Citation: Zheng Ma, Zexin Xie, Tianshuang Qiu, Jun Cheng. Driving event-related potential-based speller by localized posterior activities: An offline study[J]. Mathematical Biosciences and Engineering, 2020, 17(1): 789-801. doi: 10.3934/mbe.2020041
[1] | U. Chaudhary, N. Birbaumer and A. Ramos-Murguialday, Brain-computer interfaces for communication and rehabilitation, Nat. Rev. Neurol., 12 (2016), 513-525. |
[2] | H. Azizollahi, M. Darbas, M. M. Diallo, et al., EEG in Neonates: Forward modeling and sensitivity analysis with respect to variations of the conductivity, Math. Biosci. Eng., 15 (2018), 905-932. |
[3] | A. Rezeika, M. Benda, P. Stawicki, et al., Brain-Computer Interface Spellers: A Review, Brain Sci., 8 (2018), 57. |
[4] | E. Donchin, K. M. Spencer and R. Wijesinghe, The mental prosthesis: Assessing the speed of a P300-based brain-computer interface, IEEE Trans. Rehabil. Eng., 8 (2000), 174-179. |
[5] | M. S. Treder and B. Blankertz, (C)overt attention and visual speller design in an ERP-based brain-computer interface, Behav. Brain Funct., 6 (2010), 28. |
[6] | M. Simic, M. Tariq and P. M. Trivailo, EEG-Based BCI Control Schemes for Lower-Limb Assistive-Robots, Front. Hum. Neurosci., 12 (2018), 312. |
[7] | J. Tang, Y. Liu, D. Hu, et al., Towards BCI-actuated smart wheelchair system, Biomed. Eng. Online, 17 (2018), 111. |
[8] | Q. T. Obeidat, T. A. Campbell and J. Kong, Spelling With a Small Mobile Brain-Computer Interface in a Moving Wheelchair, IEEE Trans. Neural Syst. Rehabil. Eng., 25 (2017), 2169-2179. |
[9] | D. Feess, M. M. Krell and J. H. Metzen, Comparison of Sensor Selection Mechanisms for an ERP-Based Brain-Computer Interface, Plos One, 8 (2013), e67543. |
[10] | V. Martinez-Cagigal, E. Santamaria-Vazquez and R. Hornero, A Novel Hybrid Swarm Algorithm for P300-Based BCI Channel Selection,World Congress on Medical Physics and Biomedical Engineering 2018, 41-45. Available from: https://link_springer.gg363.site/chapter/10.1007/978-981-10-9023-3_8#citeas. |
[11] | B. Perseh and A. R. Sharafat, An Efficient P300-based BCI Using Wavelet Features and IBPSO-based Channel Selection, J. Med. Signals Sens., 2 (2012), 128-143. |
[12] | J. Ruan, X. Wu, B. Zhou, et al., An Automatic Channel Selection Approach for ICA-Based Motor Imagery Brain Computer Interface, J. Med. Syst., 42 (2018), 253. doi: 10.1007/s10916-018-1106-3 |
[13] | T. Yu, Z. Yu, Z. Gu, et al., Grouped automatic relevance determination and its application in channel selection for P300 BCIs, IEEE Trans. Neural Syst. Rehabil. Eng., 23 (2015), 1068-1077. |
[14] | R. Lahiri, P. Rakshit and A. Konar, Evolutionary perspective for optimal selection of EEG electrodes and features, Biomed. Signal Process. Control, 36 (2017), 113-137. |
[15] | H. Cecotti, B. Rivet, M. Congedo, et al., A robust sensor-selection method for P300 brain-computer interfaces, J. Neural Eng., 8 (2011), 016001. |
[16] | M. Wang, R. Li, R. Zhang, et al., A Wearable SSVEP-Based BCI System for Quadcopter Control Using Head-Mounted Device, IEEE Access, 6 (2018), 26789-26798. doi: 10.1109/ACCESS.2018.2825378 |
[17] | S. L. Shishkin, I. P. Ganin, I. A. Basyul, et al., N1 Wave in the P300 BCI Is Not Sensitive to the Physical Characteristics of Stimuli, J. Integr. Neurosci., 8 (2009), 471-485. |
[18] | Z. Ma and T. Qiu, Performance improvement of ERP-based brain-computer interface via varied geometric patterns, Med. Biol. Eng. Comput., 55 (2017), 2245-2256. |
[19] | T. Kaufmann and A. Kubler, Beyond maximum speed-a novel two-stimulus paradigm for brain-computer interfaces based on event-related potentials (P300-BCI), J. Neural Eng., 11 (2014), 056004. |
[20] | J. Jin, I. Daly, Y. Zhang, et al., An optimized ERP brain-computer interface based on facial expression changes, J. Neural Eng., 11 (2014), 036004. |
[21] | L. Chen, J. Jin, Y. Zhang, et al., A survey of the dummy face and human face stimuli used in BCI paradigm, J. Neurosci. Methods, 239 (2015), 18-27. doi: 10.1016/j.jneumeth.2014.10.002 |
[22] | S. M. M. Martens, N. J. Hill, J. Farquhar, et al., Overlap and refractory effects in a brain-computer interface speller based on the visual P300 event-related potential, J. Neural Eng., 6 (2009), 026003. |
[23] | B. Hong, F. Guo, T. Liu, et al., N200-speller using motion-onset visual response, Clin. Neurophysiol., 120 (2009), 1658-1666. doi: 10.1016/j.clinph.2009.06.026 |
[24] | M. Ito, T. Sugata, H. Kuwabara, et al., Effects of angularity of the figures with sharp and round corners on visual evoked potentials, Jpn. Psychol. Res., 41 (1999), 91-101. |
[25] | S. Johannes, T. F. Münte, H. J. Heinze, et al., Luminance and spatial attention effects on early visual processing, Cognit. Brain Res., 2 (1995), 189-205. |
[26] | G. Schalk, D. McFarland, T. Hinterberger, et al., BCI 2000: A General-Purpose Brain-Computer Interface(BCI) System, IEEE Trans. Biomed. Eng., 51 (2004), 1034-1043. doi: 10.1109/TBME.2004.827072 |
[27] | D. J. Krusienski, E. W. Sellers, F. Cabestaing, et al., A comparison of classification techniques for the P300 Speller, J. Neural Eng., 3 (2006), 299-305. |
[28] | J. R. Wolpaw, N. Birbaumer, D. J. McFarland, et al., Brain-computer interfaces for communication and control, Clin. Neurophysiol., 113 (2002), 767-791. |
[29] | X. Wang, W. Bian and D. Tao, Grassmannian Regularized Structured Multi-View Embedding for Image Classification, IEEE Trans. Image Process., 22 (2013), 2646-2660. |
[30] | X. Wang, Z. Li and D. Tao, Subspaces Indexing Model on Grassmann Manifold for Image Search, IEEE Trans. Image Process., 20 (2011), 2627-2635. |
[31] | H. T. Banks, D. Rubio, N. Saintier, et al., Optimal design for parameter estimation in EEG problems in a 3D multilayered domain, North Carolina State University, Center for Research in Scientific Computation, 2014. Available from: https://repod.lib.ncsu.edu/bitstream/handle/1840.4/8583/crsc-tr14-02.pdf?sequence=1. |