Research article Special Issues

A distributed quantile estimation algorithm of heavy-tailed distribution with massive datasets

  • Received: 09 September 2020 Accepted: 17 November 2020 Published: 26 November 2020
  • Quantile estimation with big data is still a challenging problem in statistics. In this paper we introduce a distributed algorithm for estimating high quantiles of heavy-tailed distributions with massive datasets. The key idea of the algorithm is to apply the alternating direction method of multipliers in parameter estimation of the generalized pareto distribution in a distributed structure and compute high quantiles based on parameter estimation by the Peak Over Threshold method. This paper proves that the proposed algorithm converges to a stationary solution when the step size is properly chosen. The numerical study and real data analysis also shows that the algorithm is feasible and efficient for estimating high quantiles of heavy-tailed distribution with massive datasets and there is a clear-cut winner for the extreme quantiles.

    Citation: Xiaoyue Xie, Jian Shi. A distributed quantile estimation algorithm of heavy-tailed distribution with massive datasets[J]. Mathematical Biosciences and Engineering, 2021, 18(1): 214-230. doi: 10.3934/mbe.2021011

    Related Papers:

  • Quantile estimation with big data is still a challenging problem in statistics. In this paper we introduce a distributed algorithm for estimating high quantiles of heavy-tailed distributions with massive datasets. The key idea of the algorithm is to apply the alternating direction method of multipliers in parameter estimation of the generalized pareto distribution in a distributed structure and compute high quantiles based on parameter estimation by the Peak Over Threshold method. This paper proves that the proposed algorithm converges to a stationary solution when the step size is properly chosen. The numerical study and real data analysis also shows that the algorithm is feasible and efficient for estimating high quantiles of heavy-tailed distribution with massive datasets and there is a clear-cut winner for the extreme quantiles.


