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Abstract: In this paper, we construct an inertial two-neuron system with a non-monotonic activation 

function. Theoretical analysis and numerical simulation are employed to illustrate the complex 

dynamics. It is found that the neural system exhibits the mixed coexistence with periodic orbits and 

chaotic attractors. To this end, the equilibria and their stability are analyzed. The system parameters 

are divided into some regions with the different number of equilibria by the static bifurcation curve. 

Then, employing some numerical simulations, including the phase portraits, Lyapunov exponents, 

bifurcation diagrams, and the sensitive dependence to initial values, we find that the system 

generates two coexisting single-scroll chaotic attractors via the period-doubling bifurcation. Further, 

the single-scroll chaos will evolve into the double-scroll chaotic attractor. Finally, to view the global 

evolutions of dynamical behavior, we employ the combined bifurcation diagrams including 

equilibrium points and periodic orbits. Many types of multistability are presented, such as the 

bistable periodic orbits, multistable periodic orbits, and multistable chaotic attractors with multi- 

periodic orbits. The phase portraits and attractor basins are shown to verify the coexisting attractors. 

Additionally, transient chaos in neural system is observed by phase portraits and time histories. 

Keywords: inertial neuron system; nonmonotonic activation function; multistability; attractor 

merging crisis; period-doubling bifurcation; transient chaos 
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1. Introduction  

The coexistence of many attractors for a given set of parameters, called as multistability, is one 

of the most interesting phenomena in dynamical systems [1]. It can be found in the different 

scientific fields, such as biology, physics, chemistry, and even economics. The long-term behavior of 

a multistable system depends crucially on external perturbations and initial conditions. A slight 

change of parameters will cause the final state of system dynamics to exhibit a facile switching 

between the different stable states. This provides a great flexibility in system function [2].  

In neural systems, multistability is represented by the coexistence of some firing patterns, such 

as silence, spiking, bursting, and chaos [3]. Perceptual illusion of visual and auditory senses can be 

illuminated in terms of multistability [4]. Parkinson’s disease may be treated by switching neuron 

activities from the synchrony to asynchrony state, which is a bistability [5]. In cortical neurons, sleep 

and wakefulness are reflected as different spiking and bursting [6]. The R15 neuron in Aplysia was 

found to exhibit the coexistence of periodic spiking, bursting, and chaos [7]. Further, some 

theoretical models were constructed to study the neural multistability [8]. For example, the integrate- 

and-fire and Hodgkin-Huxley neuron models displayed multiple types of spike trains [9, 10]. Buric et 

al. found that the delayed Hindmarsh-Rose/FitzHugh-Nagumo neural system had the coexistence of 

a rest state and periodic activity [11,12]. Song et al. [13] found that the delay-coupled neural 

oscillator system with inhibitory-to-inhibitory connection exhibited the coexistence with multiple 

equilibria and multi-periodicities. Recently, some coexistence with equilibria and oscillations [14] 

and coexistence with synchronous/asynchronous oscillations [15] were exhibited in the coupled 

neural network system constituted of individual sub-networks.  

It is evident that the brain system generates chaotic behaviors played an important role in 

information processing [16]. In addition, chaotic behavior in artificial neural networks has a valuable 

application in optimization, associative memory, and cryptography [17]. There are some, though not 

too many, neural network systems with multiple chaotic attractors. For example, the three-neuron 

Hopfield network with self- and neighbor-connection presented two coexisting chaotic attractors with 

symmetrical pattern. For the different connection weights, the neural system exhibited two coexisting 

chaotic attractors [18,19] and two coexisting transient chaos [20]. The dynamic behavior of the single 

neuron system with sinusoidal signal input was studied by Li and Chen [21], in which the neural 

system displayed two coexisting chaotic attractors and evolved into a connected chaotic attractor.  

Recently, chaotic coexistence with some mixed-type of stable steady states have drawn an 

increasing attention and have been reported in various dynamical systems, including Lorenz 

system [22], Jerk circuit system [23,24], Duffing–Holmes system [25], Chua’s circuit system [26], 

Shinriki’s circuit system [27], a radio-physical oscillator system [28], electrochemical reaction 

system [29], etc. However, to the best of our knowledge, there are few studies on a neural network 

system having mixed coexistence with periodic orbits and chaotic attractors. Cheng [30] proposed a 

ring of discrete-time neural networks with self-feedback and non-monotonic activation function. The 

coexistence of multiple equilibria and chaotic dynamics was obtained. For continuous-time neural 

networks, Li et al. [31] presented a Hopfield neural network, which can display the coexistence of a 

periodic orbit and a chaotic attractor.  

