Citation: Zigen Song, Jian Xu, Bin Zhen. Mixed-coexistence of periodic orbits and chaotic attractors in an inertial neural system with a nonmonotonic activation function[J]. Mathematical Biosciences and Engineering, 2019, 16(6): 6406-6425. doi: 10.3934/mbe.2019320
[1] | A. N. Pisarchik and U. Feudel, Control of multistability, Phys. Rep., 540(2014), 167–218. |
[2] | E. V. Felk, A. P. Kuznetsov and A. V. Savin, Multistability and transition to chaos in the degenerate Hamiltonian system with weak nonlinear dissipative perturbation, Physica A, 410(2014), 561–572. |
[3] | Z. G. Song and J. Xu, Codimension-two bursting analysis in the delayed neural system with external stimulations, Nonlinear Dyn., 67(2012), 309–328. |
[4] | J. L. Schwartz, N. Grimault, J. M. Hupé, et al., Multistability in perception: sensory modalities, an overview, Philos. Trans. R. Soc. B, 367(2012), 896–905. |
[5] | P. A. Tass and C. Hauptmann, Therapeutic modulation of synaptic connectivity with desynchronizing brain stimulation, Int. J. Psychophysiol., 64(2007), 53–61. |
[6] | F. Fröhlich and M. Bazhenov, Coexistence of tonic firing and bursting in cortical neurons, Phys. Rev. E, 74(2006), 031922. |
[7] | H. A. Lechner, D. A. Baxter, J. W. Clark, et al., Bistability and its regulation by serotonin in the endogenously bursting neuron R15 in Aplysia, J. Neurophysiol., 75(1996), 957–962. |
[8] | J. P. Newman and R. J. Butera, Mechanism, dynamics and biological existence of multistability in a large class of bursting neurons, Chaos, 20(2010), 023118. |
[9] | J. Foss, A. Longtin, B. Mensour, et al., Multistability and delayed recurrent loops, Phys. Rev. Lett. 76(1996), 708–711. |
[10] | C. Masoller, M. C. Torrent and J. García-Ojalvo, Dynamics of globally delay-coupled neurons displaying subthreshold oscillations, Phil. Trans. R. Soc. A, 367(2009), 3255–3266. |
[11] | N. Buric and D. Rankovic, Bursting neurons with coupling delays, Phys. Lett. A, 363(2007), 282–289. |
[12] | N. Buric, I. Grozdanovic and N. Vasovic, Excitable systems with internal and coupling delays, Chaos Solit. Fract., 36(2008), 853–861. |
[13] | Z. G. Song, K. Yang, J. Xu, et al., Multiple pitchfork bifurcations and multiperiodicity coexistences in a delay-coupled neural oscillator system with inhibitory-to-inhibitory connection, Commun. Nonlinear Sci. Numer. Simulat., 29(2015), 327–345. |
[14] | X. Mao, Bifurcation, synchronization, and multistability of two interacting networks with multiple time delays, Int. J. Bifurcat. Chaos, 26(2016), 1650156. |
[15] | X. Mao and Z. Wang, Stability switches and bifurcation in a system of four coupled neural networks with multiple time delays, Nonlinear Dyn., 82(2015), 1551–1567. |
[16] | M. S. Baptista, R. M. Szmoski, R. F. Pereira, et al., Chaotic, informational and synchronous behaviour of multiplex networks, Sci. Rep., 6(2016), 22617. |
[17] | G. He, L. Chen, K. Aihara, Associative memory with a controlled chaotic neural network, Neurocomputing, 71(2008), 2794–2805. |
[18] | X. S Yang and Y. Huang, Complex dynamics in simple Hopfield neural networks, Chaos, 16(2006), 033114. |
[19] | W. Z. Huang and Y. Huang, Chaos, bifurcation and robustness of a class of Hopfield neural networks, Int. J. Bifurcat. Chaos, 21(2011), 885–895. |
[20] | X. S. Yang and Q. Yuan, Chaos and transient chaos in simple Hopfield neural networks, Neurocomputing, 69(2005), 232–241. |