    加载中


    [1] H. Rootzén, R. W. Katz, Design life level: Quantifying risk in a changing climate. Water Resour. Res., 49 (2013), 5964-5972. doi: 10.1002/wrcr.20425
    [2] M. M. de Oliveira, N. F. Ebecken, J. L. de Oliveira, E. Gilleland, Generalized extreme wind speed distributions in south America over the Atlantic Ocean region, Theor. Appl. Climatol., 104 (2011), 377-385. doi: 10.1007/s00704-010-0350-3
    [3] R. Potocky, M. Stehlik, H. Waldl, On sums of claims and their applications in analysis of pension funds and insurance products, Prague Econ. Pap., 23 (2014), 349-370. doi: 10.18267/j.pep.488
    [4] P. Jordanova, Z. Fabian, P. Hermann, L. Střelec, A. Rivera, S. Girard, et al., Weak properties and robustness of t-hill estimators, Extremes, 19 (2016), 591-626. doi: 10.1007/s10687-016-0256-2
    [5] M. Stehlík, L. N. Soza, Z. Fabián, M. Jiřina, P. Jordanova, S. C. Arancibia, et al., On ecological aspects of dynamics for zero slope regression for water pollution in Chile, Stochastic Anal. Appl., 37 (2019), 574-601. doi: 10.1080/07362994.2019.1592692
    [6] J. Pickands, Statistical inference using extreme order statistics, Ann. Stat., 3 (1975), 119-131. doi: 10.1214/aos/1176343003
    [7] J. Hosking, J. Wallis, Parameters and quantile estimation for the generalized pareto distribution, Technometrics, 29 (1998), 339-349.
    [8] S. Juarez, W. Schucany, Robust and efficient estimation for the generalized pareto distribution, Extremes, 7 (2004), 237-251. doi: 10.1007/s10687-005-6475-6
    [9] J. Zhang, Likelihood moment estimation for the generalized pareto distribution, Aust. N. Z. J. Stat., 49 (2007), 69-77. doi: 10.1111/j.1467-842X.2006.00464.x
    [10] J. Zhang, Improving on estimation for the generalized pareto distribution, Technometrics, 52 (2010), 335-339. doi: 10.1198/TECH.2010.09206
    [11] J. Zhang, M. Stephens, A new and efficient estimation method for the generalized pareto distribution, Technometrics, 51 (2009), 316-325. doi: 10.1198/tech.2009.08017
    [12] J. He, Z. Sheng, B. Wang, K. Yu, Point and exact interval estimation for the generalized Pareto distribution with small samples, Stats its interface, 7 (2014), 389-404. doi: 10.4310/SII.2014.v7.n3.a9
    [13] J. Song, S. Song, A quantile estimation for massive data with generalized Pareto distribution, Comput. Stat. Data Anal., 56 (2012), 143-150. doi: 10.1016/j.csda.2011.06.030
    [14] M. H. Park, J. H. T. Kim, Estimating extreme tail risk measures with generalized Pareto distribution, Comput. Stat. Data Anal., 98 (2016), 91-104. doi: 10.1016/j.csda.2015.12.008
    [15] S. Kang, J. Song, Parameter and quantile estimation for the generalized pareto distribution in peaks over threshold framework, J. Korean Stat. Soc., 46 (2017), 487-501. doi: 10.1016/j.jkss.2017.02.003
    [16] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Found. Trends Mach. Learn., 3 (2010), 1-122. doi: 10.1561/2200000016
    [17] E. Chu, A. Keshavarz, S. Boyd, A distributed algorithm for fitting generalized additive models, Optim. Eng., 14 (2013), 213-224. doi: 10.1007/s11081-013-9215-9
    [18] X. Yuan, Alternating direction method for covariance selection models, J. Sci. Comput., 51 (2012), 261-273. doi: 10.1007/s10915-011-9507-1
    [19] Y. Gu, J. Fan, L. Kong, S. Ma, H. Zou, ADMM for high-dimensional sparse penalized quantile regression, Technometrics, 60 (2018), 319-331, doi: 10.1080/00401706.2017.1345703
    [20] M. Hong, Z. Q. Luo, M. Razaviyayn, Convergence analysis of alternating direction method of multipliers for a family of non-convex problems, SIAM J. Optim., 26 (2014), 3836-3840.
    [21] B. He, X. Yuan, On the O(1/n) convergence rate of the douglas-rachford alternating direction method, SIAM J. Numer. Anal., 50 (2012), 700-709. doi: 10.1137/110836936
    [22] W. Deng, W. Yin, On the global and linear convergence of the generalized slternating direction method of multipliers, J. Sci. Comput., 66 (2016), 889-916. doi: 10.1007/s10915-015-0048-x
    [23] J. Liu, S. J. Wright, C. Ré, V. Bittorf, S. Sridhar, An asynchronous parallel stochastic coordinate descent algorithm, J. Mach. Learn. Res., 16 (2013), 285-322.
    [24] H. R. Feyzmahdavian, A. Aytekin, M. Johansson, An asynchronous mini-batch algorithm for regularized stochastic optimization, IEEE Trans. Autom. Control, 61 (2016), 3740-3754. doi: 10.1109/TAC.2016.2525015
    [25] A. McNeil, T. Saladin, The peaks over thresholds method for estimating high quantiles of loss distributions, Proc. 28th Int. ASTIN Colloq., (1997), 23-43.
    [26] A. A. Balkema, L. de Haan, Residual life time at great age, Ann. Probab., 2 (2004), 792-804.
    [27] P. Embrechts, C. Kluppelberg, T. Mikosch, Modelling Extremal Events for Insurance and Finance, Springer-Verlag, Berlin Heidelberg, 1997.
    [28] H. Zhu, A. Cano, G. Giannakis, Distributed consensus-based demodulation: Algorithms and error analysis, IEEE Trans. Wireless Commun., 9 (2010), 2044-2054. doi: 10.1109/TWC.2010.06.090890
  • mbe-18-01-011- supplementary.pdf
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3028) PDF downloads(229) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog