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Abstract: Barreto et al. (2017) showed that the genotypic cyclic competition model with three pheno-
types appearing as three morphs of male lizards’ throats had the same equilibrium but a wider stability
region as the corresponding phenotypic model. In this paper we re-examine stability conditions under
the symmetric choice of parameters for the phenotypic model so we can set the same internal equilib-
rium densities for all three phenotypes. In this setting we compare the stability regions of cyclic allele
dominance rule. Next we consider the dynamics on a two-dimensional square lattice space and then
show the effect of this spatial structure on the stability of phenotypic model. We obtain the following
results: (i) Cyclic allele dominance rule in a genotypic model gives a wider stable region of internal
equilibrium than the allele dominance rule observed in lizards; and (ii) spatial structure drastically
changes dynamical behavior, especially when all three phenotypes coexist in almost all the parameter
spaces when both competition and dispersal occur locally.
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1. Introduction

One of interactions between three types of populations is known as non-transitive, cyclic competi-
tion or a rock-paper-scissors relationship, that is, type A is stronger than type B, and type B is superior
to type C, which in turn is better than A. We can find several examples of this kind of interaction in
nature; the most well-known are bacteria (e.g., [1–4]) and lizards (e.g., [5–7]).

Barreto et al. [8] proposed phenotypic and genotypic cyclic competition models to clarify the fact
that three throat morphs in male lizards, known as orange, blue, and yellow, are maintained with a
rock-paper-scissors relationship. Both models have the same equilibrium, but the latter gives a wider
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Table 1. Payoff matrix of rock-paper-scissors game. MIJ is a payoff of focal individual
I ∈ {O, B,Y} against an opponent J ∈ {O, B,Y}. The following magnitude relations hold:
MOY < MOO < MOB,MBO < MBB < MBY ,MYB < MYY < MYO.

Individual J

Individual I O B Y

O MOO MOB MOY

B MBO MBB MBY

Y MYO MYB MYY

stability region than the former. Barreto et al. [8] analyzed their model by fixing all payoffs except two
elements, which are given by variable parameters. However, such a case is difficult to manage because
an internal equilibrium depends on these parameters. Then we consider an alternative setting as an
internal equilibrium with equal frequencies for all phenotypes independent of parameters, namely, we
use symmetric conditions of parameters to obtain global insights into the dynamics in this simplified
system for the convenience of analysis.

In this paper, we re-examine stability conditions under the following situations: symmetric pa-
rameters for the phenotypic model, cyclic allele dominance rule, and spatial structure. We obtain the
following results: (i) Cyclic allele dominance rule in a genotypic model gives a wider stable region
of internal equilibrium than the allele dominance rule observed in lizards. (ii) Spatial structure dras-
tically changes the dynamical behavior, especially when all three phenotypes coexist in almost all the
parameter spaces when both competition and dispersal occur locally.

In the next section, we review the phenotypic model and its corresponding genotypic model pro-
posed by [8] and then restrict these models with two parameters to generate an internal equilibrium
independent of the parameters. In section 3, we derive local stability conditions for each model. We
consider cyclic allele dominance rule in section 4. In section 5, we investigate the effects of spatial
structure on the stability of the internal equilibrium.

2. The phenotypic model and its corresponding genotypic model

First, we consider a phenotypic model of cyclic competition, or a rock-paper-scissors game, follow-
ing [8]. There are three phenotypes O, B, and Y . O has a better strategy than B, and B is superior to Y ,
which is, in turn, surpasses O. When we use a payoff matrix in Table 1, this relation can be expressed
by MOY < MOO < MOB,MBO < MBB < MBY , and MYB < MYY < MYO, where MIJ is a payoff of focal
individual I ∈ {O, B,Y} against an opponent J ∈ {O, B,Y}.

