Citation: Luciano Curcio, Valerio Cusimano, Laura D’Orsi, Jiraphat Yokrattanasak, Andrea De Gaetano. Comparison between two different cardiovascular models during a hemorrhagic shock scenario[J]. Mathematical Biosciences and Engineering, 2020, 17(5): 5027-5058. doi: 10.3934/mbe.2020272
[1] | G. Gutierrez, H. D. Reines, M. E. Wulf-Gutierrez, Clinical review: Hemorrhagic shock, Crit. Care, 8 (2004), 373-381. |
[2] | E. Krug, G. K. Sharma, R. Lozano, The global burden of injuries., Am. J. Public Health, 90 (2000), 523-526. |
[3] | J. W. Cannon, Hemorrhagic shock, N. Engl. J. Med., 378 (2018), 370-379. |
[4] | American College of Surgeons, Advanced trauma life support program for doctors: ATLS, 6th edition, Chicago, IL: American College of Surgeons, 1997. |
[5] | G. Becq, S. Charbonnier, L. Bourdon, P. Baconnier, Evaluation of a device scoring classes of emorrhagic shock, Conf. Proc. IEEE Eng. Med. Biol. Soc., 1 (2004), 470-473. |
[6] | J. R. Spaniol, A. R. Knight, J. L. Zebley, J. D. P. Dawn Anderso, J. D. Pierce, Fluid resuscitation therapy for hemorrhagic shock, J. Trauma. Nurs., 14 (2007), 152-160. |
[7] | H. Peng, A. Sweeny, Development of physiologically-based mathematical models for hemostatic resuscitation in trauma, Defence Research and Development Canada, Scientific Report, 2016. |
[8] | K. Sagawa, Critique of a large-scale organ system model: Guytonian cardiovascular model, Ann. Biomed. Eng., 3 (1975), 386-400. |
[9] | A. Guyton, A. Lindsey, B. Kaufmann, Effect of mean circulatory filling pressure and other peripheral circulatory factors on cardiac output, Am. J. Physiol., 180 (1955), 463-468. |
[10] | A. C. Guyton, Venous Return, vol. Ⅱ, 1099-1133, American Physiology Society, 1962. |
[11] | A. Guyton, Circulatory physiology: cardiac output and its regulation, 1st edition, W. B. Saunders Company, 1963. |
[12] | A. C. Guyton, T. G. Coleman, A. W. Cowley Jr., J.-F. Liard, R. A. Norman Jr., R. D. Manning Jr., Systems analysis of arterial pressure regulation and hypertension, Ann. Biomed. Eng., 1 (1972), 254-281. |
[13] | A. C. Guyton, T. G. Coleman, H. J. Granger, Circulation: Overall regulation, Ann. Rev. Physiol., 34 (1972), 13-44. |
[14] | V. Mangourova, J.Ringwood, B. V. Vliet, Graphical simulation environments for modelling and simulation of integrative physiology, Comput. Methods Programs Biomed., 102 (2011), 295-304. |
[15] | J. Kofránek, J. Rusz, S. Matoušek, Guyton's diagram brought to life - from graphic chart to simulation model for teaching physiology, Technical. Comput. Prague, (2007), 978-980. |
[16] | J. Kofránek, J. Rusz, M. Matejak, From Guyton's graphic to multimedia simulators for teaching physiology (resurrection of guyton's chart for educational purpose), Jackson CardiovascularRenal Meeting, 2008. |
[17] | J. R. J. Kofránek, Restoration of Guyton's diagram for regulation of the circulation as a basis for quantitative physiological model development, Physiol. Res., 59 (2010), 897-908. |
[18] | D. A. Beard, K. H. Pettersen, B. E. Carlson, S. W. Omholt, S. M. Bugenhagen, A computational analysis of the long-term regulation of arterial pressure, F1000Research, 2 (2013), 208. |
[19] | D'Ambrosi, A. Quarteroni, G. Rozza (eds.), Modeling of Physiological Flows, vol. 5 of MS&A, Chapter 9, 251-288, Springer, 2012. |