Motivated by this consideration, in this paper a simple inertial two-neural system with a 

non-monotonic activation function is proposed. Numerical simulations illustrate that the proposed 

neural system displays the mixed-type of coexistence with multiple periodic orbits and chaotic 
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attractors. Increasing the neighbor-connection weight, a pair of chaotic behaviors is obtained by the 

period-doubling bifurcation of the periodic orbit, which comprise the two-coexisting attractors. 

Furthermore, in this evolutionary process, multiple pairs of periodic orbits are presented in sequence 

by the Hopf bifurcation of the nontrivial equilibria, and they evolve into chaotic behavior via the 

period-doubling bifurcation. The neural system exhibits the mixed coexistence of periodic orbits and 

chaotic attractors, such as the bistable period orbits, multistable periodic orbits, and multistable 

chaotic attractors with multi-periodic orbits.  

The rest of this paper is organized as follows. In the next section, the simple two-neuron 

network system with a non-monotonic activation function is proposed. Some basic properties are 

analyzed, including the number of equilibria and their parameter regions. The system exhibits 

multiple equilibria through the static bifurcation of trivial and nontrivial equilibria. Employing some 

numerical simulations, we find that the neural system generates two coexisting single-scroll chaotic 

attractors by the period-doubling bifurcation. Furthermore, with the increase of the neighbor- 

connection weight, the coexisting single-scroll attractors evolve into a double-scroll chaotic attractor 

by the attractor merging crisis, which is main focus of Section 3. In Section 4, the detailed 

bifurcation diagrams and corresponding attractor basins are proposed to illustrate the dynamical 

evolution from two coexisting sinks; to two, four, and six coexisting periodic orbits; and then to 

coexisting single-scroll chaotic attractors. The neural system exhibits the mixed coexistence of 

periodic orbits and chaotic attractors. Finally, transient chaos is observed in neural system by phase 

portraits and time histories. Conclusions and discussions are given in Section 6.  

2. Model and its equilibrium 

Modeling the biological neural system has attracted considerable attention in engineer, physics, 

and mathematics as Hopfield proposed a simplified network system. However, to avoid the difficulty 

of theoretical analysis, Schieve et al. [32] presented the concept of the effective neuron to simplify 

the larger Hopfield network. The previous researches illustrate that few-neuron network system 

exhibits the similar complex behaviors as larger networks. In fact, two-neuron coupled systems are 

sometimes viewed as the nonlinear dynamical system with two modules, where each module 

represents the mean activity of spatially localized neural populations.  

In inertial neural model, inertial term is introduced from the equivalent RLC (resistance– 

inductance–capacitance) circuit system. Babcock and Westervelt [33] presented a neural model by 

combining inertial term into a single effective neuron. They presented chaos activity in a two-neuron 

coupled system. Wheeler and Schieve [34] discussed equilibrium and chaos in a two-neuron model 

with inertial terms. Liu et al. [35,36] obtained the dynamical behaviors in the inertial neural model 

systems. Recently, an inertial two-neural system was established to show the stable coexistence [37] 

and find some mixed types of periodic orbits, such as period-1, period-2, period-3, and even 

quasi-period orbits [38]. Based on the above mentioned references, in this paper, we found the 

inertial coupled system with two neurons, which is described by the following differential equation. 

It should be noticed that the presented neural system model can be used to reconstruct the neural 

activity of one neuron or neural population. Further, the kinds of neural activity can be simulated by 

the electric circuit, which is an important tool to solve some complicated problems by using neural 

computation properties.  
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where x and y represent the neural activations; k1, k2 > 0 denote the damping factors; and c1 and c2 

are the connection strengths.  

The neural activation function considered in the paper is chosen as 
2

( ) exp( / 2)f u u u  , 

which is called as Crespi function [21,39]. It is a bound, differentiable and nonmonotonic function. 

The graph is plotted in Figure 1. Furthermore, system (1) is symmetric with respect to the original 

point via the coordinate transformation (x, y) → (− x, − y). It should be noticed that the activation 

function has an essential role in neural dynamics. Different activation functions may induce the 

different neural computation properties. To obtain many kinds of the stable patterns and chaotic 

dynamics, some nonmonotonic activation functions are introduced, which is demand for the neural 

network application. In fact, associative memory storage is defined by the coexistence of multiple 

stable equilibria and periodic orbits. Further, chaos behavior in neural systems plays an important 

role in optimization problem and associative memory.  

