Citation: Lijian Xu, Lekang Yin, Youjun Liu, Fuyou Liang. A computational study on the influence of aortic valve disease on hemodynamics in dilated aorta[J]. Mathematical Biosciences and Engineering, 2020, 17(1): 606-626. doi: 10.3934/mbe.2020031
[1] | J. B. Kim, M. Spotnitz, M. E. Lindsay, et al., Risk of aortic dissection in the moderately dilated ascending aorta, J. Am. Coll. Cardiol., 68(2016), 1209-1219. |
[2] | S. Verma and S. C. Siu, Aortic dilatation in patients with bicuspid aortic valve, N. Engl. J. Med., 370(2014), 1920-1929. |
[3] | E. M. Isselbacher, Thoracic and abdominal aortic aneurysms, Circulation, 111(2005), 816-828. |
[4] | P. W. Fedak, T. E. David, M. Borger, et al., Bicuspid aortic valve disease: recent insights in pathophysiology and treatment, Expert Rev. Cardiovasc. Ther.,3(2005), 295-308. |
[5] | M. Ferencik and L. A. Pape, Changes in size of ascending aorta and aortic valve function with time in patients with congenitally bicuspid aortic valves, Am. J. Cardiol., 92(2003), 43-46. |
[6] | R. S. Beroukhim, T. L. Kruzick, A. L. Taylor, et al., Progression of aortic dilation in children with a functionally normal bicuspid aortic valve, Am. J. Cardiol., 98(2006), 828-830. doi: 10.1016/j.amjcard.2006.04.022 |
[7] | T. A. Hope, M. Markl, L. Wigström, et al., Comparison of flow patterns in ascending aortic aneurysms and volunteers using four-dimensional magnetic resonance velocity mapping, J. Magn. Reson. Imag., 26(2007), 1471-1479. |
[8] | A. J. Barker, P. Ooij, K. Bandi, et al., Viscous energy loss in the presence of abnormal aortic flow, Magn. Reson. Med., 72(2014), 620-628. |
[9] | R. Mahadevia, A. J. Barker, S. Schnell, et al., Bicuspid aortic cusp fusion morphology alters aortic three-dimensional outflow patterns, wall shear stress, and expression of aortopathy, Circulation., 129(2014), 673-682. |
[10] | N. Saikrishnan, L. Mirabella and A. P. Yoganathan, Bicuspid aortic valves are associated with increased wall and turbulence shear stress levels compared to trileaflet aortic valves, Biomech. Model. Mechanobiol., 14(2015), 577-588. |
[11] | N. Saikrishnan, C. H. Yap, N. C. Milligan, et al., In vitro characterization of bicuspid aortic valve hemodynamics using particle image velocimetry, Ann. Biomed. Eng., 40(2012), 1760-1775. |
[12] | A. McNally, A. Madan and P. Sucosky, Morphotype-dependent flow characteristics in bicuspid aortic valve ascending aortas: a benchtop particle image velocimetry study, Front Physiol., 8(2017), 1-11. |
[13] | K. Cao, S. K. Atkins, A. McNally, et al., Simulations of morphotype-dependent hemodynamics in non-dilated bicuspid aortic valve aortas, J. Biomech., 50(2017), 63-70. |
[14] | K. Cao and P. Sucosky, Effect of Bicuspid aortic valve cusp fusion on aorta wall shear stress: Preliminary computational assessment and implication for aortic dilation, World J. Cardiovasc. Dis., 5(2015), 129-140. |
[15] | P. Youssefi, A. Gomez, T. He, et al., Patient-specific computational fluid dynamics-assessment of aortic hemodynamics in a spectrum of aortic valve pathologies, J. Thorac. Cardiovasc. Surg., 153(2017), 8-20. |
[16] | F. Condemi, S. Campisi, M. Viallon, et al., Fluid- and biomechanical analysis of ascending thoracic aorta aneurysm with concomitant aortic insufficiency, Ann. Biomed. Eng., 45(2017), 1-12. |
[17] | L. Goubergrits, R. Mevert, P. Yevtushenko, et al., The impact of mri-based inflow for the hemodynamic evaluation of aortic coarctation, Ann. Biomed. Eng., 41(2013), 2575-2587. |
[18] | D. Gallo, F. Negri, D. Tresoldi, et al., On the use of in vivo measured flow rates as boundary conditions for image-based hemodynamic models of the human aorta: Implications for indicators of abnormal flow, Ann. Biomed. Eng., 40(2012), 729-741. |
[19] | U. Morbiducci, R. Ponzini, D. Gallo, et al., Inflow boundary conditions for image-based computational hemodynamics: impact of idealized versus measured velocity profiles in the human aorta, J. Biomech., 46(2013), 102-109. |
[20] | S. Pirola, B. Guo, C. Menichini, et al., 4D flow MRI-based computational analysis of blood flow in patient-specific aortic dissection,IEEE Trans. Biomed. Eng., (2019), in press. |
[21] | S. Pirola, Z. Cheng, O. A. Jarral, et al., On the choice of outlet boundary conditions for patient-specific analysis of aortic flow using computational fluid dynamics, J. Biomech., 60(2017), 15-21. |
[22] | P. D. Stein and H. N. Sabbah, Turbulent blood flow in the ascending aorta of humans with normal and diseased aortic valves, Circ. Res., 39(1976), 58-65. |
[23] | A. F. Stalder, A. Frydrychowicz, M. F. Russe, et al., Assessment of flow instabilities in the healthy aorta using flow-sensitive MRI, J. Magn. Reson. Imag., 33(2011), 839-846. |
