + h3),

@ LY G A3 G
(u1—_2—, Wy = —=—, W3 = —x, @2—~—, @3—7,
0'1/2 + hy A, C; A C,

. . y . 1
b= rg{leagx{lcri(k)l},ai = rg{leagx{ai(k)},ai = I}(lelsn{ai(k)}’ Yi(0) = llgg " fo Y;(s)ds,

|C| represents the determinant of C, C;; stands for the complement minor of |C|,i,j = 1,2,3, for
m,n € R, m A n = min{m, n}, and let I be the unit matrix.

Next, we will give the following assumptions.

Hy) IC1>0,C;>0,A;>0,j=2,3;

Hy;) C;>0,i=1,2,3,C3>0,C1,>0,C5 <O.

According to the above assumptions, we can see that the system (1) has a positive equilibrium state
if there is no stochastic noise and harvesting and that species 1 and species j, j = 2,3 can coexist
without stochastic noise, harvesting and other predators [38].

For delayed stochastic system (1), the initial conditions are given in the following form

X (to + 5) = ¢(s). 5 € [-7,0],¢ € C([-7, 01, R) , y(to) = k € &.
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Here, we denote C ([—T, 0]; Ri) represents the family of all continuous functions from
[-7,0] — {x eR3x; >0,x, >0, x3 > O} and T = max{7;;}.
1#]

In the following, we give some definitions and lemmas to obtain our main results.

Definition 1. (see [39]) Let X(¢) = (x(2), (1)) € Ri X S be the solution of the system (1). Then for
i=1,2,3,
(a) the population x;(?) is said to be extinct if }L‘E}, x(1) =0, a.s.;

(b) the population x;(#) is said to be stable in the mean if }L‘l}, % fot xi(s)ds = ¢ >0, a.s..

Definition 2. (see [40]) The system (1) is said to be asymptotically stable in distribution if there
exists a probability measure 7(- X -) on R? x S such that transition probability p (z, ¢, i,dy X j) of the
stochastic process y(t) converges weakly to m(dy X j) as t — oo for every initial value ¢ € C([-7,0],R?)
withy(0) =i e S.

For the biological significance, we first give the well-posedness and boundedness of the system (1).

Lemma 1. For any given initial value ¢ € C ([—T, 0], Ri) with y(0) = k € S, the system (1) has
a unique global positive solution X(r) = (x(¢), y(f)) € R? x S, a.s.. Furthermore, for any p > 0, there
exist constants K;(p) > 0 such that

limsup E[x}(1)] < Ki(p),i=1,2,3.

t—00

Proof. Itis easy to see the function defined in right side of the system (1) obeys the local Lipschitz
condition. Then, the system has a unique local solution X(#) on [0, 7.), where 7, stands for the explosion
time. We may prove 7, = oo a.s.. Fix a ko > 0 sufficiently large for x;(¢), x2(¢), x3(¢) € (1/ko, ko). For
each integer k > ky, define stopping times as follows

T =1inf {r € [0,7.) : x1(¢) & (1/k, k), xo(t) & (1/k, k), x5(¢) & (1/k,k)}.

It is clear that 7 is increasing with k. Setting 7., = lim 7y, we have 7., < 7, a.s.. Thus, we only need

—o0

to prove 7, = oo, a.s.. For if this statement is false, there exists a 7 > 0 and an € € (0, 1) such that
P(t < T) > €. We can find an integer k; > k( such that P(t, < T') > € for any k > k;. Then take three
positive constants y, k and n > 0 for

XCi3 + ¢3 + nk(c3y + ¢32)
2n?

ncyy + NKC3q XCi2 + ncy + n2C32K

—xci + ———= < 0,—cy +
X 2 o)

<0, —cp3x + < 0.

We choose n sufficiently large and two positive constants x > 26622

X — 1 —lnx,-,i: 1,2,3,
C
Ve ) = X2 f f Bs)dschua(®) + X2 f f 2(5)dsdur ()
~T12 ~T13

s f f Bs)dsdyon + 2 f f B(5)dsdpin (6)
KC31
f f sy ) + 2 f f 2(s)dsdu(®)
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In particular, v;(x;),i = 1,2, 3 and v4(xy, X», x3) are independent of y. By the generalized Itd’s formula,

we can obtain

dvi(x)) = Lvixpldt+o (y @) [x; —1]1dBy,
dva(x2) = L[va(x)]dt + oo (y (1) [x2 — 11dBs,
dvs(x3) = Llvs(x3)]dt+ o3y (@) [x3— 11dBs,
where
0
LGl = = Dlay (@) = b= eum = [ xate + 0deo)
0 o (y ()
—ci3 f x3(1 + O)durs (6)| + %
0
L) = (- 1)[ —ay(y () —hy + cay f x1(t + 0)duz1(0) — c22x2
0 2(y ()
—Cz3f x3(t + 9)dﬂ23(9)] + %,
- 0 0
Lvi(x3)] = (x3 - 1)[ —a3(y () — h3 +c3 f x1(t + 0)dus(0) + c3 f X2(t + 0)duz(6)
o3 (y (1)
—C33X3] + T
Thus
o (c12 + ci3)n? . c (0,
Lvi(xp)] < 5 - (@ — hy) + — 5 + (e +dy — h)x; + 2 x5 (t + 0)dui2(0)
€13 0 2 d 2
+ﬁ . x3(t + 0)du3(0) — cq1x7,
5'% ~ n? o (&)1 2 (23 0 2
L) £ = +dr+hy+ e+ (cn—d—h)x+ (5= —cn)x; + = f x;3(t + 0)dups ()
2 2 2n n* J_.,,
0
+2 [+ Odn o),
AD 0
Llvi(x3)] < % +d3 + hs + (c31 ton c33)X5 + (€33 — s — h3)xs + % x7(t + 0)dus1(6)
0
+% (1 + 0)dus(6).

Define V(x1, x2, x3) = xvi(x1) + va(x2) + kv3(x3) + va(x1, X2, X3)
d
AV(x1, 0, %3) = [ Lvi(n) + Lva(xa) + kLvs(xs) + 3V X2, x3)|dt + x e = Doy (v (1)) dBi ()
+(x2 = Doy (v (1) dBa (1) + k(x5 — Do (v (1) dB3 (1),
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where

d
XLvi(x1) + Lva(xz) + kLvz(x3) + —va(xy, X2, X3)

dr
A2 2 2 2
o (c1p + c13)n CraX; + C13x
1 v A 12 13 2 3
< —=x—xd —h)+x(ci +di —h)x; + + >
2 2 2n
b3 ”2023 21
2 2 ~ o 2
—XCiXx; + 7 +(12+]’l2+ +(022—612—h2))€2+(% —022))62
A2
C3 5, HNC , O3 n C31 +C32 )
+ —=x3+ ——x7 + =Kk +k(d3 + h3) + K(———— —c33)x
w27 2 T 2 3
o Kncsy NKC3)
+ Kk(c33 —dz — h3)x3 + x% + x%
2 2
= ( XC +nch+KnC31)x2+/\/(c +d; —h)x +(/\(c12 +C21 c
= —XCi1 + —— 11 1 — )X St —C»
2 2 ! 2n2  2n
KnC32) 2 o xci3+ ¢ k(cz +c32) 2
X5 + (C22 —dp) — hz)Xz + — KC33 |X
2 )7 2n? 2n 3
X073 + 05 + kO3 n’

+ k(¢33 — dz — h3)x3 + —x(dy —hy) + )(7(012 +c13)