 

(a)                        (b) 

Figure 1. Graph of (a) the neural activation function f (u) and (b) the derivative function f ʹ(u). 

Employing 1 2,x x x x   and 1 2,y y y y  , we obtain the following equivalent system: 
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                            (2) 

It is obvious that system (2) has the trivial equilibrium E0 (0, 0, 0, 0). Furthermore, the nontrivial 

equilibrium E 1 1 0 0)( , , ,x y  is satisfied with the following equations through the equations 

1 1 2
0, 0, 0,x y x    and 2

0y  , that is 
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                                  (3) 
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Solutions of Eq (3), i.e., the equilibria of system (2), depend only on parameters c1 and c2 but are 

independent of k1 and k2. The curves determined by Eq (3) are called as the nullclines of dynamical 

system. The equilibria are the intersection points of two nullcline curves. For the different parameter 

values, the neural system has the different number of equilibria, as shown in Figure 2.  

 

(a)                               (b) 

 

(c)                               (d) 

Figure 2. Intersection points of two curves given by Eq (3), showing the number of 

equilibria with (a) c2 = 0.1, (b) c2 = 1, (c) c2 = 3.5, and (d) c2 = 5 for the fixed parameter 

c1 = 5 in system (2) [40].  

Inserting 
2

( ) exp( / 2)f u u u   into Eqs (3) and eliminating y1, we have [40] 

2
12 2 2

1 2 1 1 2exp( / 2)exp( / 2) 0.
x

x c x e c c


                    (4) 

In fact, Eq (4) is a complicated transcendental equation that cannot be solved in a theoretical form. 

However, for the given system parameters c1 and c2, the number and value can be obtained by 

numerical methods. Figure 3(a) shows the parameter regions in the (c1, c2) plane, where the system 

has a different number of equilibria, including trivial and nontrivial equilibria. Furthermore, it 

follows from bifurcation theory that the critical value of the equilibrium’s number corresponds to the 

typical static bifurcation. To this end, by linearizing system (2) at the equilibrium E 1 1 0 0)( , , ,x y , 

one has the characteristic equation 
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4 3

1 2 1 2 1 2 1 0

2

2 0( ) (2 ) ( ) 1 0,k k k k k k c c p q                   (5) 

where 0 1 0 1) ( )( ,f fp x q y   . System (2) exhibits a static bifurcation if an eigenvalue passes 

through the imaginary axis along the real axis. Therefore, letting λ = 0 in Eq (5), we have 

1 2 0 01 0,c c p q                                 (6) 

which is the critical value of the static bifurcation for the trivial and nontrivial equilibria. Actually, 

the simplified static bifurcation for the trivial equilibrium is c1c2 = 1 by inserting x1 = 0 and y1 =0 

into Eq (6). Figure 3(b) shows all static bifurcations for the trivial and nontrivial equilibria. It implies 

that the boundary curve of the parameter region with one and three equilibria is the static bifurcation 

curve of the trivial equilibrium, i.e., c1c2 = 1. The two bifurcation curves for the nontrivial equilibria 

are the boundaries between the regions having three and seven equilibria, which are terminated at the 

location of the cusp bifurcation point, a codimension-2 bifurcation [40].  

  

(a)                                (b) 

Figure 3. (a) Static bifurcation curves dividing the parameter (c1, c2) plane into different 

regions, with one equilibrium in the blue region, three in the green, and seven in the red, 

where (b) is an enlargement of (a). Region boundaries are the static bifurcation curves of 

the trivial and nontrivial equilibria. 

3. Chaotic coexistence and its attractor merging crisis 

In this section, we illustrate chaos and its coexistence in neural system (2). The Matlab ode45 

method is used in the numerical simulation to solve differential equations. The result shows that the 

two-coexisting chaos can evolve into a double-scroll chaotic attractor. So, we firstly fix the system 

parameters as k1 = 1, k2 = 1.6, c1 = 5, and c2 = 14. System (2) exhibits the two-coexisting chaotic 

behaviors with a single-scroll attractor. The three-dimensional projections of phase portraits on x1 – 

x2 – y1 and y1 – x2 – y2 are shown in Figure 4, where the right attractor (in red) is constructed with the 

initial condition (1, 1, 0, 0) and the left (in blue) with (−1, −1, 0, 0).  