Using these payoffs obtained by the competition between two phenotypes, the dynamics of pheno-
typic model are defined as

pO,n+1 =
WO

W
pO,n, (2.1)

pB,n+1 =
WB

W
pB,n, (2.2)
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pY,n+1 =
WY

W
pY,n, (2.3)

with pO,n, pB,n, and pY,n as the fractions of phenotypes O, B, and Y , respectively, at generation n. Here
WO,WB, and WY are the fitnesses of phenotypes O, B, and Y , respectively, and W is the average fitness
of the population:

WO = MOO pO,n + MOB pB,n + MOY pY,n, (2.4)
WB = MBO pO,n + MBB pB,n + MBY pY,n, (2.5)
WY = MYO pO,n + MYB pB,n + MYY pY,n, (2.6)
W = WO pO,n + WB pB,n + WB pY,n. (2.7)

This is a standard model of the rock-paper-scissors game (e.g., [9, 10]).
At equilibrium we have

W = WO = WB = WY (2.8)

by eqs.(2.1)–(2.3). A unique internal equilibrium solution for the above simultaneous equations (2.8)
with pO + pB + pY = 1 is

pO =
M1

M1 + M2 + M3
, (2.9)

pB =
M2

M1 + M2 + M3
, (2.10)

pY =
M3

M1 + M2 + M3
, (2.11)

where

M1 = MOB(MBY − MYY) + MBB(MYY − MOY) + MYB(MOY − MBY), (2.12)
M2 = MOY(MBO − MYO) + MBY(MYO − MOO) + MYY(MOO − MBO), (2.13)
M3 = MOO(MBB − MYB) + MBO(MYB − MOB) + MYO(MOB − MBB). (2.14)

We have another three equilibria (1, 0, 0), (0, 1, 0), and (0, 0, 1) as the boundary equilibria (p̂O, p̂B, p̂Y).
Next we move to a genotypic model corresponding to the above phenotypic model by the genotypic

allele dominance rule in which an allele o dominates over two others, y and b, and an allele y dominates
b. In other words, genotypes oo, oy, and ob are phenotype O, genotypes yy and yb are phenotype Y ,
and genotype bb is phenotype B (Table 2).

Then phenotypic frequencies can be expressed by the genotypic frequencies gi j,n (i, j ∈ {o, y, b}) at
generation n as follows:

pO,n = goo,n + goy,n + gob,n, (2.15)
pY,n = gyy,n + gyb,n, (2.16)
pB,n = gbb,n. (2.17)

Therefore the fitness of each genotype becomes

WO = Woo = Woy = Wob, (2.18)
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Table 2. Allele dominance rule (I). An allele o is dominant to other alleles y and b, then three
genotypes oo, oy, and ob correspond to a phenotype O. An allele y is dominant to an allele b,
then two genotypes yy and yb correspond to a phenotype Y . An allele b is recessive to other
alleles, then only one genotype bb corresponds to a phenotype B.

Genotype Phenotype

oo, oy, ob → O

yy, yb → Y

bb → B

WY = Wyy = Wyb, (2.19)
WB = Wbb. (2.20)

Considering the above relationships of fitnesses and frequencies, first, the genotypic frequencies at
generation n change:

g̃i j,n =
Wi j

W
gi j,n (i, j ∈ {o, y, b}). (2.21)

Second, the allele frequencies f̃i (i ∈ {o, y, b}) at generation n are

f̃o,n = g̃oo,n +
1
2

g̃oy,n +
1
2

g̃ob,n, (2.22)

f̃y,n = g̃yy,n +
1
2

g̃yb,n +
1
2

g̃oy,n, (2.23)

f̃b,n = g̃bb,n +
1
2

g̃yb,n +
1
2

g̃ob,n. (2.24)