2
2

n
+ &2 + h2 + 3023 + K((i3 + hg)
Thus there is a L>0

dV(x1, X2, x3) < Ldt + x(xy = Doy (y () dB1 (1) + (x2 = Doz (y (1)) dB2(1) + «(x3 — Doz (v (1)) dBs(0). (3)
Integral on both sides of Eq (3) from O to 74, A T and then take expectation, for k — co, we can get the
following contradiction

T AT
0o =EV(x(tAT)) < V(x(0)) + f Ldr < V(x(0)) + LT < oo.
0

Thus, 7, = oo, a.s.. We next to prove lim sup E[xf(t)] < Ki(p),i = 1,2, 3. Define a function U;(x;) =

t—00

e'x]. According to the generalised It6’s formula
dU,(x1) = LU (x1)dt + pe'xioy (y (1) dBi (1), C))

where

p(p— Dot (y ()
* 2

0
—C13f Xa(f+9)d/113(9)]}-

0
+ Plal (y(@) —hi —cuxi(t) —ci2 f X2(t + 0)du12(6)

T12

~£U1(X1) etxlp{l

Forp >1

— 16?2
1+MP )

+ pa
> pa;

.£U1(X1) < e’{

x| - Pcllxllm} < Ki(p)e,
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where Kj(p) = sup{

X1>0

162 .
1+ p(p—zl)' +pa - hl)] Xy - pc“xf“} is a constant. For 0 < p < 1

LU\(x) < et{(l + pay) x| - pc“xf“} < K{*(p)e,

where K{*(p) = sup {(1 + p&l)xﬁ7 - pcnx’l”]}. Integral on both sides of the Eq (4) from O to # and

X1>0
then take the expectation, We can then show that E[¢'x{(1)] < x7(0) + Ki(p)(e' — 1), where K (p) =
max{Kj(p), K;*(p)}. Thus, limsup E [xf (1] £ Ki(p). Continuing this approach we define

—o0
c21 f f ¢, (5)dsdyin ).
—T21

Us(x1, x2) = ;U (x1) + €' %P (1) + em

I+p _ltp _tr
Letting an appropriate n>0 such that ¢, — £ ‘21n 7 >0, plcys — 31n =2y E )>0. The constants
¢}, 2" and ¢3” satisfying
1 1
¢t = 267’21]’[1-'—‘0 ct = eeyn P * e™cpnt?
1= » OQF——, 3T
Ci1 cu(l +p) Coy — %n »

By the generalized It6’s formula, we obtain

dUx(x1, x2) = LUx(x1, x)dt + i pe'x[ oy (y (1)) dBi () + pe'xzP o (y (1) dBa (1),

where
= x fy P d o P 1+p 0 +p
LUx(x1,x0) = 1 LUI(x) + Llex"] + ale T e e x} P (s)dsdpy ()
p —T21 1+
: p(p = Do (y(1) 0
= A LU(x)) + e’le’{l + > 2 + p| — ax(¥(0) — hy + ¢ f x1(¢ + 0)dpa; ()
—T21
0 pnl+p s 0 o 1s
TR ch X3t + O)duns(0) | ¢ + €™ con|e'x" - f Xt + 0)du (0) .
723 1+ p a1
Forp > 1
- oy ~ 13?2
LUy(x1,x) < c’l‘e’{[l + %_del xllj_pcllxiﬂ)}"‘et{ 1+ p(p 5 ) z]xzp
p021 =N 1P 721 pn1+p I+p
—p(c = 1+ ' ke T,
. pp-Dot p(p— 16?2 e 1
= et{cl[l + Tl + pay xf + 11+ Tz xP = Tn1+pc21xl+p
e B y00)
< €K (p),
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b -1)62 20721 1
where K;(p) = sup {c*l‘ 1+ p(p bl %4 pd, X+ 1+p(p2)02]x§—plip n1+1’021x P—p(ca ’l’f; )x +p},
xl,x2>0
andforO<p <1
t) ~\.p p pZem 1+p 1+p ) S S T
LUy(x1,x) < e cl(l +pa1)xl + xf — " nPeyx; " = plean — T2 nor)x

'K (p),

where K;*(p) = sup {c’]‘(l + pcil)xf + x5 — 2 lane, x P~ pleyp - E2pm )x;rp}. Take the

1+p 1+p
x1,%0>0
same method as above, we obtain there’s a positive constant K>(p) = max{KJ(p), K;*(p)} such that
lim sup E[x} ()] < K»(p). Next, we define

t—00

Us(x1, X2, x3) = U (x)) + c3Ua(x1, x2) + €' x37(1) + em HPC 2f f e’ X2 P (5)dsduso ()
—T32

0
+€T3'%nl+pc31f fexl p(s)dsdﬂ31(9)
—T3] 1+

Then

dUs(1) = LU5()dt + cipe'xio (y (1) dBi (1) + c3pe’xy02 (v (1) dBa(t) + pe'xios (v (1) dBs (1),

where
LU0 = LU0 + SLU () + L' x3" (0]
d . P 14p 0 ' s l+p
+d_t[e Tn C3 «[732 fﬁe X, " (s)dsdus; (6)
+eT31 1“’C31 f f e xiw(s)dsd,ugl(e)].
o
Forp>1
LUs(H) < cée’{ 1+ p(p—Tl)é'f + pay [x} - pcnx}“’} + cge’{c’[[l
+—p(p — Doy + pd |xf - ﬂn”"cz o+ |1+ P - Do, b3
2 L 2
]xé’ — plexn - lpiz; = )pr} + e’{[l L PP D% _21)(5%])@”

0
pc3y  _lw pCay  _l1wp 1+p PC3 1+pf 1+p
- — - a b t+ 0)dus (0
P[C33 1+pn g 1+pn P]Xs 1+pn ﬂxl (t + 6)dus,(6)

PC32 + 0 1+ p + 1+
1+p 4 T3) 1+p t p
+—-n X t+6 dﬁt 0 +eée’——n Cyle X —
1 p f732 2 ( ) 32( )} 1 32 [ 2

0
f efx p(f + 0)duz ()

732

0
+e £ ; p nl+pc31[etx}+l? f t+9 P(t + 9)(1/131(9)
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52 2 T21+T32 4,242
p(P - 1)0_ n et pC32C21 1
< |1+ ———" + pa |(c5 + el - P —x, "
2 1 _ pen—=F
(1 + p)en =t 7

(. plp—=103 P o epols p(p - D33
+c3(1 + 5 x5 — 1 +pe 2epn Px, P+ |1+ — x3”
—pl e — PCs31 n_l%’ _ bex n_“Tﬂ S lHP
P17 p l+p 3 '
ForO<p<1
2 ,To1+T32 2+2p
e e n**?reyc .
LUs(H) < et{(l + pay)(cy + c5ep)xt — P 32_@ iﬂ’ +c3xh

(I + p)cxn - %n 7))

2
pCr e pCxn L) gy,
n r X3 .

1+

1
emcnn“”x;p + x37 — pless —
1+p I1+p

Similarly, there’s a positive constant K3(p) satisfying LU3(f) < K3(p)e' and lim sup E[x37(1)] < K3(p).
—o0

This completes the proof.
In the following, we give some basic lemmas.
Lemma 2. [41] Let Z(¢) € R, and g(¢) be two stochastic processes satisfying lim @ =0, a.s.. We
t—00

have the following conclusion.
(1) If there are three constants 7 > 0, [, > 0 and /; such that forallt > T

InZ(t) < It — lzf Z(s)ds + g(1),
0

then

t—00

limZ(#) =0 a.s., if [ <O.