The prominent property of a chaotic attractor is sensitive dependence on initial condition. When 

a system exhibits chaotic behavior, a slight difference in the initial trajectory will cause a distinct 

difference in its final trajectory. Figure 5 illustrates the sensitivity by comparing the different 

trajectories with initial conditions (1, 1, 0, 0) (in red) and (1.01, 1, 0, 0) (in blue). It follows that the 
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two time histories are almost the same at the beginning, but after some time the difference between 

them starts growing rapidly. This means that system (2) has a sensitive dependence on initial 

conditions, i.e. the trajectory is a chaos solution.  

 

(a)                              (b) 

Figure 4. Three-dimensional projections of two coexisting single-scroll chaotic attractors 

on (a) x1 – x2 – y1 and (b) y1 – x2 – y2 with k1 = 1, k2 = 1.6, c1 = 5, and c2 = 14, where the 

right attractor (red) is constructed with initial value (1, 1, 0, 0) and the left (blue) with 

(−1, −1, 0, 0). 

 

 

 

 

Figure 5. Sensitive dependence on initial conditions, where red lines are the time 

histories for initial conditions (1, 1, 0, 0) and blue are those for (1.01, 1, 0, 0). 
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Table 1. Equilibria and eigenvalues with fixed parameters k1 = 1, k2 = 1.6, c1 = 5, and c2 = 14. 

Symbol Equilibria Eigenvalues  Types 

E0 (0, 0, 0, 0) λ1 = 2.1453, λ2,3 = –0.6465 ± 2.9830i, λ4 = –3.4521 saddle-focus 

E1,2 (±0.2123, ±2.9072, 0, 0) λ1,2 = 0.3964 ± 1.2866i, λ3,4 = –1.6964 ± 1.2647i focus-focus 

E3,4 (±2.5266, ±1.4538, 0, 0) λ1 = 0.7213, λ2,3= –0.6380± 1.7259i, λ4 = –2.0452 saddle-focus 

E5,6 (±2.8187, ±0.7429, 0, 0) λ1,2 = 0.1605 ± 1.1070i, λ3,4 = –1.4605 ± 1.0739i focus-focus 

 

Figure 6. Lyapunov exponents of system (2) with the fixed parameters k1 = 1, k2 = 1.6, 

c1 = 5, c2 = 14, and initial value (1, 1, 0, 0). 

 

(a)                               (b) 

Figure 7. Bifurcation diagrams generated by Poincaré section x1 = 0 with initial value 

(±1, ±1, 0, 0) for c2∈(11, 16) showing the dynamic evolution from period to chaos by 

period-doubling bifurcation as c2 varies, where the other parameters are fixed as k1 = 1, 

k2 = 1.6, and c1 = 5. 

The Lyapunov exponent is used to characterize the degree of exponential 

divergence/convergence of trajectories arising from the nearby initial conditions. For a dynamical 

system, two trajectories (denoted as 0X  and 0 0 0X X X   ) starting from the nearby initial 

conditions have the distance 0 0 0( ), ( , )d X t X X t  by the Euclidean norm with time evolution. 

Then the mean rate of divergence of two close trajectories is given by  
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which is the Lyapunov exponent of a dynamical system. To calculate the Lyapunov exponent by 

numerical simulation, we just compute the system trajectories in a long finite-time and obtain the 

finite-time Lyapunov exponent. In fact, when the Lyapunov exponent in finite-time shows the 

convergence with time evolution, the calculated quantities can be regarded as the Lyapunov exponent 

of a dynamical system. The Lyapunov exponents of neural system (2) with initial value (1, 1, 0, 0) 

are LE1 = 0.071, LE2 = 0, LE3 = −1.289, and LE4 = −1.381, as shown in Figure 6. This implies that 

the attractor exhibits chaotic motion since the largest Lyapunov exponent is positive. Actually, from 

the analysis in Section 2, system (2) has seven equilibria. The corresponding characteristic equation 

has either a positive eigenvalue or a pair of complex conjugate eigenvalues with positive real parts, 

which is displayed in Table 1. It follows that all equilibria are unstable. 

 

 

(a)                               (b) 

 

(c)                               (d) 

Figure 8. Dynamic evolution from the two coexisting chaotic behaviors (a) c2 = 14 to the 

single two-scroll chaos (b) c2 = 16, where (c) and (d) are the three-dimensional projections of 

the two-scroll chaotic attractor. The other system parameters are fixed as k1 = 1, k2 = 1.6, and 

c1 = 5. 