[24] | R. Mittal, S. P. Simmons and F. Najjar, Numerical study of pulsatile flow in a constricted channel, J. Fluid Mech., 485(2003), 337-378. |
[25] | C. Zhu, J. H. Seo and R. Mittal, Computational modelling and analysis of haemodynamics in a simple model of aortic stenosis, J. Fluid Mech., 851(2018), 23-49. |
[26] | N. H. Johari, N. B. Wood, Z. Cheng, et al., Disturbed flow in a stenosed carotid artery bifurcation: Comparison of RANS-based transitional model and LES with experimental measurements, Int. J. Appl. Mech., 11(2019), 4. |
[27] | R. Agujetas, C. Ferrera, A. C. Marcos, et al., Numerical and experimental analysis of the transitional flow across a real stenosis, Biomech. Model. Mechanobiol.,16(2017), 1447-1458. |
[28] | F. P. P. Tan, N. B. Wood, G. Tabor, et al., Comparison of LES of steady transitional flow in an idealized stenosed axisymmetric artery model with a RANS transitional model, ASME. J. Biomech. Eng., 133(2011), 051001. |
[29] | M. Andersson, T. Ebbers and M. Karlsson, Characterization and estimation of turbulence-related wall shear stress in patient-specific pulsatile blood flow, J. Biomech., 85(2019), 108-117. |
[30] | J. Lantz, T. Ebbers, J. Engvall, et al., Numerical and experimental assessment of turbulent kinetic energy in an aortic coarctation. J. Biomech., 46(2013), 1851-1858. |
[31] | S. Karimi, M. Dabagh, P. Vasava, et al., Effect of rheological models on the hemodynamics within human aorta: CFD study on CT image-based geometry, J. Non-Newton. Fluid Mech., 207(2014), 42-52. |
[32] | R. E. Collins, Flow of fluids through porous materials, (1976). |
[33] | J. O. Hinze, Turbulence. McGraw-Hill Publishing Co, (1975). |
[34] | F. Nicoud and F. Ducros, Subgrid-scale stress modelling based on the square of the velocity gradient tensor, Flow, Flow Turbul. Combust., 62(1999), 183-200. |
[35] | P. Youssefi, A. Gomez, C. Arthurs, et al., Impact of patient-specific inflow velocity profile on hemodynamics of the thoracic aorta, J. Biomech. Eng. Trans. ASME, 140(2018), 011002. |
[36] | L. Xu, F. Liang, L. Gu, et al., Flow instability detected in ruptured versus unruptured cerebral aneurysms at the internal carotid artery, J. Biomech., 72(2018), 187-199. |
[37] | Z. Zhang, L. Xu, R. Liu, et al., Importance of incorporating systemic cerebroarterial hemodynamics into computational modeling of blood flow in intracranial aneurysm, J. Hydrodyn., (2019), 1-14. |
[38] | J. Alastruey, J. H. Siggers, V. Peiffer, et al., Reducing the data: Analysis of the role of vascular geometry on blood flow patterns in curved vessels, Phys. Fluids, 24(2012), 031902. |
[39] | J. M. Dolan, J. Kolega and H. Meng, High wall shear stress and spatial gradients in vascular pathology: a review, Ann. Biomed. Eng., 41(2013), 1411-1427. |
[40] | D. Y. Lee, C. I. Lee, T. E. Lin, et al., Role of histone deacetylases in transcription factor regulation and cell cycle modulation in endothelial cells in response to disturbed flow, Proc. Natl. Acad. Sci. USA, 109(2012), 1967-1972. |
[41] | M. Cotrufo, A. Della Corte, L. S. De Santo, et al., Different patterns of extracellular matrix protein expression in the convexity and the concavity of the dilated aorta with bicuspid aortic valve: preliminary results, J. Thorac. Cardiovasc. Surg.,130(2005), 504-e1. |
[42] | M. Bauer, V. Gliech, H. Siniawski, et al., Configuration of the ascending aorta in patients with bicuspid and tricuspid aortic valve disease undergoing aortic valve replacement with or without reduction aortoplasty, J. Heart Valve Dis.,15(2006), 594-600. |
[43] | S. K. Atkins, K. Cao, N. M. Rajamannan, et al., Bicuspid aortic valve hemodynamics induces abnormal medial remodeling in the convexity of porcine ascending aortas, Biomech. Model. Mechanobiol., 13(2014), 1209-1225. |
[44] | F. Piatti, F. Sturla, M. M. Bissell, et al., 4D flow analysis of BAV-related fluid-dynamic alterations: Evidences of wall shear stress alterations in absence of clinically-relevant aortic anatomical remodeling, Front. Physiol., 8(2017), 441. |
[45] | M. Bonfanti, S. Balabani, M. Alimohammadi, et al., A simplified method to account for wall motion in patient-specific blood flow simulations of aortic dissection: Comparison with fluid-structure interaction, Med. Eng. Phys.,58(2018), 72-79. |
[46] | M. Alimohammadi, J. M. Sherwood, M. Karimpour, et al., Aortic dissection simulation models for clinical support: fluid-structure interaction vs. rigid wall models, Biomed. Eng. Online, 14(2015), 34. |
[47] | F. Y. Liang, S. Takagi, R. Himeno, et al., Biomechanical characterization of ventricular-arterial coupling during aging: a multi-scale model study, J. Biomech., 42(2009), 692-704. |