—00

{ lim sup ¢! fotZ(s)ds <lL/L, a.s., if ;>0

(i1) If there exist three positive constants 7, /;and [, such that

t
InZ(t) > It - lzf Z(s)ds + g(1), a.s..
0

forall r > T, then
!
liminf 7! f Z(s)ds > 1)/, a.s..

—o0 0

Consider the following auxiliary system:

dY,(r) =Y,(n) >01 (y(@)—hy - C11Y1(t)]df + o (y () Yi(0)dBi (1),

i 0

dY>(0) =Y2(D)| —ax (y (1) — hy + ¢ f Yi(t + 0)duy (6) — szYz(f)]dt + o (v (1) Ya(D)dBa (1), )
i 0 0

dY;(0) =Y3(0)| —az (y (1)) — hs + ¢31 f Yi(t + 60)duz (0) + C32f Yo (t + 0)duszn(0) — c33Y3(0) [de

+ 03 (v (1) Y3()dBs(2).
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with initial date ¢ € C ([—T, 0],R§r) with y(0) = i € S. Obviously, the system (5) has a unique global
positive solution [23].
Lemma 3. For the system (5), we have the following conclusion.
(a) If ir; < 0, then tlgg Y(t) =0,a.s.,j=1,2,3;
(b) If r; = 0, then (Y;(z)) = 0, lll)rg Yi(t) =0,a.s.,i =2,3;

(c) If 1;>0, A, — A, < 0, and A; — A; < 0, then
Yo = 2L mYi) = 0,a.s.,i = 2,3.
Cll >0

(d) If #;>0, Ay — Ay < 0 and A; — A; > 0, then
u Az - A3

i) = o M b0 =0, (50) =

,a.s..
C11C33

(e) If i1;>0, Ay — Ay > 0 and c2n(A; — A3) + c3p(Ay — Ay) < 0, then

(Y1(0)) = ﬂ, (Yy(0)) = 82— Az, lim Y5(¢) = 0, a.s..

C11 C11C22 I—00

() If 1;>0, Ay — Ay > 0 and c20(A3 — A3) + c32(As — Ay) > 0, then

2 (Y5(0)) = (A3 = A3) + c3(Ay — Ay) s
’ 3 - ,a.s..
C11C22 C11€22C33

Y@y =—, (Ya0) =

C11

i Ay — A,
|

Proof. Firstly, let us prove the conclusion (a). By the generalized It6’s formula, we have

wno = [ Gy (s ds — e | V(s + | o () By (5) + In V1(0), ©)
InY,(r) = - f(: u, (y (s))ds — con j: Yo(s)ds + ¢y j: f_il Yi(s + 0)duy(0)ds
a 2 ((5)) dBas) + In Y5(0), ™
InY;(t) = - LI uz (y (s))ds + c3 f: Iil Yi(s + 6)duz(6)ds + c3, ‘f(: Iiz Y2(s + 6)dus,(6)ds
e [ ¥its)ds + [ s (y () dBs(s) + In ¥(0). ®)

Because of the ergodicity of y(¢) , one gets

t
,lir?o’_lfo u;(y(s))ds = itj,a.s., j=1,2,3. )

Obviously, for any € € (0, it;), there exist a set ) C Q satisfying P(€2.) > 1 — € and a positive constant
T =T(e)suchthatfort > T

!
i — €<t InYy(0)+ 1" f uy (y (s))ds < @t + €. (10)
0
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Substituting Eq (10) into Eq (6), then

(0 - Ot — e f Yi(s)ds + f o1 (y () 4By (5)
0

0
<InY,(?)

S(ﬁ1+€)l—011fY1(S)dS+f0'1 (y () dBi (). (11)
0

0

Meanwhile, the quadratic variation of the stochastic integral fot o (y(s)dp;(s) is fot 0'? (y(s))ds <
&?t. The strong law of large number theorem shows

Iy i (v () dB,(s)
m

t—00 t

=0,a.s5.,j=1,2,3. (12)

When ii; < 0, for Eq (11) and Lemma 2, we can show that lim Y;(f) = 0, lim ¢~ fot Yi(s)ds = 0. From
—o0 >0
Eqgs (7) and (8), for t — oo, then

A0

! f i Oy (5)) ds = ean(Ta(0)) + 17! f o2 (Y () dBa(s) + 7 I ¥a(0),  (13)
0 0

0
1 n Y5(7)

t 0
= f M3(7(S))dS+C32l_1<Y2(f)>+6’32l_1[ f Ya(s)duza(6)
0 4

—732

0 ! s
_ f f Yz(S)d,uaz(é’)]—633<Y3(t)>+t‘1 f o3 (y (5)) dBa(s) + 1~ In ¥5(0). (14)
—T32 t+6

0

For any € € (0, i) satisfying (-1, + €) < 0, by Egs (9) and (13), we have

InY,(¢) < (=it + €)t — ¢ f Yo(s)ds + f o, (v (5)) dB2(s) + In Y,(0).
0 0

It follows from Lemma 2 that lim Y,(#) = 0 and (Y,(#)) = O, for any r > T. From Eq (14),
t—00

' InYs(0) = —it3 — eV (1)) + 17 f o3 (¥ (5)) dBs(s) + ' In ¥3(0).
0

It’s easy to see lim Y3(¢) = 0, a.s.. This completes the proof of (a).
—00

Now we are in the position to prove (b). By Eq (11) and Lemma 2, we have

M€ inf(ry () < sup(Yi(n) < A€
C11 C11

According to the arbitraryiness of €, we get (Y1(¢)) = 0 when i; = 0. Similarly, we obtain the Eqs (13)
and (14) from Eqs (7) and (8). This implies lim Y;(r) = 0, j = 2, 3. The proof of (b) is complete.
—00
Next, we shall prove (c). It can be shown from Eq (11) that (Y,(¢)) = LMTII a.s. when i1y > 0. Fix a
positive constant 7', for any ¢t > T, we may shift Eq (7) to obtain

Az—Az
C11

InY,() =

t—cCo f Yz(S)dS +In YQ(O) + ¢2(I), (15)
0
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0 0 .
Where~ $o() = ¢ [ o i Yi(s)dsdus (6) — e f_o y I\ ’w Y1(s)dsdy2(6) and then lim t'¢,(f) = 0. When
A, — Ay < 0, we further have lim Y,(¢) = 0, a.s. by Lemma 2. For any ¢ > T, Eq (8) follows
t—o0

As — Ay
C11

!