Third, assuming random mating gives the genotypic frequencies at generation n + 1, gi j,n+1 (i, j ∈
{o, y, b}) as

gi j,n+1 = 2 f̃i,n f̃ j,n if i , j, (2.25)
gii,n+1 = f̃ 2

i,n, (2.26)

then we can describe the above relations and dynamics (2.15)–(2.26) with only variables representing
the genotypic frequencies gi j,n(i, j ∈ {0, y, b}) as

goo,n+1 =

(WO

W

)2 (
goo,n +

1
2

goy,n +
1
2

gob,n

)2

, (2.27)

goy,n+1 = 2
WO

W

(
goo,n +

1
2

goy,n +
1
2

gob,n

)
×

{
WY

W

(
gyy,n +

1
2

gyb,n

)
+

1
2

WOgoy,n

W

}
, (2.28)

gob,n+1 = 2
WO

W

(
goo,n +

1
2

goy,n +
1
2

gob,n

)
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×

(
WBgbb,n

W
+

1
2

WYgyb,n

W
+

1
2

WOgob,n

W

)
, (2.29)

gyy,n+1 =

{
WY

W

(
gyy,n +

1
2

gyb,n

)
+

1
2

WOgoy,n

W

}2

, (2.30)

gyb,n+1 = 2
{

WY

W

(
gyy,n +

1
2

gyb,n

)
+

1
2

WOgoy,n

W

}
×

(
WBgbb,n

W
+

1
2

WYgyb,n

W
+

1
2

WOgob,n

W

)
, (2.31)

gbb,n+1 =

(
WBgbb,n

W
+

1
2

WYgyb,n

W
+

1
2

WOgob,n

W

)2

, (2.32)

where

WO = MOO(goo,n + goy,n + gob,n) + MOBgbb,n + MOY(gyy,n + gyb,n), (2.33)
WB = MBO(goo,n + goy,n + gob,n) + MBBgbb,n + MBY(gyy,n + gyb,n), (2.34)
WY = MYO(goo,n + goy,n + gob,n) + MYBgbb,n + MYY(gyy,n + gyb,n), (2.35)
W = WO(goo,n + goy,n + gob,n) + WBgbb,n + WY(gyy,n + gyb,n). (2.36)

Using the above equations, we can obtain the following relations:

goo,n+1 +
1
2

goy,n+1 +
1
2

gob,n+1 =
WO

W

(
goo,n +

1
2

goy,n +
1
2

gob,n

)
, (2.37)

gyy,n+1 +
1
2

gyb,n+1 +
1
2

goy,n+1 =
WY

W

(
gyy,n +

1
2

gyb,n

)
+

1
2

WO

W
goy,n, (2.38)

gbb,n+1 +
1
2

gyb,n+1 +
1
2

gob,n+1 =
WB

W
gbb,n +

1
2

WY

W
gyb,n +

1
2

WO

W
gob,n. (2.39)

At equilibrium, by eq.(2.37), we have
W = WO. (2.40)

By eq.(2.38) and eq.(2.40), we have
W = WY . (2.41)

By eqs.(2.39)–(2.41), we have
W = WB.

Therefore, because we also have the same relationships (2.8) for genetypic model, we have the same
phenotypic equilibrium (2.9)–(2.11) with eqs.(2.12)–(2.14) as the corresponding phenotypic model.

3. Stability condition for equilibrium (1/3, 1/3, 1/3)

The payoff matrix includes nine payoffs and is a little complicated. Following [8], we reduce it to
two values. We fix the values of the payoffs at 1 for the competitions between the same phenotypes, but
we also adopt the symmetric cases — namely, we give a larger payoff α > 1 to a stronger competitor
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Table 3. Payoff matrix with only two parameters. We obtain the same equilibrium fractions
of 1/3 for all three phenotypes. Parameter ranges are given by 0 < β < 1 < α.

Opponent Individual

Focal Individual O B Y

O 1 α β

B β 1 α

Y α β 1

and a smaller one β < 1 to a weaker competitor (Table 3), which results in the same equilibrium
fractions of 1/3 for all three phenotypes [9].

