Citation: S. E. Abd El-Bar, F. A. Abd El-Salam. Photogravitational perturbations in the infinitesimal orbits around the libration points in the oblate RTBP[J]. Mathematical Biosciences and Engineering, 2019, 16(6): 8144-8161. doi: 10.3934/mbe.2019411
[1] | M. K. Ahmed, F. A. Abd El-Salam and S. E. Abd El-Bar, On the stability of the triangular Lagrangian equilibrium points in the relativistic restricted three-body problem, Am. J. Appl. Sci., 3 (2006), 1993–1998. |
[2] | C. N. Douskos, E. A. Perdios, On the stability of equilibrium points in the relativistic restricted three-body problem, Celest. Mech. Dyn. Astron., 82 (2002), 317–321. |
[3] | F. A. Abd El-Salam, S. E. Abd El-Bar, Formulation of the post-Newtonian equations of motion of the restricted three body problem, Appl. Math., 2 (2011), 155–164. |
[4] | F. A. Abd El-Salam, S. E. Abd El-Bar, Combined effects of oblatness and photogravitational perturbations of the stability of the equilibrium points in the relativistic RTBP, Can. J. Phys., 93 (2015), 300–311. |
[5] | F. A. Abd El-Salam, D. A. Katour, Relativistic restricted three body problem with oblatness and photo-gravitational corrections to triangular equilibrium points, Astrophys. Space Sci., 351 (2014), 143–149. |
[6] | F. A. Abd El-Salam, Stability of triangular equilibrium points in the elliptic restricted three body problem with oblate and triaxial primaries, Astrophys. Space Sci., 357 (2015), 1–9. |
[7] | R. Duncombe, V. Szebehely, Methods of Astrodynamics and Celestial Mechanics, New York: Academic press, 1966. |
[8] | D. L. Richardson, Analytic construction of periodic orbits about the collinear points, Celest. Mech. Dyn. Astron., 22 (1980), 241–253. |
[9] | B. T. Barden, K. C. Howell, Fundamental motions near collinear libration points and their transitions, J. Astronaut. Sci., 46 (1998), 361–378. |
[10] | K. C. Howell, Families of orbits in the vicinity of the collinear libration points, J. Astronaut. Sci., 49 (2001), 107–125. |
[11] | G. Gómez, J. Masdemont and C. Simo, Quasihalo orbits associated with libration points, J. Astronaut. Sci., 46 (1998), 135–176. |
[12] | G. Gómez, A. Jorba, J. Masdemont, et al., Study of the transfer between halo orbits, Acta Astronaut., 43 (1998), 493–520. |
[13] | D. Selaru, C. Cucu-Dumitrescu, Infinitesimal orbit around Lagrange points in the elliptic restricted three body problem, Celest. Mech. Dyn. Astron., 61 (1995), 333–346. |
[14] | F. Namouni, C. D. Murray, The effect of eccentricity and inclination on the motion near the Lagrangian points L4 and L5, Celest. Mech. Dyn. Astron., 76 (2000), 131–138. |
[15] | M. Corbera, J. Llibre, Periodic orbits of a collinear restricted three-body problem, Celest. Mech. Dyn. Astron., 86 (2003), 163–183. |
[16] | A. Hamdy, M. K. Ahmed, M. Radwan, et al., Infinitesimal orbits around the libration points in the elliptic restricted three body problem, Earth, Moon, Planets, 93 (2003), 261–273. |
[17] | F. A. Abd El-Salam, Periodic and degenerate orbits around the equilibrium points in the relativistic restricted three-body problem, Iran. J. Sci. Technol. A, 43 (2018), 173–192. |
[18] | A. H. Ibrahim, M. N. Ismail, A. S. Zaghrout, et al., Orbital motion around the collinear libration points of the restricted three-body problem, JAMCS, 29 (2018), 1–16. |
[19] | R. D. Tiwary, V. K. Srivastava and B. S. Kushvah, Computation of three-dimensional periodic orbits in the Sun-Earth system, Phys. Astron. Int. J., 2 (2018), 98–107. |
[20] | R. D. Tiwary, B. S. Kushvah, Computation of halo orbits in the photogravitational Sun-Earth System with oblateness, Astrophys. Space Sci., 357 (2015), 73. |
[21] | M. Delva, Integration of the elliptic restricted three-body problem with Lie series. Celest. Mech. Dyn. Astron., 34 (1984), 145–154. |
[22] | A. Hanslmeier, Application of Lie-Series to regularized problem in celestial mechanics, Celest. Mech. Dyn. Astron., 34 (1984), 135–143. |
[23] | A. Mittal, Md. S. Suraj and R. Aggarwal, The analysis of periodic orbits generated by Lagrangian solutions of the restricted three-body problem with non-spherical primaries, New Astron., 74 (2020), 101287. |
[24] | H. Peng, J. Zhao, Z. Wu, et al., Optimal periodic controller for formation flying on libration point orbits, Acta Astronaut., 69 (2011), 537–550. |
[25] | H. Peng, X. Jiang and B. Chen, Optimal nonlinear feedback control of spacecraft rendezvous with finite low thrust between libration orbits, Nonlinear Dyn., 76 (2014), 1611–1632. |
[26] | Y. Jiang, Equilibrium points and orbits around asteroid with the full gravitational potential caused by the 3D irregular shape, Astrodyn., 2 (2018), 361–373. |
[27] | X. Wang, H. Peng, A symplectic moving horizon estimation algorithm with its application to the Earth-Moon L2 libration point navigation, Astrodyn., 3 (2019), 137–153. |
[28] | F. A. Abd El-Salam, D. A. Katour and M. O. Shaker, On the equilibrium point L1 in the photogravitational oblate relativistic R3BP with application on Sun-planet systems, Eur. Phys. J. Plus, 130 (2015), 54. |
[29] | F. A. Abd El-Salam and S. E. Abd El-Bar, On the collinear point L3 in the generalized relativistic R3BP, Eur. Phys. J. Plus, 130 (2015), 234. |
[30] | F. A. Abd El-Salam and S. E. Abd El-Bar, The photogravitational and oblateness effects in the location of collinear point L2 in the relativistic R3BP, Sylwan, 158 (2014), 126–149. |