In Y3(t) = ( )t — C33 f Yg(S)dS + ¢3(t) +In Yg(O), (16)
0

0 (0 0 .
where ¢3(1) = a1 [ [ Yi(9)dsdusi(6) = e [ [\, Yi(s)dsdusi(6). Clearly, lim 1¢3(7) = 0. From
Lemma 2, when A; — Ay < 0, lim Y;(7) = 0, a.s.. Thus the required conclusion (c) follows.
—00
Next, we shall give the proof of (d). Conclusion (c) shows (Y;(¢)) = C”T‘l and lim Y,(¥) = 0, a.s. for
—o0

#>0and A, — A, < 0. Assume A; — A; > 0, there is a conclusion that (Y5(¢)) = ﬁfl;fj from Eq (16).
The proof of (d) is completed. ‘
In the following, we shall prove (e). From Eqs (11) and (15), assume A=A, > 0, we get(Yi(?)) = ”—‘1

~ ]
and (Y»(?)) = %. Then, for any ¢ > T, we have
Az — A3) + c3(Ay — A '
InYs(t) = ca2(Bs = As) + s = Aa) 33 f Ys(s)ds + ¢5(2), (17)
0

C11C22

where

0 0 0
#53(1) =c3 f f Y1 (s)dsdus(0) — c3 f f Yi(s)dsdus(6)
—T3] 0 —T3] t+60

0 0 0
+c3 f f Y, (s)dsdusy(6) — c3n f f Y5 (s)dsdus(6).
—T3p JO —T32 t+6

Then, lim t“¢§(t) = 0. When ¢2(A; — A3) + c30(Ay — Ay) < 0, we get lim Y3(¢) = 0. This completes
—o0 = —o0
the proof of (e).
Lastly, we give the proof of (f). Let # > 0 and A, — A, > 0, we can then show that (Y,(¢)) = &

C11

and (Yy(1)) = ££22 a.s. by Egs (11) and (15). From Eq (17), we directly obtain (¥3()) = 2t
provided that C22(A3 - Ag) + C32(A2 - Az) > 0.

This completes the proof of all cases.

Lemma 4. Let X(¢r) = (x(1),y(?)) € Ri X S be a global positive solution of the system (1). Then

the solution has the following properties

. In x;(7) . .
lim sup : <0, lim¢ f xi(s)ds =0,a.s.,j=1,2,3.
—oc0 ¢

t—o00 —T

Proof. It is easy to see

dx(2)

IA

X1 (f)[al (@) —hi —ciix (f)]df+0'1 (y () x1(1)dB: (1),
0
—ay (y () —hy + ¢ f x1(t + 0)dur 1 (0) — conxa(2) |dt + 02 (v (7)) x2(£)dBa(2),

—T21

dx(1)

IA

X(1)

Mathematical Biosciences and Engineering Volume 17, Issue 5, 6149-6180.



6163

0 0
dx3(t) < x3(0)| —az(y (D) —hs +c3 f x1(t + 0)dusz (0) + Cszf X2(t + 0)duzn(0) — c33x3(2) |dt

ros () mdBsD. _

By comparison theorem, we obtain x;(r) < Y;(1), a.s.,j = 1,2,3. It follows from Lemma 3 that
lim Y;(t) = 0 or (Y;(¥)) = a, j = 1,2, 3, where the constant a > 0. From Eqs (6)—(8), then
t—00

hmsup ) < hmsup ’(t) <0, j=12,3,

t—00 —00

lim 7! 7 x(s)ds < lim 7! f Yi(s)ds = lim 1~ ([[Y,(s)ds = [ Y()ds) = 0,a.s..

This completes the proof.
Lemma 5. Let condition (H;) hold. For the defined parameters R, w;, ®;,i = 1,2, 3, we have the
following conclusions.
(a). If R > 0, then w; > w, > ws.
(b) If R <0, then w1 > @2 > @3.
(C). If R = 0, then w; > 0, = 05.
Proof. From the definition of R, w;, ®;,i = 1, 2, 3, we have

Ay 1A= (32/2+hy)

W Wy =W - = Aa(@2[2+hy) = 52(5§>;+h1)[(5'§/2 + hy)a; + (0—-%/2 + h))as] >
-0, =w; - iz = fﬂiﬁ# _ C“a.(&%/?;?;;:ijgj/zm) >0,
®2—w3:§—2_%:%:%‘

When R > 0, we can see w; > wy > 0, > wz. When R < 0, then 3 < w, < 0, < w;. When R = 0,
then w; = O3 = Wy = O, < w,. Thus the proof is complete.

3. Global analysis for dynamical behaviors

In this section, we shall investigate dynamical behaviors involving persistence, extinction, stability

and attractiveness of the system (1). In terms of parameters R, w; and ©;, we first give a global analysis
of dynamical behaviors according to Lemma 5.

Theorem 1. Let conditions (H;) and (H,) be satisfied and X(¢) = (x(¢), y(¢)) € R? X S be a global
positive solution of the system (1). We have the following conclusions.
(1). WhenR >0

(a). If wy < 1, then lim x;(r) =0, a.s., i = 1,2, 3;
t—00
(b). If w; = 1, then (x,(1)) = 0,lim x;(¥) = 0, a.s., j = 2, 3;
—o0
(¢). If wy > 1 > wy, then

(D) = =L, limx,(t) = 0,a.5.,j = 2,3;
C1p 19
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(d). If w, = 1, then
75

1) = —, (x()) =0, limx;() =0,a.s.;
Cll t—o00
(e). If wy > 1 > w3, then
A -A; .
(x;(0)) = ,i=1,2, limx;(f) = 0,a.s.;
Cs3 100
). If wz = 1, then
Ai-A;
(x;()) = ,i=1,2, (x3(0)) =0,a.s.;
Cs3
(g). If w3 > 1, then
C;—C .
(x,(1)y = —,a.s.,i=1,2,3.
IC]

(i1). When R < 0
(h). If w; < 1, then lim x(r) = 0, a.s., i = 1,2,3;
(). f w; = 1, then {x;(n) = 0, lim x,(t) = 0, .s.. j = 2,3
(). fw >1>0, then

u

(xi(0)) = —, limx;(t) = 0,a.5., j = 2,3;
Cll >0
(k). If ®, = 1, then
o
(x1()) = c—l, lim x(1) = 0, (x3(1)) = 0, a.s.;
11 —00
(). If®, > 1 > O, then
il + C13il Ay — A
G0y = LTI iy () = 0, () = ———2, aus.;
Corn 1—00 Cxn
(m). If ®; = 1, then
ih) + C3il Ay — A
() = LTI o)) = 0,(x(0) = =2, a5
C22 C22
(n). If ®; > 1, then
C,’ - C,’
(xi(0))y = ——,a.s.,i =1,2,3.
IC|

(iii)). When R =0
(0). If w; < 1, then lim x;(¢) =0, a.s., i =1,2,3;
1—00

(p). If w; =1, then (x;(¥)) = 0,lim x;(t) = 0, a.s., j = 2,3;
t—o00
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(). If O, <1 < wy, then

(xi(0) = 6”—1‘1 lim x,(1) = 0,a.5., j = 2,3;
(r). If ®, =1, then B
() = cu—lll x(0) = 0,a.5., j = 2,3;
(). If @, > 1, then 3
(x;()) = %,a.s.,i =1,2,3.

Proof. By the stochastic comparison theorem and the condition (a) in Lemma 3. when w; < 1,
we have the conclusion

lim x;(r) < lim Y;(t) = 0,a.s.,j = 1,2, 3.
—o0 —o0
Next, we prove the conclusion (b) holds. Thanks to the condition (b) in Lemma 3, we can

immediately obtain that (x;(¢)) < (Y;(¢)) = 0 and lim x;(r) < lim Y;(¥) = 0,a.s.,i = 2, 3.
t—o00 t—o0

Then, we shall prove the condition (¢c). When w; > 1 > w,, thatis, ity > 0,A; — A, < 0 and
A; — A; < 0. we further get lim x;(¢) < lim Y;(t) = 0,a.s., j = 2,3 by condition (c) in Lemma 3. Fix a
t—oo t—oo
constant 7 > 0 and any ¢ > T, Applying generalized I[t6’s formula to the system (1) leads to