 

For the fixed parameters k1 = 1, k2 = 1.6, and c1 = 5, the bifurcation diagrams with respect to 

c2∈(11, 16) are shown in Figure 7 with initial values (1, 1, 0, 0) (in red) and (–1, –1, 0, 0) (in 

blue), where the Poincaré section x1 = 0 is used for a clear presentation. It is found that system (2) 

evolves into chaos behavior employing the period-doubling bifurcation. Actually, for c2 = 11, 
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system (2) just exhibits two coexisting period-1 orbits. The system trajectory just converges into two 

points in the Poincaré section. With increasing c2, the period-1 behaviors evolve into the period-2 

orbits by the period-doubling bifurcation. A further increase of c2 causes the double-periodic 

behaviors to lose their stability and give rise to orbits with period 4, 8, and etc.  

Finally, the system exhibits two coexisting chaotic behaviors, as shown in Figure 8(a) for c2 = 14. 

Interestingly, with further c2 evolution, the two coexisting chaotic behaviors generate into a single 

two-scroll chaotic attractor via the attractor merging crisis, see Figure 8(b) for c2 = 16. The 

three-dimensional projections of the phase portraits on x1–x2–y1 and y1–x2–y2 are shown in Figure 8c,d, 

respectively. It follows from Figure 9 that the maximum Lyapunov exponent changes from zero to a 

positive number as c2 increases, which is in very good agreement with the above dynamical evolution, 

from period to chaos via the period-doubling bifurcation. 

 

 

Figure 9. Lyapunov exponent of system (2) with respect to c2, showing the dynamical 

evolution from period to chaos for k1 = 1, k2 = 1.6, and c1 = 5.  

4. Coexisting attractors  

In this section, we will exhibit the global evolution of system dynamics and find the multiple 

attractors’ coexistence. To this end, the coupling weight c2 is chosen as the bifurcation parameter. For 

the different coupling weight c1, we show the bifurcation diagrams to find the dynamical mechanism 

of equilibrium and periodic orbit. To get a clear view, we just illustrate one branch for each Hopf 

bifurcation. The other parameters are fixed as k1 = 1 and k2 = 1.6. It follows from Figure 10 that 

system (2) exhibits multiple equilibria coexistence by the pitchfork/saddle-node bifurcation of the 

trivial/nontrivial equilibrium. The coexisting periodic orbit is obtained by the Hopf bifurcation (HB) 

of the nontrivial equilibrium.  

In Figure 10(a), the neural system just has the pitchfork bifurcation (PB) of the trivial 

equilibrium, which induces two coexisting nontrivial equilibria. The two-coexisting periodic orbit is 

obtained by the Hopf bifurcation of the nontrivial equilibrium labeled as HB in Figure 10(a). When 

the coupling weight is fixed as c1 = 3, the nontrivial equilibrium exhibits the saddle-node bifurcation 

(labeled as SN in Figure 10(b)), which induces another two stable nontrivial equilibria. The neural 

system exhibits four coexisting equilibria in some parameter regions. Further, when the coupling 

weight increases to c1 = 3.5, system (2) exhibits two periodic-doubling bifurcations from the periodic 

orbit emerged by the Hopf bifurcation of the nontrivial equilibrium, labeled as PD in Figure 10(c). It 

induces two coexisting period-2 orbits in system (2). Moreover, it follows from Figure 10(d) that the 
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neural system exhibits four coexisting periodic orbits when the coupling weight is fixed as c1 = 4. In 

fact, the nontrivial equilibrium emerged by the pitchfork bifurcation of the trivial equilibrium 

presents the Hopf bifurcation, which induces the two-coexisting periodic orbit. Further, another two 

periodic orbits will be presented by the Hopf bifurcation of the nontrivial equilibrium emerged by the 

saddle-node bifurcation of the nontrivial equilibrium. Due to the period-doubling bifurcation of the 

periodic orbit, the neural system exhibits the mixed coexistence with period-1 and period-2 orbits.  

 

 

(a)                               (b) 

  

(c)                               (d) 

Figure 10. Bifurcation diagrams with (a) c1 = 2, (b) c1 = 3, (c) c1 = 3.5, and (d) c1 = 4 for 

the fixed parameters are k1 = 1, k2 = 1.6. It shows the dynamic evolution of equilibrium 

and periodic orbit, where PB, SN, HB, and PD denote the pitchfork bifurcation, 

saddle-node bifurcation, Hopf bifurcation and period-doubling bifurcation, respectively.  