By using this reduced payoff matrix, eqs.(2.1)–(2.7) become

pO,n+1 =
(pO,n + αpB,n + βpY,n)pO,n

(pO,n + αpB,n + βpY,n)pO,n + (βpO,n + pB,n + αpY,n)pB,n + (αpO,n + βpB,n + pY,n)pY,n
,(3.1)

pB,n+1 =
(βpO,n + pB,n + αpY,n)pB,n

(pO,n + αpB,n + βpY,n)pO,n + (βpO,n + pB,n + αpY,n)pB,n + (αpO,n + βpB,n + pY,n)pY,n
,(3.2)

pY,n+1 =
(αpO,n + βpB,n + pY,n)pY,n

(pO,n + αpB,n + βpY,n)pO,n + (βpO,n + pB,n + αpY,n)pB,n + (αpO,n + βpB,n + pY,n)pY,n
.(3.3)

By eqs.(2.12)–(2.14),
M1 = M2 = M3 = α2 + β2 − (α + β + αβ) + 1,

so that an internal equilibrium (2.9)–(2.11) becomes

pO = pY = pB =
1
3
. (3.4)

The linearized system of eqs.(3.1)–(3.3) about an internal equilibrium (3.4) gives the following
Jacobian matrix:

1
3(1 + α + β)


4 + α + β −2 + α − 2β −2 − 2α + β

−2 − 2α + β 4 + α + β −2 + α − 2β

−2 + α − 2β −2 − 2α + β 4 + α + β

 .
Then the characteristic equation of the linearized system becomes

λ(λ2 + a1λ + a2) = 0,

where

a1 = −
4 + α + β

1 + α + β
, (3.5)

a2 =
4 + 2(α + β) + α2 + β2

(1 + α + β)2 . (3.6)

Mathematical Biosciences and Engineering Volume 17, Issue 2, 1479–1494.
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Jury conditions or Schur-Cohn criteria (e.g., [11]) for second-degree characteristic equations λ2 +a1λ+

a2 = 0 are known as
|a1| < 1 + a2 < 2. (3.7)

Because a1 < 0 from eq.(3.5), the left inequality of eq.(3.7) becomes −a1 < 1+a2, that is, a1+a2+1 > 0,
which holds by the calculation using eqs.(3.5)–(3.6):

a1 + a2 + 1 =
(1 − α)2 + (1 − β)2 + (α − β)2

2(1 + α + β)2 > 0.

The right inequality of eq.(3.7) 1 + a2 < 2, that is, a2 − 1 < 0, gives

αβ > 1. (3.8)

Notice that it is symmetric with respect to α and β; namely, eq.(3.8) does not change when α and β are
exchanged.

Indeed, it is known that eq.(3.8) becomes a globally asymptotic stable condition, which can be
checked using the Lyapunov function [9]. If eq.(3.8) does not hold, then we can observe the trajectory
of the heteroclinic cycle between three vertices in the triangular space for three phenotypic frequencies
[9] similar to the three-species Lotka-Volterra cyclic competition model [12] (See Figure 1(a) and (b)).
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Figure 1. Trajectories of phenotypic frequencies. (a)-(c) for eqs.(3.1)-(3.3), (d)-(f) for
eqs.(2.27)-(2.36) with Table 3. β is fixed to 0.3. α = 2 for (a) and (d), α = 3 for (b)
and (e), α = 4 for (c) and (f). Figure 2(a) tells us that internal equilibrium is unstable for (a),
(b) and (d), but stable for (c), (e) and (f). Colorbars indicate the time steps of the dynamics.

On the other hand, for a genotypic model, we get the following unique internal equilibrium by
eqs.(2.27)–(2.36):

goo =

(√
3 −
√

2
)2

2
, (3.9)

goy =
(√

3 −
√

2
) (√

2 − 1
)
, (3.10)
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gob =
2
3

(√
3 −
√

2
)
, (3.11)

gyy =
1
3

(√
2 − 1

)2
, (3.12)

gyb =
2
3

(√
2 − 1

)
, (3.13)

gbb =
1
3
. (3.14)

Of course,

pO = goo + goy + gob =
1
3
,

pY = gyy + gyb =
1
3
,

PB = gbb =
1
3
.

