Citation: Kazunori Sato. Effects of cyclic allele dominance rules and spatial structure on the dynamics of cyclic competition models[J]. Mathematical Biosciences and Engineering, 2020, 17(2): 1479-1494. doi: 10.3934/mbe.2020076
[1] | Y. Iwasa, M. Nakamaru and S. Levin, Allelopathy of bacteria in a lattice population: Competition between colicin-sensitive and colicin-producing strains, Evolut. Ecol., 12 (1998), 785-802. |
[2] | B. Kerr, M. A. Riley, M. W. Feldman, et al., Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors, Nature, 418 (2002), 171-174. |
[3] | B. C. Kirkup and M. A. Riley, Antibiotic-mediated antagonism leads to a bacterial game of rock-paper-scissors in vivo, Nature, 428 (2004), 412-414. |
[4] | L. L. Jiang, T. Zhou and M. W. B. H. Perc, Effects of competition on pattern formation in the rock-paper-scissors game, Phys. Rev. E, 84 (2011), 021912. |
[5] | B. Sinervo and C. M. Lively, The rock-paper-scissors game and the evolution of alternative male strategies, Nature, 380 (1996), 240-243. |
[6] | B. Sinervo, Runaway social games, genetic cycles driven by alternative male and female strategies, and the origin of morphs, Genetica, 112-113 (2001), 417-434. |
[7] | B. Sinervo, C. Bleay and C. Adamopoulou, Social causes of correlational selection and the resolution of a heritable throat color polymorphism in a lizard, Evolution, 55 (2001), 2040-2052. |
[8] | W. P. Barreto, F. M. D. Marquitti and M. A. M. de Aguiar, A genetic approach to the rock-paperscissors game, J. Theoret. Biol.,421 (2017), 146-152. |
[9] | J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics, Cambridge University Press, Cambridge, (1998). |
[10] | M. A. Nowak, Evolutionary Dynamics - Exploring the Equations of Life, The Belknap Press of Harvard University Press, Cambridge, (2006). |
[11] | L. J. S. Allen, An Introduction to Mathematical Biology, Pearson Education, Inc., New Jersey, (2007). |
[12] | R. M. May and W. J. Leonard, Nonlinear aspects of competition between three species, SIAM J. Appl. Math., 29 (1975), 243-253. |
[13] | K. Tainaka, Lattice model for the Lotka-Volterra system, J. Phys. Soc. Japan, 57 (1988), 2588-2590. |
[14] | G. Szabó, K. S. Bodó, B. Allen, et al., Fourier decomposition of payoff matrix for symmetric three-strategy games, Phys. Rev. E,90 (2014), 042811. |
[15] | K. Tainaka and Y. Itoh, Topological phase transition in biological ecosystems, Europhys. Lett., 15 (1991), 399-404. |
[16] | K. Tainaka, Vortices and strings in a model ecosystem, Phys. Rev. E, 50 (1994), 3401-3409. |
[17] | G. Szabó, M. A. Santos and J. F. F. Mdendes, Vortex dynamics in a three-state model under cyclic dominance, Phys. Rev. E, 60 (1999), 3766-3780. |
[18] | G. Szabó and A. Szolnoki, Three-state cyclic voter model extended with Potts energy, Phys. Rev. E, 65 (2002), 036115. |
[19] | A. Szolnoki, G. Szabó and M. Ravasz, Three-state Potts model in combination with the rock-scissors-paper game, Phys. Rev. E, 71 (2005), 027102. |
[20] | M. Mobilia, A. M. Rucklidge and B. Szczesny, The influence of mobility rate on spiral waves in spatial rock-paper-scissors games, Games, 7 (2016), 24. |
[21] | P. P. Avelino, D. Bazeia, L. Losano, et al., Spatial patterns and biodiversity in off-lattice simulations of a cyclic three-species Lotka-Volterra model, EPL, 121 (2018), 48003. |
[22] | G. Szabó and G. Fáth, Evolutionary games on graphs, Phys. Rep., 46 (2007), 97-216. |
[23] | A. Szolnoki, M. Mobilia, L. L. Jiang, et al., Cyclic dominance in evolutionary games: A review, J. Royal Soc. Int., 11 (2014), 20140735. |