 

In fact, with the coupling weight c1 increasing to c1 = 5, the period-doubling bifurcation will 
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we present the bifurcation diagrams employing the Poincaré method, where x2 = 0 is the Poincaré 

section in this case. It follows from Figure 11 that the bifurcation sequences of the periodic orbits are 

labeled with different colors (red, yellow, blue, and pink) for the different initial values. The 

equilibrium is shown in green. Further, The enlarged details of the periodic orbits are exhibited in 

Figure 12. The phase portraits are shown in Figure 13. The parameters, initial values, and dynamics 

properties are listed in Table 2. 
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Figure 11. Bifurcation diagrams corresponding to periodic orbits (blue) and equilibrium 

points (red), showing the stable coexistence of multi-periodic orbits with a pair of chaos 

attractors. 

 

(a)                            (b) 

 

(c)                            (d) 

Figure 12. Enlarged details of the periodic bifurcation diagrams, showing the 

period-doubling evolutions for the different initial values (a) (1, 1, 0, 0), (b) (−1, −1, 0, 0), 

(c) (1.5, 2, 0, 0), and (d) (−1.5, −2, 0, 0). 

Actually, neural system (2) exhibits only a stable trivial equilibrium E0 for c2 = 0. Employing its 

pitchfork bifurcation, a symmetric pair of stable nontrivial equilibria, i.e. E1 and E2, is obtained. With 
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increasing c2 and passing through the critical value c2 ≈ 0.86, the system exhibits a pair of period-1 

orbits employing the Hopf bifurcation (HB) of the nontrivial equilibria E1 and E2. The phase portraits 

with initial values (±1, ±1, 0, 0) are shown in Figure 13(a) for the fixed parameter c2 = 2. It follows 

from Figures 12(a) and 12(b) that the pair of periodic orbits evolves into chaos attractor through the 

period-doubling bifurcation, and then degenerates into the period orbit by the reversal 

period-doubling bifurcation with c2 increasing. The neural system has many types of multi-periodic 

orbits with period-2, -4, -8, … chaos … period -8, -4, -2. The corresponding phase portraits are 

shown in Figure 13 in yellow and red. 

A further increase of c2 causes system (2) to exhibit another pair of period-1 orbits employing 

the Hopf bifurcation (HB) of the nontrivial equilibria E3 and E4, which are labeled (3) and (4) and 

rendered in pink and blue in Figure 11. This implies that system (2) exhibits four coexisting attractors 

with two pairs of period-1 orbits. The phase portraits are shown in Figure 13(b) with c2 = 4.5 for the 

initial values (±1, ±1, 0, 0) and (±1.5, ±2, 0, 0). Moreover, with the same evolution as mentioned 

above, the new pair of period-1 orbits evolves into the chaos attractors and then regains the period-1 

orbits employing the forward and inverse period-doubling bifurcation. The bifurcation diagrams are 

magnified in Figure 12c,d. In this evolution, the system has many types of multi-periodic orbits. The 

phase portraits of the period-2, -4 … chaos … period-2, -1 orbits are displayed in Figure 13(c–g), 

denoted by the pink (positive initial values) and blue (negative ones) trajectories. 

The attractor basins, defined as the set of initial values whose trajectories converge on the 

respective attractor, are shown in Figure 14 for varying c2, where the (x1, y1) plane, i.e., x2 = y2 = 0 

cross-section is selected. The attractor basins are all originally symmetric. For the regime of four 

coexisting attractors, with c2 = 5.1, the attractor basins are shown in Figure 14(a), where the yellow 

and red regions are the attractor basins of the periodic orbits that emerged via the Hopf bifurcation of 

E1 and E2, and the pink and blue regions are those for the second pair of periodic orbits. Furthermore, 

it follows from Figures 14(b,c) that the sizes of the pink and blue regions increase and are then 

eroded by the yellow and red ones. The second sequence of the periodic orbits will vanish. In fact, 

the period-1 orbits disappear by the reversal via homoclinic bifurcation (HomoB) of the nontrivial 

equilibrium. The system then exhibits only a pair of period-2 orbits, as shown in Figure 13(h).  