We can say that an internal equilibrium does not depend on the parameters α nor β on either the
phenotyic or genotypic models.

The characteristic equation of the linearized system of eqs.(2.27)–(2.32) with eqs.(2.33)–(2.36)
about an internal equilibrium (3.9)–(3.14) becomes

λ4(λ2 + a1λ + a2) = 0,

where

a1 = −
2
√

3
3(1 + α + β)

{(
2
√

2 + 2 −
√

3
)

+
(
2
√

3 −
√

2 − 1
)

(α + β)
}
, (3.15)

a2 =
1

(1 + α + β)2

[
8
√

2 − 11 + 4
√

3
(√

2 − 2
)

+
{
2
√

2
(
4 +
√

3
)
−

(
6
√

3 + 5
)}

(α2 + β2)

+ 2
{
4 + 3

√
3 −
√

2
(
4 +
√

3
)}

(α + β)

− 2
{
2
√

2
(
2 +
√

3
)
−

(
7 + 2

√
3
)}
αβ

]
. (3.16)

Noticing that a1 < 0 from eq.(3.15), the left inequality of eq.(3.7) holds because, using eqs.(3.15)–
(3.16),

a1 + a2 + 1

=
4
√

3
(√

3 −
√

2
) (√

2 − 1
)

3(1 + α + β)2

{
(1 − α)2 + (1 − β)2 + (α − β)2

}
> 0.

The right inequality of eq.(3.7) a2 − 1 < 0 becomes
√

2
(√

3 + 1
) (√

3 +
√

2
)

(αβ − 1) + α(α − 1) + β(β − 1) > 0, (3.17)

which is a quadratic inequation on α or β and is also symmetric with respect to α and β.
Figure 2(a) shows the local stability region obtained by eq.(3.8) and eq.(3.17). We can observe their

dynamics by numerical simulations (Figure 1).
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Figure 2. Stable and unstable region on parameter spaces of the equilibrium point (3.4)
for (a) allele dominance rule (I) and (b) allele dominance rule (II). α and β indicate payoffs
for strong and weak competitors, respectively. Green, red and yellow regions indicate sta-
ble for both phenotypic and genotypic models, stable for genotypic model but unstable for
phenotypic one and unstable for both phenotypic and genotypic models, respectively. Allele
dominance rule (II) has larger stability region than (I).

Table 4. Allele dominance rule (II). An allele o is dominant to an allele y, then two genotypes
oo and oy correspond to a phenotype O. An allele y is dominant to an allele b, then two
genotypes yy and yb correspond to a phenotype Y . An allele b is dominant to an allele o, then
two genotypes bb and ob correspond to a phenotype B.

Genotype Phenotype

oo, oy → O

yy, yb → Y

bb, ob → B

4. Cyclic allele dominance rule expands the stability region of the internal equilibrium

Common side-blotched lizards have an allele dominance rule (I), that is, an allele o for an orange
throat is the most dominant over others, an allele y for a yellow one is intermediate, and an allele b for
a blue one is the most recessive (Table 2). In other words, this allele dominance rule has three kinds of
alleles: most dominant, intermediate, and most recessive. We refer to these as o, y, and b, respectively.

Although perhaps we have not yet discovered it in realistic genetic systems, we can theoretically
consider another allele dominance rule (II), that is, all alleles having intermediate dominance: o dom-
inant over y, y over b, and b over o (Table 4). This rule could be called as a “cyclic allele dominance
rule.” Similarly, in this rule, we name these alleles o, y, and b, and any allele can be replaced by another
one.