Inx (1) = f”l (V(S))ds—cllfxl(S)ds—clzf)Cz(S)ds—clsfxs(S)ds
0 0 0 0
+®,(1), (18)
Inxy(t) = —f Uy (y(s))ds+cz1fxl(s)ds—czzfxz(s)ds—czgfxg(s)ds
0 0 0 0
+D, (1), (19)
Inxz(r) = —f U3 (y(s))ds+c31fxl(s)ds+c32fxz(s)ds—c33fx3(s)ds
0 0 0 0
+D5(1), (20)
where
0 t 0 0 0 t
O(n) = ClZf f Xz(S)de,ulz(@)—Cuf fxz(S)de#12(9)+Cl3f f x3(s)dsduy3(0)
—Tip Ji+6 —T1p JO —T13 t+6
0 0 ¢
_Cl3f fx3(s)dsdu13(9)+f0'1(7(t))d,81(t)+lnx1(0),
—T13 JO 0
0 ¢ 0 0 0 ¢
Oy(r) = —C21f fx1(S)de,U21(9)+021f fxl(s)deﬂz1(9)+Cz3f fx3(S)delJ23(9)
—T21 t+6 —T21 7] —T23 t+6
0 0 t
-3 f f x3(s)dsdur3(6) + f o2 (y()dBa(1) + In x,(0),
—T3 VO 0
0 ‘ 0 0 0 ‘
DO3(1) = —C31f fxl(s)deﬂ3l(9)+c31f fxl(s)deﬂ3](0)_C32f fxz(s)de/«lzz(@)
—T3] t+6 —T3] %] —T32 t+6
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0 0 t
. f f xa(s)dsdyusa(6) + f o3 ()dBs(1) + In x3(0).
—T33 JO

0

When lim x(?), j = 2, 3, for Eq (18), one can observe that
>0

' nx(f) = ¢! f uy (y (5))ds — ¢11{x1(£))ds + ' In x,(0). (21)
0

From Lemma 2, we have {(x;) = C”T'l This completes the proof of (c).
Then, we shall prove the conclusion (d). Similar to the above method, when w, = 1, that is,
@ > 0,A, —A, = 0and A; — A; < 0. The condition (e) in Lemma 3 shows lim Y3(f) = 0 and

t—0o

(Ya(t)) = 0. Thus we can check that (x,(¢)) < (Y2(¢)) = 0 and lim x3(¢) < lim Y3(¢) = 0. Eq (18)
t—00 t—00
changes into Eq (21) then we get (x;(1)) = -

e’

Next, we prove the conclusion (e). It is not difficult to show that lim ¢~'®;(t) = 0,i = 1,2,3. Take
t—o00

two negative constants m and n satisfying

{—Cum + C31n = —Cy,

—C13mM — C331n = (3.

Then

Compute mx Eq (18) + Eq (19) + n x Eq (20)

mln x1(t) + In x,(¢) + nln x3(¢) :mf u (y(s))ds — f u (y(s))ds — nf us (y(s))ds
0 0 0
— (mcip + cpp — l’lC32)f X2(8)ds + mD(t) + Oy(2) + nD5(r). (22)
0

From Lemma 4, there exists an e>0 and a T = T(¢) > 0. For t > T, one has that

m® () + Dy(7) + nDs(r)
t

f_l In .X'z(l‘) < miy — Uy — Nz — (mclz + Cyp — I’lC32)<X2(l)> +

m®; (1) + O, (t) + n®3(¢)

= (Cy — Cy) — ICKxa (1)) + ;

Because of % > w, > 1, it’s easy to see C, — C, > 0. we further have sup(x,(f)) < Czlgléz. Then take
two negative constants m* and n* satisfying

* *
—Cppm + Cc3pn = Cro,

* *
—Cyz3m — C33nN = C13.
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That is
= 2t
Ci’
. Gy
nf = —.
Ci

Compute Eq (18) + m*x Eq (19) + n*x Eq (20)
Inx; (1) + m* Inx,(1) + n* In x3(¢) = f uy (y(s))ds—m" f u (y(s))ds —n" f usz (y (s))ds
0 0 0

!
—(c11 —m* ey —n'cyy) f x1(5)ds + @1 (1) + m* D (1) + 0" O3(2).
0

(23)
Thus
() H0) *O
1 Inx (f) < ity — m*ily — 0tz — (¢ — m*cy — n ez )X (1) + 1(f) & m i(t) + ms)
- D(t) + m*D,(t) + n*D5(t
= (€1 =€) = [l + 2D,
From (H,), we gain C; — C; > 0 and then sup(x,(¢)) < % For Eq (20)
f
' nxs() < -1 f uz (y (5)) ds + c31 5up{x; (1)) + 30 sup{xa(f)) — c33(x3(0) + 7' D3(7)
0
_ ~ !
=C33 GG - C33t_1 f x3(s)ds + t_l(I)3(t). 24)
IC] 0
Assume w3 = g—; < 1, we obtain tlim x3(t) = 0. Equations (18) and (19) follow that:
!
nx@ = ! f up (y (8)) ds — c11{x1 (1) — e (t)) + £ D(2), (25)
0
f
@) = - f s (y () ds + e () — enora(®)) + 171 D3(0), (26)
0
where
0 t 0 0 t
O = f f xa()dsdua(®) — 1 f f xals)dsduna6) + f o1 (y () dBy(s)
—Tip Jt+6 -T2 JO 0
+ In x;(0),
0 t 0 0 t
O30 = —cn f f x1()dsdun (6) + f f x1(s)dsdun () + f o2 (y () dBa(s)
—T21 t+0 —T21 % 0
+ In x,(0).

Analogously, lim t‘l(D:f(t) =0,a.s.,i = 1,2. Compute ;X Eq (25) + c11X Eq (26)
t—00

ent 'nx () + et ' Inxy(t) = ot f up (y (s))ds — cqpt™! f uy (y (5)) ds — C33(x(2))
0 0
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+ey 7 D) + cp it D5 (1), (27)
Foranyt>T
cit ' Inxa(f) < (Ay — Ay + €) — Cas(xa (D)) + 1 e @5(1) + e D3(0).

A=A,

o and then

It means sup(x, (1)) <

x> f uy (y (8))ds = cp{xi (D) = cra sup(xa (D) + 17 @7(1)
0

Ay - A
Cs3

=cqp — X () + 71D ().

we can see if w; > 1,
A=Ay =cn(a-a1/2= ) +cin(a+63/2+ ) > 0.
Then inf(x;(1) > 252 and

M nx () = -1} fo wy (y (5)) dss + c1 inf(x; (1)) — con{xa(2)y + £ D5 (1)

A — A,
Cs3

=cx — X (D)) + 17 D5(0).

A=Ay

Tn and then

We can now easily establish (x,(#)) =

A — A,

+ 1O

nx(6) =" f up (y (8))ds — ci1{x1 (1)) — c12
0
A — A

33

t
—cnz—lfxl(s)ds+f1c1>>;(t).
0

= (11

A

Finally, we have (x,(?)) = ‘;A‘ {0 (t)) = MC;%& and lim x3(¢) = 0. This completes the proof of (e).
R 3z t—00

c
Next, we prove the case (f). For Eq (24), If w; = 1, this is, C3 — C3 = 0, then we get sup(x3(#)) < 0.

—o0
Because of (x3(7)) > 0, we finally derive (x3(r)) = 0. Equations (18) and (19) become Eqs (25) and (26)
respectively. Finally we derive (x;(f)) = A‘C;A‘ X)) = —Azczfz and (x3(1)) = 0.
Lastly, we shall prove the condition (g) holds. If w; = % > 1, for Eq (24), we have sup(x;(?)) <

C3-C;
IC|

.and

nxi(t) > f up (v (5)) ds — c11¢x1 (1) = c12 sup(xa(D)) — c13 sup{xs (1)) + £ Dy (1)
0

C,-C C;-C
i —c{x1() —ciz 2 2—013 3|C| s

+ 1@ (¢
Cl (1)

C,-C,

o crdxi (@) + 170 ().