[20] | A. Quarteroni, A. Manzoni, C. Vergara, The cardiovascular system: Mathematical modelling, numerical algorithms and clinical applications, Acta Numerica, 26 (2017), 365-590. |
[21] | A. Quarteroni, A. Veneziani, C. Vergara, Geometric multiscale modeling of the cardiovascular system, between theory and practice, Comput. Methods Appl. Mech. Engrg., 302 (2016), 193-252. |
[22] | Y. Zhang, V. Barocas, S. Berceli, C. Clancy, D. Eckmann, M. Garbey et al., Multi-scale modeling of the cardiovascular system: Disease development, progression, and clinical intervention, Ann. Biomed. Eng., 44 (2016), 2642-2660. |
[23] | S. Zenker, J. Rubin, G. Clermont, From inverse problems in mathematical physiology to quantitative differential diagnoses, PLoS Comput. Biol., 3 (2007), 2072-2086. |
[24] | R. L. Ackoff, Systems thinking and thinking systems, Syst. Dyn. Rev., 10 (1994), 175-188. |
[25] | O. Özgün, M. Kuzuoğlu, MATLAB-based Finite Element Programming in Electromagnetic Modeling, Introduction, 2, CRC Press, 2018. |
[26] | A. C. Guyton, Determination of cardiac output by equating venous return curves with cardiac response curves, Physiol. Rev., 35 (1955), 123-129. |
[27] | P. Olmsted, I. H. Page, Hemodynamic changes in trained dogs during experimental renal hypertension, Circ. Res., 16 (1965), 134-139. |
[28] | A. C. Guyton, T. Q. Richardson, Effect of hematocrit on venous return, Circ. Res., 9 (1961), 157-164. |
[29] | D. O. Avellaneda, Multi-resolution physiological modeling for the analysis of cardiovascular pathologies, Signal and image processing, Université Rennes 1, 2013. |
[30] | N. Ikeda, F. Marumo, M. Shirataka, T. Sato, A model of overall regulation of body fluids, Ann. Biomed. Eng., 7 (1979), 135-166. |
[31] | F. S. Grodins, Control Theory and Biological Systems, Columbia University Press, New York, 1963. |
[32] | F. Grodins, J. Buell, A. Bart, Mathematical analysis and digital simulation of the respiratory control system, J. Appl. Physiol., 22 (1967), 260-276. |
[33] | S. Magder, Point: the classical guyton view that mean systemic pressure, right atrial pressure, and venous resistance govern venous return is/is not correct, J. Appl. Physiol., 101 (2006), 1523-1527. |
[34] | J.-P. Montani, B. N. Van Vliet, Understanding the contribution of guyton's large circulatory model to long-term control of arterial pressure, Exp. Physiol., 94 (2009), 382-388. |
[35] | W. R. Henderson, D. E. G. Griesdale, K. R. Walley, A. W. Sheel, Clinical review: Guyton - the role of mean circulatory filling pressure and right atrial pressure in controlling cardiac output, Crit. Care, 14 (2010), 243. |
[36] | L. G. Bongartz, M. J. Cramer, P. A. Doevendans, J. A. Joles, B. Braam, The severe cardiorenal syndrome: 'Guyton revisited', Eur. Heart J., 26 (2005), 11-17. |
[37] | T. Kawada, K. Uemura, K. Kashihara, A. Kamiya, M. Sugimachi, K. Sunagawa, A derivative-sigmoidal model reproduces operating point-dependent baroreflex neural arc transfer characteristics, Am. J.Physiol. Heart Circ. Physiol., 286 (2004), 2272-2279. |
[38] | J. Ringwood, S. Malpas, Slow oscillations in blood pressure via a nonlinear feedback model, Am. J. Physiol. Regul. Integr. Comp. Physiol., 280 (2001), R1105-R1115. |