The third pair of period-1 orbits is obtained when c2 increases and passes through the critical 

value c2 ≈ 8.71. The neural system represents four coexisting attractors, including a pair of period-4 

orbits and a pair of period-1 orbits. The phase portraits are shown in Figure 13(i), where the red and 

yellow trajectories are the period-4 orbits with initial values (±1, ±1, 0, 0) and the pink and light 

green trajectories are period-1 orbits with (±3, ±1, 0, 0). It follows from Figure 14(d) that the 

attractor basins of the period-4 orbits rendered in blue and light blue are just divided into some small 

regions by the period-1 basins rendered in red and yellow. Furthermore, the new pair of period-1 

orbits is presented employing the Hopf bifurcation of the nontrivial equilibria E5 and E6 with 

increasing c2. This implies that the neural system presents a coexistence with six period orbits, i.e., a 

pair of period-4 and two pairs of period-1 orbits. The corresponding attractor basins are exhibited in 

Figure 14(e), where the new regions shown in deep yellow and light green are presented in the plane 

of initial values. The phase portraits are shown in Figure 13(j). Furthermore, it follows from Figure 13(k) 

that the period-1 orbits that emerged near c2 ≈ 8.71 will disappear and that the neural system regains the 

four coexisting orbits, i.e., a pair of period-4 and period-1 orbits. The attractor basins are exhibited in 

Figure 14(f). Interestingly, the new period-1 orbits also evolve into the chaotic behaviors via the 

period-doubling bifurcation. The phase portraits are verified by the dynamic evolution, as shown in 
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Figure 13(j–o). Finally, the neural system (2) exhibits two chaotic attractors coexisting with a pair of 

period-2 orbits.  

 

 
(a)                   (b)                   (c) 

 
(d)                   (e)                   (f) 

 
(g)                   (h)                   (i) 

 
(j)                   (k)                   (l) 

 
(m)                   (n)                   (o) 

 

Figure 13. Phase portraits with different initial values, showing the multiple coexisting 

attractors via period-doubling bifurcation, where the parameters are fixed as k1 = 1, k2 = 1.6, 

and c1 = 5. Corresponding initial conditions and parameter c2 are given in Table 2. 
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(a)                               (b) 

 

(c)                               (d) 

 

(e)                               (f) 

Figure 14. Attractor basins in y1 = y2 = 0 cross-section with the increasing parameter (a) 

c2 = 5.1, (b) c2 = 5.55, (c) c2 = 5.75, (d) c2 = 8.85, (e) c2 = 9.99, and (f) c2 = 14.5 for the 

fixed system k1 = 1, k2 = 1.6, and c1 = 5. 

In a word, the neural system (2) exhibits three sequences of dynamical coexistence with the 

periodic orbits and chaotic attractors when the neighbor-connection weight c2 increases. The first 

two-coexisting chaotic behavior was obtained near c2 ≈ 5.1 and vanished c2 ≈ 6.0 by the forward and 
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reversal period-doubling bifurcation. The second pair of chaos coexistence emerged c2 ≈ 11.2 can 

evolve into the period-2 orbit near c2 ≈ 14.5 by the reversal period-doubling. The third pair of chaos 

coexistence can be illustrated when the neighbor-connection weight was fixed as c2 = 14.5, which 

evolves into the double-scroll chaotic behavior by the attractor merging crisis.  

 

Table 2. Coexisting attractors with varying c2 for k1 = 1, k2 = 1.6, and c1 = 5. 

c2 Dynamical property Initial conditions Figure  

2 

4.5 

4.6 

4.95 

5.1 

5.5 

5.75 

6.0 

8.85 

9.99 

 

11.2 

11.3 

12.8 

13.0 

14.5 

pair of period-1 orbits 

pair of period-1 orbits with pair of period-1 orbits 

pair of period-1 orbits with pair of period-2 orbits 

pair of period-1 orbits with pair of period-4 orbits 

pair of period-2 orbits with pair of chaotic attractors 

pair of period-2 orbits with pair of period-2 orbits 

pair of period-2 orbits with pair of period-1 orbits 

pair of period-2 orbits 

pair of period-4 orbits with pair of period-1 orbits 

pair of period-4 orbits with two pairs 

of period-1 orbits 

pair of chaotic attractors with pair of period-1 orbits 

pair of chaotic attractors with pair of period-2 orbits 

pair of period-4 orbits with pair of period-2 orbits 

pair of period-4 orbits with pair of period-4 orbits 

pair of period-2 orbits with pair of chaotic attractor 

(±1, ±1, 0, 0) 