= (1
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Thus, C'lglél < inf(x; (1)) < sup{x;(?)) < CII%F', (x1(0) = % By the same way, for Eq (19)

1 1n x,(¢)

\%

! f iy (y (5))ds = e11(x1(0)) = 1o (D)) — €13 SUPCEs(D) + 17 D (t)
0

c,-C C;-C
1 L — (D)) — ej3— s

+ 171D, (1)
IC| ICl ?

= —Up—cCqy

c,-C
2| g 2 i) + 10,0

C12

We have 22 < inf(x,(1)) < sup(x,(r)) < =52 and then (xy(1)) = Sz, Similarly, (x;(1)) = Sz
The proof of (ii) and (iii) are similar to one of (i). Here we omit the remaining part and all the proof
is complete.
In the following, we further give the attractiveness of all positive solutions by M-matrix.

Theorem 2. If the following matrix is a non-singular M-matrix

Ci11  —C1 —C3
—Ci2 Cx»p —C3 |,

—C13 —Cx3 (33

CM =

then
lim E|X" (1) — X" *(7)| = 0,
11—

where X" () and X7 *(f) are two positive solutions of the system (1) with initial conditions
n € C([-7,01,R3),¥(0) = kand " € C([-7,01, R3), %(0) = k.
Proof. Notice that

lim E1X™ (1) - X" *(1)] = lim E \/ (i) = 0 (67))? + (a(t ) = xa(657))° + (a3 7) = xa3(677)°%

Since Cy is an non-singular M-matrix, there exists positive vector & = (£1,¢, &), 6 > 0,i = 1,2,3
such that Cy{ > 0. We just need to proof lim E|(x;(t;n) — x;(t;7°)| = 0, j = 1,2, 3, define
—o0

V() = () — Inx@n)l j = 1,23, (28)

0
va(xy, X2, X3) = {1C12f f lx2(s, 1) — x2(s, 7°)|dsdue12(0)
—T12 t+0

0 t
+{1c13 f f lx3(s, ) — x3(s, 7°)|dsdu;3(60)
- +6

T13

0 t
+oen f f a5, ) — 015, s (6)
—r31 Jr+0

21

0 t
+{r003 f f lx3(s,17) — x3(s,177)|dsd 23 (6)
—T23 t+6

0 t
+{3¢31 f f lx1(s, ) — x1 (s, 77)|dsdus (6)
- t+6

31
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0 t
e f f a5, 1) — 2, 7l sdpzza (6).
— 1+0

T32 +

Calculating the upper right derivative of v;(x;) along the solution of Eq (28), it follows that

d*vi(xy) =sgn (xi(t:m) — xi(677) d (Inxj(t ) = In (6 7))
0

<~ enla(tm) — 2] + e f a4 6:1) — ot + 6577l 6)
—T12
0
+c13 f lx3(t + 0; 1) — x3(t + 0;177)|du13(6),
—T13
0
d"va(x2) < — cenlxa(t; ) — x2(t; )| + €21 f lx1 (2 + 6;17) — x1(t + 0;17°)|dpa1 (6)
—T21
0
+ 3 f lx3(¢ + 0; 1) — x3(¢ + 6;177)|da3(6),
—T23
0

d™vi(x3) < — el m) — x3(609)| + c3 f lx1 (2 + 6;17) — x1(t + 6;7°)|dpz1 (0)

—T31

0
+ 3 f lx2(t + 0;1) — x2(t + 05 177)|duza(6).

732

Let
V(0) = §ivi(x)) + Hva(xg) + $3va(x3) + val(xy, X2, X3). (29)

Then

dV@) < —(endi —cnla = cnds) | xi(t,m) = x1(t,0") | =(c22da = 128t = c3283) | X2(t, 1) = x2(t, ") |
—(c3383 — 1381 — €38) | x3(t,m) — x3(8,m7) | .

Integrate both sides of the Eq (29) from O to 7 and then take expectation
E[V()] < E[V(0)] - (cndi —cada = c3183) fot Elxi(s,m) — x1(s,n")lds
—(€228r — 1281 — ¢3243) ‘fot Elxy(s,m) — x2(s,n")Ids
(383 — c1381 — 23dn) fot Elx;(s,m) — x3(s,7°)lds.

From Cy, > 0, we see fot Elx;(s,1m) — x;(s,n")lds < o0, j = 1,2,3. Next, we define function
G;(t) = Elx;(t,n) — x;(t,7), j = 1,2, 3.

For arbitrary t;,1, € [—7, +0),

Gi(t) - G,t)| = |E|xjte,m) — x| = E 3,1, m) — x;(t1,77)
< Elxj(tz,n) — xj(ti, ] + Elxj(t, ) — x;(t1, 7).

A
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Integrating both sides of the system (1) from ¢, to #,, we see

0

(i) - xi(ty) = f [xl(s,n)(alms))—hl—cux1<s,n>—c12 f x2(s + 6, )du12(6)

131 T12

0 1
—en f x3<s+9,n>du13(9>)]ds+ f o1 (y () x1(5, B (),

713 I
0

f [t (=2 O (59 = s + f 3105 + 6, 7)o (6) — (s, 1)

3] T21

X2(t2, ) — x2(t1, 1)

0 5}
—C»3 f X3(s+ 0, U)d#23(9))]d5 + f o (7 (5)) x2(s, 7)dBs (),

723 51
0

x5t ) — xs(ti) = f [x3(s,77)(—a3 (y () = hs + c31 f x1(s + 6, )dus1 6)

131 T31

0 t
e f s+ 0, (0) = exss(s, ) [ds + f o3 (y (5)) 35, M)A ().

32 3

For any t,>t;,p > 0

[Elxl (t2’ 77) - Xl([l, 77)|]p

IA

Elx,(t2,m) — x1(t,, pI?
0

£ f [ o (o) = = cuva s, = e f x2(s + 0, m)dp1(0)

3] -T12

IA

0 15} P
—1s f (s + 0, s 0) [ ds + f o1 Oy () xa(s, B (o)

713

IA

15 0
2”E{f [Xl(S, U)ldl —hy —cuxi(s,m) — ClZf x2(s + 6, m)dpi2(6)

131 T12

0 p 1
—c13 f x3(s+e,n)dm3<e>|]ds} +27E| f o1 (v () x1()dBi ()]
‘ (30)

Moreover,

15} 0 0 14
E{ f (s s = = (s, = en f xals + 6, dns(6) = 13 f X3(S+9,n)dﬂ13(9)|]dS}

I TI2 —T13
0

5]
E{f [xl(s, mldy — hy| + c11x7(s,m) + ¢ f x1(8,m)x2(s + 6, m)du12(0)

f T12

IA

0 P
e f xl(s,mxg(s+e,n>du13<e)]ds}

713

IA

15 0 p
(1 — fl)p_lEf 4p[xf(S, mldy — hy|” + cflx?”(s, ) +cf, (f x1(s, mxa(s + 6, U)dlllz(e))

3 TI2

0 P
+cly (f x1(s, Mx3(s + 6, U)dﬂ13(9)) ]dS

T13

tr 5]
= 4”(tz—t1)”‘1|d1—h1|”f E[X{’(s,n)]dS+4"(tz—tl)p‘10f1f E[x}"(s,m)]ds

151 1
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153 0 P
+4p(t2—f1)p_lcf25f (f Xl(S,U)xz(S+9,ﬂ)dﬂ12(9)) ds