[39] | D. Glower, J. Spratt, N. Snow, J. Kabas, J. Davis, C. Olsen, et al., Linearity of the frank-starling relationship in the intact heart: the concept of preload recruitable stroke work, Circulation, 71 (1985), 994-1009. |
[40] | N. Kiefer, M. Oremek, A. Hoeft, S. Zenker, Model-Based Quantification of Left Ventricular Diastolic Function in Critically Ill Patients with Atrial Fibrillation from Routine Data: A Feasibility Study. Comput. Math. Methods Med., 2019 (2019), 9682138. |
[41] | A. Fülöp, Z. Turóczi, D. Garbaisz, L. Harsányi, A. Szijártó, Experimental models of hemorrhagic shock: A review, Eur. Surg. Res., 50 (2013), 57-70. |
[42] | A. Guyton, J. Crowell, Dynamics of the heartin shock, Fed Proc., 20 (1961), 51-60. |
[43] | J. E. Hall, A. C. Guyton, Textbook of Medical Physiology Thirteenth ed. Elsevier; 2016. |
[44] | H. Barcroft, O. Edholm, J. Mcmichael, E. Sharpey-Schafer, Posthaemorrhagic fainting study by cardiac output and forearm flow. The Lancet, 243 (1944), 489-491. |
[45] | H. Barcroft, O. Edholm, On the vasodilatation in human skeletal muscle during post-haemorrhagic fainting, J. Physiol., 104 (1945), 161-175. |
[46] | J. P. Hannon, Hemorrhage and Hemorrhagic Shock in Swine: A Review, Letterman Army Insitutute of Research - Presidio of San Francisco, CA; 1989. 449. |
[47] | J. Sondeen, M. Dubick, J. Holcomb, C. Wade, Uncontrolled hemorrhage differs from volume- or pressure- marched controlled hemorrhage in swine, Shock, 28 (2007), 426-433. |
[48] | E. Salomão, Jr, D. Otsuki, A. Correa, D. Tabacchi Fantoni, F. dos Santos, M. Irigoyen, et al., Heart Rate Variability Analysis in an Experimental Model of Hemorrhagic Shock and Resuscitation in Pigs, PLoS ONE, 10 (2015), e0134387. |
[49] | W. Wieling, D. Jardine, F. de Lange, M. Brignole, H. Nielsen, J. Stewart, et al. Cardiac output and vasodilation in the vasovagal response: An analysis of the classic papers, Heart Rhythm., 13 (2016), 798-805. |
[50] | C. Scully, C. Daluwatte, N. Marques, M. Khan, M. Salter, J. Wolf, et al., Effect of hemorrhage rate on early hemodynamic responses in conscious sheep, Physiol. Reports, 4 (2016), e12739. |
[51] | Wiley (ed.), Introduction, vol. 62 of Acta Physiologica Scandinavica, chapter I, 5-12, 1964. |
[52] | E. Starling, On the absorption of fluids from the connective tissue spaces, J. Physiol., 19 (1896), 312-326. |
[53] | A. Guyton, Pressure-volume relationships in the interstitial spaces, Invest. Ophthalmol., 4 (1965), 1075-1084. |
[54] | A. Guyton, J. Hall, The Kidneys and Body Fluids, 264-78, 10th edition, W. B. Saunders, 2000. |
[55] | E. Kirkman, S. Watts, Haemodynamic changes in trauma, Br. J. Anaesth., 113 (2014), 266-275. |
[56] | B. A. Foex, Systemic responses to trauma, Br. Med. Bull., 55 (1999), 726-743. |
[57] | E. Kirkman, Applied cardiovascular physiology, Anaesth. Intensive Care Med., 11 (2010), 165-169. |
[58] | Chapter 2. In: Vodovotz Y, An G, editors. Complex Systems and Computational Biology Approaches to Acute Inflammation. Springer; 2013, 11-28. |
[59] | J. Kofránek, M. Andrlík, T. Kripner, P. Stodulka, From art to industry: Development of biomedical simulators, The IPSI BgD Transactions on Advanced Research,12 (2005), 62-67. |