[21] | C. G. Li and G. R. Chen, Coexisting chaotic attractors in a single neuron model with adapting feedback synapse, Chaos Solit. Fract., 23(2005), 1599–1604. |
[22] | C. Li and J. C. Sprott, Coexisting hidden attractors in a 4-D simplified Lorenz system, Int. J. Bifurcat. Chaos, 24(2014), 1450034. |
[23] | J. Kengne, Z. T. Njitacke, A. Nguomkam Negou, et al., Coexistence of multiple attractors and crisis route to chaos in a novel chaotic Jerk circuit, Int. J. Bifurcat. Chaos, 26(2016), 1650081. |
[24] | Z. T. Njitacke, J. kengne, H. B. Fotsin, et al., Coexistence of multiple attractors and crisis route to chaos in a novel memristive diode bidge-based Jerk circuit, Chaos Solit. Fract., 91(2016), 180–197. |
[25] | J. Kengne, Z. Njitacke Tabekoueng and H. B. Fotsin, Coexistence of multiple attractors and crisis route to chaos in autonomous third order Duffing–Holmes type chaotic oscillators, Commun. Nonlinear Sci. Numer. Simulat., 36(2016), 29–44. |
[26] | B. C. Bao, Q. D. Li, N. Wang, et al., Multistability in Chua's circuit with two stable node-foci, Chaos, 26(2016), 043111. |
[27] | J. Kengne, Z. Njitacke Tabekoueng, V. Kamdoum Tamba, et al., Periodicity, chaos, and multiple attractors in a memristor-based Shinriki's circuit, Chaos, 25(2015), 103126. |
[28] | A. P. Kuznetsov, S. P. Kuznetsov, E. Mosekilde, et al., Co-existing hidden attractors in a radio-physical oscillator, J. Phys. A: Math. Theor., 48(2015), 125101. |
[29] | A. Massoudi, M. G. Mahjani and M. Jafarian, Multiple attractors in Koper–Gaspard model of electrochemical, J. Electroanalyt. Chem., 647(2010), 74–86. |
[30] | C. Y. Cheng, Coexistence of multistability and chaos in a ring of discrete neural network with delays, Int. J. Bifurcat. Chaos, 20(2010), 1119–1136. |
[31] | J. Li, F. Liu, Z. H. Guan, et al., A new chaotic Hopfield neural network and its synthesis via parameter switchings, Neurocomputing, 117(2013), 33–39. |
[32] | W. C. Schieve, A. R. Bulsara and G. M. Davis, Single effective neuron, Phys. Rev. A, 43(1991), 2613–2623. |
[33] | K. L. Badcock and R. M. Westervelt, Dynamics of simple electronic neural networks, Physical D, 28(1987), 305–316. |
[34] | D. W. Wheeler and W. C. Schieve, Stability and chaos in an inertial two-neuron system, Physical D, 105(1997), 267–284. |
[35] | Q. Liu, X. F. Liao, S. T. Guo, et al., Stability of bifurcating periodic solutions for a single delayed inertial neuron model under periodic excitation, Nonlinear Anal. Real World Appl., 10(2009), 2384–2395. |
[36] | Q. Liu, X. F. Liao, Y. Liu, et al., Dynamics of an inertial two-neuron system with time delay, Nonlinear Dyn., 58(2009), 573–609. |
[37] | Z. G. Song and J. Xu, Stability switches and Bogdanov–Takens bifurcation in an inertial two-neurons coupling system with multiple delays, Sci. China Tech. Sci., 57(2014), 893–904. |
[38] | Z. G. Song, J. Xu and B. Zhen, Multitype activity coexistence in an inertial two-neuron system with multiple delays, Int. J. Bifurcat. Chaos, 25(2015), 1530040. |
[39] | B. Crespi, Storage capacity of non-monotonic neurons, Neural Netw., 12(1999), 1377–1389. |
[40] | S. Yao, L. Ding, Z. Song, et al., Two bifurcation routes to multiple chaotic coexistence in an inertial two-neural system with time delay, Nonlinear Dyn., 95(2019), 1549–1563. |
[41] | Y. C. Lai and T. Tel, Transient Chaos: Complex Dynamics on Finite-Time Scales, Springer, New York, 2011. |