131 T
. 012 )
+4”(tz—t1)”_16f3Ef (f X1(S,77)X3(S+9,77)dﬂ12(9)) ds, (31)
141 -T13
where
%) 0 p
E f ( f xl(S,U)xz(S+9,77)dll12(9)) ds
n -T12
15 xZ s, 1 0 p
< Ef [ i( 77)+_f x%(s+9,n)dp12(9)] ds
1 2 2 -T2
1 %) 0
< f E[x}(s,m)] + f f E[x)(s + 0,m)]du;2(0)ds. (32)
1 1 -T12
Similarly,
%) 0 p 153 5 1 0 2
E f ( f xl(s,n)x3(s+9,n>du13<9>) ds < f E[(s.m)] + f f EL27(s + 0, 7)du1(0)ds.
141 =713 151 n -T13
(33)

In view of the Theorem 2.11 in [40], for any #, > ¢; and p > 2, we have

P(p D.»

f s mdae)| < P20, 2 f E[x"(s. ]ds. (34)

From Lemma 1 and Eqs (30)-(34), for p > 2, we get

(Bt~ xitonll < 216 PEZ): i = 115 Ki(p) + 8l — Pl — 1K)

+t, — f1|pC11K1(2P) +t, — 1|7, Ki(2p) + |t — )P ¢}, K> (2p)
Hi =1 1 Ki@p) + It - P Ks2p)
< Lin- f1|g,
where, for |, — 11| < €, the constant

L =276 |P(”(p ek, () + (640411 — 7Ky (p) + (¢ + ¢l + CKn2p)

+ ¢, K>(2p) + ¢}, K5(2p)] > 0.

By the same method, we get [E|x(t2,77%) — xi(t1,79)|]" < Lit, - tllg. Thus
1
|G1(t;) — G1(t))| < 2Ly » V|t, — t1|. Similarly, there exist two constants L, > 0 and L3 > 0O such that

1Ga(t2) — Ga(t)| < 2Ly7 itz — 111, 1G3(t2) — G3(t)| < 2Ls7 \lta — 1], a.s..

So the Gj(#), j = 1,2,3, is uniformly continuous function. According to Barbdlat Lemma [42], we
have the conclusion. The proof is complete.
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4. The optimal harvesting policy

In this section, we shall provide the sufficient and necessary conditions ensuring the existence of
optimal solution of the system (1) with harvesting.

Assume y(?) is the stochastic process of (X(¢), y(¢)) and p(t, ¢, i, dy x {;}) is the transition probability
of the process y(7). P(t,¢,i,A X D) stands for the probability of event {y(#) € A X D} with the initial
condition ¢ € C([-7,0],R}),(0) = i and

P(t,¢,i, AX D)= ) j;p(t, $,i,dy x ).
jeD

Now, let  stands for all probability measures on C ([—T, 0], Ri) x S. For any measures Py, P, € P
define the metric

appy=supl Y [ fo.orsn-Y [ r@.ors.il
i1 VR i1 YER]

fel

where

L={f:C([-1.0LR}) > R:| f(¢,0) = fW, DI I —yl+ [i = j LI fCx) I 1}

Theorem 3. Let all positive solutions of (1) be globally attractive. Then the solution (X(7), y(t))
has a unique ergodic invariant distribution (- X -) defined on C ([—T, 0], Ri) X S.

Proof. We observe from Lemma 1 that for any initial data ¢ € C ([—T, 0], Ri) with y(0) =i € S,
the family of transition probability {p(z, ¢, i, dy X {j}) : t > 0} is tight by the Chebyshev inequality. That
is to say, for a compact subset K = K(¢€, ¢, i) and any € > 0

P(t,¢,i, KXxS)>1—-¢

Next, based on the Theorem 2, for any € > 0,7 > T and any compact subset K € C ([—T, 0], Ri), we
have

lim de (p(t, 6,1, % ), p(t, 6, - X ) = 0

uniformly in ¢,¢ € K and i, j € S. The proof is similar as Lemma 5.6 in [40], here we omit it. And
then for an arbitrary initial data 77 € C([-7,0], R3) with ¥(0) = j € S, the {p(t. 7, j- X -) : ¢ 2 O} is

cauchy in the metric space P(C ([—T, 0], Ri) X S) (see Lemma 5.7 in [40]). Hence, there exists a unique
probability measure V(-) such that

lim e (p(t, 7, j,+ X ), 7)) = 0.
The last, for any initial value ¢ € C ([—T, 0], Ri) with ¥(0) =i € S, we obtain that
}Lrg d]L (p(ta ¢a i’ - X ')’ ‘_}()) < tli)rg dL (p(t’ ¢a i, - X '), p(t’ T” j’ - X ) + tlgg dL (p([, na j’ - X ')9 \_"()) = 0

It means that the p(¢, ¢, i, X -) converges weakly to V(-). [43] (Corollary 3.4.3 and Theorem 3.2.6)
show ¥(+) is strong mixing and ergodic.
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This completes the proof.

When C),; is a non-singular matrix, it follows from Theorems 2 and 3 that any positive solution
(X(2),y(t)) of the system (1) has a unique ergodic invariant distribution ¥(- X -) defined on
C ([—T, 0], Ri) X S. This guarantees that tlim 23]1 E(h;x;(t)) exists for the positive solution

—o 1
x(t) = (x1(1), x2(t), x3(t))T. That is, the harvesting effort H* = (h*, h;, h§)T is the optimal solution of
Eq (2) if
(i) D(H") is the maximum value of @;
(ii)  All species in the system (1) are stable in mean (see also Definition 1).

The following theorem gives sufficient and necessary conditions ensuring the existence of optimal
solution H* = (I}, i, )" for Eq (2).

Theorem 4. Let C, be a non-singular matrix. Then the system (1) has the optimal harvesting
policy if and only if (a), (b) and (c) all hold.

@  Cily>0,h;20,0,j=1,23;
b Rl>0,w3li> 1, or R|< 0,05 > 1, or Rly=0,w,>1,j=1,2,3;
() C '+ (Cc™H is positive definite.

Furthermore, we obtain the optimal harvesting effort H* = [(C(C‘l)T + 1) R]_l d and the maximum of
sustainable yield ®(H*) = (H*)'RC~'(d — RH*) — W, where R = diag{ri, r», r3}.

Proof. Denote u = {H = (hy, hy,h3)T € R? | (a),(b) all hold}. If we take by = hy = h3 = 0,7 =
r, = r3 = 1 and choose the appropriate parameters, we can see u is not empty. Denote p means the
stationary probability density of model (1) and x(f) = (x;(¢), x2(¢), x3(¢))?. For notation convenience,
we use x instead of x(7), so we get

3
O(H) = tlgg Z rihiE(xj(t) - W = Z fg H' Rxp(x, k)dx — W.
=1 kes YR+

Theorem 3 shows the system (1) has a unique stable distribution ¥. Due to the one-to-one corresponded
between p and v, we have the following relations (see Theorem 3.3.1 in [43])

li ‘1ft ds = f ,k)dx = f v(dx, k).
tggt x(s)ds Z Rixp(x )dx Z Rixv()c )

0 keS kes

For arbitrary (h, hs, h3)! € u, we have

3 " 3 ~

c;-C; _ _

O(H) = ) rih;lim z—lfo xi(s)ds =W =" rjh; J|C| ! = H'RC™(d - RH) - W.
j=1

J=1 J

Thus
®O(H) = H'RC™'(d - RH) - W.
Next AD(H)
_ D1 D -1 —-I\T\ D
—5 =k d-|[R(C™" +(C™))R|H.
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Assume H* = (h}, h}, h;)T is the solution of

dO(H) 0
dH

Thus one get
H =|(ccc™Y +1)R] ' a.
The Hessian matrix
d dO(H).
AT
Due to C~'+(C~ 1T is positive definite, then H* is a unique extreme point of ®(H). And then the optimal

R (c-1 + (C‘l)T)f?.

harvesting effort H* = [(C(C‘I)T + I) f(’]_l d and the maximum value of expectation of sustainable
yield ®(H*) = (H*)TRC~'(d — RH*) - W.