A calculation for allele dominance rule (II) similar to that for allele dominance rule (I) reveals that

Mathematical Biosciences and Engineering Volume 17, Issue 2, 1479–1494.
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the boundary of local stability obtained from the Jury condition (3.7) is determined by

8(αβ − 1) + α(α − 1) + β(β − 1) = 0, (4.1)

which only differs from the first calculation in the smaller coefficient of αβ − 1 compared to eq.(3.17).
Figure 2(b) shows the local stability region by allele dominance rule (II) using eq.(4.1), which clearly
has a larger stability region than rule (I).

From a theoretical point of view, we should also consider the cases with the same allele dominance
rules but with different cyclic competitive strengths. Then another possible combination exists, that is,
Table 2 with α < 1 and β > 1. However, this combination gives the same stability regions as Figure
2(a) by the symmetry of the boundary equation (3.17) on the parameters α and β; eq.(3.17) does not
change when α and β are exchanged. On the other hand, it is trivial that no qualitative difference exists
between the two cases: Table 4 with α > 1 and β < 1 and Table 4 with α < 1 and β > 1.

5. Spatial simulation

Barreto et al. [8] showed the same stabilizing effect in a genetic system of lizards as the previous
section of this paper. Here we introduce a spatial structure into a phenotypic model and consider its
effects on population dynamics.

The phenotypic model includes two processes: competition and reproduction. When we add a
spatial structure into this model, we restrict the spatial range, both for the opponents against a focal
individual and for the dispersion of offspring by reproduction. When we set such a spatial restriction
as a whole or as a neighborhood, we consider four distinct cases: (a) global competition and global
dispersion, (b) global competition and local dispersion, (c) local competition and global dispersion,
and (d) local competition and local dispersion.

The Monte Carlo simulation procedures for the above four cases use the following algorithm (See
the C program code in the Electronic Supplementary Materials):

(i) We prepare a two-dimensional square lattice space, each-side with a size of 100, so that the total
number of sites on a whole lattice becomes N = 100× 100 = 10000. We use a periodic boundary
condition. The states O, Y , and B are randomly distributed according to the initial fractions:
(pO, pY , pB) = (0.3, 0.3, 0.4), respectively.

(ii) The first process is competition, which determines the payoffs after games against randomly cho-
sen opponents. All individuals experience this process. The payoffs for all the sites i (= 1, . . . ,N)
in a whole population with size N are determined in order; the site (`,m) with x-coordinate
` (` = 1, . . . , 100) and y-coordinate m (m = 1, . . . , 100) on the two-dimensional square lattice
is numbered (`− 1)× 100 + m. An individual I ∈ {O, B,Y} is included on the site i. Another site j
is randomly chosen in a whole population in the cases of (a) and (b) or, in the cases of (c) and (d),
in the nearest neighboring four individuals. An individual J ∈ {O, B,Y} is included on the site j.
Two individuals I and J compete and an individual I gets a payoff by a payoff matrix (Table 3).
All the payoffs are transferred to their offspring, and they are gathered in one offspring pool in
the cases of (a) and (c) or, in the cases of (b) and (d), in local offspring pools. Here, we use lower
cases for the sites and corresponding upper cases for the states of the individuals on those sites.
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(iii) The second process is dispersion, which gives positions of offspring selected from the offspring
pool. The model is discrete-generation: all individuals die, and the states at the next time steps for
all the sites i (= 1, . . . ,N) in a whole population with size N are replaced in order. For each site,
an individual is randomly chosen from a whole pool for (a) and (c) or from each local pool for (b)
and (d); this choice is made in proportion to the relative payoff against total payoffs in a whole
population in the cases of (a) and (c) or in the nearest neighboring four individuals in the cases of
(b) and (d). In other words, this random selection depends on WO

W , WY
W , and WB

W . After the previous
process (ii), all the individuals have their own payoffs. In the cases of (a) and (c), we can then
calculate W,WO,WY , and WB as the total payoffs for, respectively, a whole population, phenotype
O, phenotype Y , and phenotype B. In the cases of (b) and (d), we can obtain W,WO,WY , and
WB as the total payoffs for, respectively, a local population, phenotype O in the local population,
phenotype Y in the local population, and phenotype B in the local population. Here a local
population is restricted to individuals on five sites: the focal site and its nearest neighboring four
sites.