If conditions (a) and (b) do not hold, the species of the system (1) will not stable in mean or to be
extinct. Then the optimal harvesting policy does not exist. What’s more, if (c) not hold. That is to say
C~' + (C™HT is not positive definite. Set Q = C~! + (C™1)T, then we can see

Qll _ 2(0226’33) — 2(022633) > 0.

C11C22C33 + €11€23C30 + C12€21C33 — C12C23C31 + C13C21C32 + €13C20C3) IC|

So Q must not be negative definite, and Q is indefinite. This implies that ®(H) has no extreme point.
Thus, the optimal harvesting policy does not exist. The proof is complete.

5. Examples and numerical simulations

In this section, we shall give some numerical examples and their simulations to illustrate the
effectiveness of the obtained results for the hybrid stochastic phytoplankton-zooplankton-fish model
with distributed delays (1). For the practical biological significance, some parameter values of the
system (1) are given such as the growth rate of phytoplankton, the death rate of zooplankton and
fish [44-46]. According to these publications, we take the mean growth rate of phytoplankton ranged
from 0.26d~! to 1.04d"!, the death rate of diaphanosoma brachyurum (a kind of zooplankton) ranged
from 0.01d~! to 0.92d~", and the death rate of fish ranged from 0.15d~' to 0.95d~'. Due to technical
reasons, the rate of intra-specific competition, capture and food conversation are not easy to be
obtained. In the following examples, we will refer to the value range of system parameters.

Example 1. Consider the stochastic delayed phytoplankton-zooplankton-fish model (1) with S =
{1,2},¢ = (0.3,0.7), and parameters a;(1) = 0.56,a,(1) = 0.27,a3(1) = 0.45, a;(2) = 0.80, a>(2)
0.33,613(2) = 064, h1 = ]’12 = h3 = 0, Ci1 = 0.35,C12 = 02, Clz3 = 0.1,C21 = 0.15,C22 = 0.65,C23
0.3,c31 = 0.28,c3, = 0.1,c335 = 0.55, O'f(l) = 0'?(2) = 0.02, 0'3(1) = 0'%(2) = O.()l,o%(l) = 0'5(2)
0.012.

We compute that Cr3 = 0.021 > 0,C3; = —0.005 < 0,Cy, = 0.0015 > 0,|C| = 0.155025 > O,
a, = 0.73,a, = 031,a; = 0.58,C; = 0.323,C, = 0.00015,C; = 0.00097,C, = 0.0032,C, =
0.000367, C5 = 0.0034, R = 0.000001 > 0, w3 = 0.2845 < 1, w, = 0.3077 < 1, w; = 73 > 1. It follows
from Case (c) of Theorem 1 that

t
lim x;(r) = 0, j = 2,3, limr! f xi(s)ds = C”—l =2.05.
1—00 0

—00 11
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Figure 2 is shown to illustrate the species x,, x3 are extinct and x; is stable in mean. So, there is no
optimal solution for the optimization problem (2).

3.5

3t

2571

2 H

15

1

0.5

| —
0 50 100 150 200 250 300 350 400 450 500
time t

0

Figure 2. Species x; are stable in mean and species x, and x; die out.

The above example shows the effect of time delay and environmental noise on the survival and
extinction of species without harvesting. According to Theorem 1, the time delay has no effect on
the survival and extinction of the three species, but the harvesting and environmental noise have great
influence on it. This is also verified by our numerical experiments. The results of example 1 showed
that when Zooplankton and Fish were extinct, Phytoplankton could still stable in mean under certain
environmental noise. But it is meaningless to discuss the optimal harvesting policy in the case of
species extinction.

In order to demonstrate some results about optimal harvesting policy for the system (1), we give the
following example.

Example 2.  Consider the stochastic delayed phytoplankton-zooplankton-fish model (1) with
S = {1,2},¢ = (0.9,0.1), a;(1) = 0.9789,a,(1) = 0.0211,a3(1) = 0.1044, a,(2) = 0.59,a,(2) =
0.01,a3(2) = 0.06, we compute a; = 0.94,a, = 0.02,a; = 0.1.

When there is no harvesting, i.e. h; = 0,i = 1,2, 3, we compute that C; = 0.3672,C, = 0.0062, C5 =
0.1599,C, = 0.0032,C, = 0.000367,C3 = 0.0034,R = —0.000243 < 0,03 = g—’;‘ = 168163 > 1. It
follows from Case (n) of Theorem 1 that

. ~
lim ¢! f n(o)ds = 2C0 293474,
0 |C]

t—00

d c,-C
lim ¢! f xy(s)ds = —=——2 = 0.0375,
0 IC|

t—00

! c;-C
limt_lfxg(s)ds: 33 _ 1.0091.
f—00 0 |C|

Figure 3 is shown to illustrate the species x;,i = 1,2, 3 are stable in mean for the system (1) with no
harvesting.
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Furthermore, we select the appropriate values of the unit profit parameters
r1 =0.6,r, =2.7,r;3 = 4, and fixed cost W = 0.2 . Then, all the conditions in Theorem 4 are checked

as follows: d = (0.93,0.025,0.106), H* = (ki k5,17 = [(C(C—l)T +1) R]_l d =
(0.6915,0.0713,0.0764), Cylyesrr = 0.2622,Colyerr = 0.0059,Calyesr = 0.1578, Rlysy =
0000225 > 0,w; = % = 1.0129 > 1 and C;; > 0. Thus, the optimal harvesting effort is

= (0.6915,0.0713,0.0764)" and the maximum of total economic income is 0.4792. Under the
optlmal harvesting condition, by Case (g) in Theorem 1, we see that

’ ¢ -C
lim 7! f x(s)ds = ———1 = 0.6767,
100 0 IC]

! c,-C
lim ! f x(s)ds = —=——2 = 0.0019,
f—00 0 |C|

d c,-C
1imf1f xs3(s)ds = ——— = 0.0131.
0 IC|

t—0o0

Figure 4 is shown to illustrate the species x;,i = 1,2, 3 are stable in mean for the system (1) with the
optimal harvesting H*.

4 T T T T T T T T T 1.4

351
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os I ‘] '|n I‘ ['m Ml ]J,’ ||!| M'

05/ g 0.2

15

1

N o e e e s e
o 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500
time t time
Figure 3. All species are stable in mean Figure 4. All species are stable in mean
without harvesting. with harvesting.

In example 2, we see that all species are stable in mean without harvesting. According to Theorem 4,
we get the maximum harvesting effort H*, and verify that all species are still stable in mean. This
means that the system (1) has an optimal harvesting strategy with the maximum of total economic
income. However, excessive harvesting or strong enough environmental noise may cause the extinction
of species, and the optimal harvesting strategy does not exist.
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