(iv) The above procedures (ii) and (iii) are repeated for 10000 (= 100 × 100) time steps for each pa-
rameter combination of α = 1, 1.05, 1.10, . . . , 5 and β = 0, 0.05, 0.10, . . . , 1. The repetition of the
simulations is 100 for each parameter combination, and we record the fraction of the coexistence
of the three phenotypes.

We show the results of the Monte Carlo simulation by the above algorithm in Figure 3. Case
(a) completely coincides with Figure 2(a). Case (b) gives a wider coexistence region due to local
dispersion. Case (c) has the same result as case (a) because the global dispersal produces the same
effect with random choices of opponents from the population. Case (d) shows coexistence in almost
all the simulations for the entire parameter space. Therefore, we can conclude that locally limited
interactions between individuals strongly promote the coexistence of all phenotypes.

In case (d), individuals with the same phenotypes tend to cluster and adopt collective behavior, so
changes of state occur only on the boundaries between these clusters, causing a slower change of total
population and stabilization (See Figure 4). Indeed [13] already reached such a conclusion from a
continuous-time cyclic competition model that also calculated the average domain size or boundary
length at a steady state. This spatial structure in the population is gradually produced by both local
competition and local dispersion, and, in turn, also gives different results in competition and dispersion,
either globally or locally.
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Figure 3. Phase diagram for coexistence and non-coexistence. Each parameter α or β is set
for every 0.05 increment. Initial values are given as (pO, pB, pY) = (0.3, 0.3, 0.4). Simula-
tion runs are repeated for 100 times for each parameter set and their fractions are shown by
continuous gradation between green and yellow. Green indicates coexistence until the end
of simulations. Yellow corresponds to non-coexistence in which one phenotype goes extinct,
and then an inferior phenotype disappears and ultimately only one phenotype survives, due
to finite size of the system. (Upper left panel) global competition and global dispersion; (Up-
per right panel) global competition and local dispersion; (Lower left panel) local competition
and global dispersion; (Lower right panel) local competition and local dispersion.

6. Discussion

Similar to [8], we show the difference between the phenotypic model and its corresponding geno-
typic model, but we can also give an explicit condition using a simplified system. In addition, we
investigate other allele dominance rules to clarify their effects on the stability of internal equilibrium
compared to the allele dominance rule observed in lizards. Unfortunately, however, we cannot specify
the mechanism by which the genotypic model stabilizes the system more than the phenotypic model.
To discover it, we need to find models other than cyclic competition in which the genotypic models
give different dynamic behaviors than the corresponding phenotypic models.

A recent proposal by [14] may have important implications for future work in this area. As they
point out, the present three-strategy payoff matrix can be built up as the sum of nine independent
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Fourier components, g(1), . . . , g(9), with orthogonality and normalization:
1 α β

β 1 α

α β 1

 = (1 + α + β) ·
1
3


1 1 1

1 1 1

1 1 1


+

√
2

2
(2 − α − β) ·

1
√

18


2 −1 −1

−1 2 −1

−1 −1 2


+

√
6

2
(β − α) ·

1
√

6


0 −1 1

1 0 −1

−1 1 0


= (1 + α + β)g(1) +

√
2

2
(2 − α − β)g(8) +

√
6

2
(β − α)g(9),

where we have g(1), g(8), and g(9) as irrelevant constant terms, a coordination (Potts) component
that equally favors the formation of one of the homogeneous states, and a cyclic (rock-paper-scissors)
component, respectively. This formulation may offer more detailed insights into dynamical behaviors
if we examine cases with various combinations of coefficients corresponding to the strengths of these
components.

Figure 4. Snapshot of spatial pattern by Monte Carlo simulation of phenotypic model on
two-dimensional square lattice space after some time. Both competition and dispersion occur
locally. We can observe that several dozens of same phenotypic individuals are clustering.
(Right panel) The whole spatial pattern with 1000×1000 lattice sites. (Left panel) The upper
left part of spatial pattern with 100×100 lattice sites. Colors indicate O, B,Y as orange, blue,
yellow, respectively. α = 2.0 and β = 0.3.
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The intuitive reason local competition and local dispersion both stabilize an internal equilibrium is
that several dozens of identical phenotypic individuals gather and adopt collective behavior, restricting
phenotypic changes on the boundary. To investigate their stabilization mechanisms in detail, we should
further rely on other kinds of analysis, especially spatial pattern formation, which may play an impor-
tant role in stabilizing the dynamics. So far, the concept of “vortex” has been proposed to characterize
the spatial pattern [15–17], and it has also been shown that clockwise or anti-clockwise rotating spiral
patterns with characteristic sizes emerge that yield finite size effects by cyclic competition models or
rock-paper-scissors games in physics [18–21] and evolutionary games [22,23]. More precisely, the co-
existence of three strategies transforms into one of the homogeneous states after a suitable relaxation
time if the characteristic length of patterns exceeds a threshold value comparable to the system size.
Here we use a small lattice space size (100 × 100) for Figure 3, but we should further investigate these
finite size effects using a larger lattice space, such as 1000 × 1000, as in Figure 4.

In this paper, we only show whether three phenotypes can coexist or not in the long run using a
Monte Carlo simulation. However, we can expect an internal equilibrium to be asymptotically stable
for the case of coexistence in larger Monte Carlo systems than in smaller ones (Figure 5).
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Figure 5. Time series of frequencies by Monte Carlo simulation of phenotypic model on
two-dimensional square lattice space. Both competition and dispersion occur locally. We
can confirm that fluctuations are due to the effect of finite size of lattice sites. The numbers
of lattice sites are (a) 1000 × 1000, (b) 100 × 100, (c) 10 × 10. All phenotypes survived after
2000 Monte Carlo steps in (a) and (b), but in (c) B went extinct around 70 generations by
chance, and then O died out almost inevitably (but not definitely because of finite system size)
because Y is stronger than O. Colors indicate O, B,Y as orange, blue, yellow, respectively.
Initial frequencies are (pO, pB, pY) = (0.3, 0.3, 0.4). α = 2.0 and β = 0.3.

Here we can only show the condition of the locally asymptotic stability of a genotypic model. We
expect that condition to be replaced by global stability, but we leave it as a future problem.

In addition, we would like to examine a genotypic model in a lattice space and clarify whether it
becomes more stable than a phenotypic model and to what degree its stability can be evaluated by, for
example, the return time of perturbation to an internal equilibrium.

Throughout this paper, we use only symmetric conditions of parameters to obtain global insights
into the dynamics, then we should study more complicated models with symmetry-breaking interac-
tions, including the parameter setting of [8], in future research.
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22. G. Szabó and G. Fáth, Evolutionary games on graphs, Phys. Rep., 46 (2007), 97–216.

23. A. Szolnoki, M. Mobilia, L. L. Jiang, et al., Cyclic dominance in evolutionary games: A review,
J. Royal Soc. Int., 11 (2014), 20140735.

c© 2020 the author, licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 17, Issue 2, 1479–1494.

http://creativecommons.org/licenses/by/4.0

	Introduction
	The phenotypic model and its corresponding genotypic model
	Stability condition for equilibrium (1/3,1/3,1/3)
	Cyclic allele dominance rule expands the stability region of the internal equilibrium
	Spatial simulation
	Discussion