(±1, ±1, 0, 0), (±1.5, ±2, 0, 0) 

(±1, ±1, 0, 0), (±1.5, ±2, 0, 0) 

(±1, ±1, 0, 0), (±1.5, ±2, 0, 0) 

(±1, ±1, 0, 0), (±1.5, ±2, 0, 0) 

(±1, ±1, 0, 0), (±1.5, ±2, 0, 0) 

(±3, ±1, 0, 0), (±1, ∓1, 0, 0) 

(±3, ±1, 0, 0) 

(±3, ±1, 0, 0), (±1,±1, 0, 0) 

(±3, ±1, 0, 0), (±1, ±1, 0, 0) 

(±3, ∓1, 0, 0) 

(±3, ±1, 0, 0), (±1, ±1, 0, 0) 

(±3, ±1, 0, 0), (±1, ±1, 0, 0) 

(±3, ±1, 0, 0), (±1, ±1, 0, 0) 

(±3, ±1, 0, 0), (±1, ±1, 0, 0) 

(±3, ±1, 0, 0), (±1, ±1, 0, 0) 

13(a) 

13(b) 

13(c) 

13(d) 

13(e) 

13(f) 

13(g) 

13(h) 

13(i) 

13(j) 

 

13(k) 

13(l) 

13(m) 

13(n) 

13(o) 

5. Transient chaos 

By varying c2 in some regions, system (2) exhibits the transient chaotic attractor. Transient 

chaos is a novel phenomenon in high-dimensional nonlinear dynamical systems, such as the Hénon 

map system, Lorenz system, Hopfield neural networks, the Duffing oscillator, Chua’s system, etc. In 

a dynamical system exhibiting transient chaos, the system trajectory exhibits a seemingly chaotic 

attractor for a longer time, but eventually evolves into a final non-chaotic state, such as a periodic 

orbit or equilibrium [41].  

Numerical simulations show that system (2) exhibits transient chaos, as shown in Figures 15 

and 16 for c2 = 16.5. The Matlab ode45 method is used in numerical simulation. It should be noticed 

that the qualitative results of the transient chaotic attractor are the same with the different numerical 

methods. The chaos motion is presented in blue and the corresponding final period orbit is depicted 

in red. It follows from Figure 15 that the transient chaos motion evolves into a periodic orbit with 

developing time. Figure 16 shows the time histories, from which it can be seen that chaos motion is 

annihilated near t ≈ 700, and system (2) displays a periodic orbit from then on. It is worth noting that 

the time that the system takes to evolve from chaotic to periodic will be longer if the parameter is 

chosen near the critical value of the chaos motion. 
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(a)                                  (b) 

Figure 15. Phase portraits of transient chaos (blue) and final periodic orbit (red) in (a) x1 – 

x2 – y1 and (b) y1 – x2 – y2, with the fixed parameters k1 = 1, k2 = 1.6, c1 = 5, and c2 = 16.5 

for the initial condition (1, 1, 0, 0). 

 

 

 

 

Figure 16. Time histories showing that transient chaos is preserved for time t∈(0,700), 

and then the final periodic orbit is obtained. 

6. Conclusion 

Imitating the properties of a biological nerve system to build artificial neural network model 

plays an important role in the fields of the neural network applications. In the biological neural 

systems, experimental researches and theoretical analyses are shown that the multiple coexistence of 

stable steady states or chaotic attractors are very important and universal phenomenon. Further, 

multiple coexistence is in strong demand for neural network applications. In fact, associative 

memory storage in neural networks is defined by the multistability, which is the coexistence of 

equilibrium, periodic orbits, and chaotic attractors. Chaotic dynamics in neural systems plays an 
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important role in the application of optimization problem and associative memory. In this paper, a 

simple inertial two-neural network system with a non-monotonic activation function was established. 

The complex dynamics including the bistable equilibria, bistable period orbits, multistable periodic 

orbits, and multistable chaotic attractors with multi-periodic orbits were presented by employing 

theoretical analyses and numerical simulations. The neural system exhibited the stable coexistence 

with the same-type and mixed-type attractors. Further, from a realistic point of view for the 

biological neural system, the noise is inevitable. The final activity of the multistable system is 

influenced by the external perturbations. The fluctuation between the different stable states maybe 

play a great flexibility in the system functions.  

To exhibit the global evolution of system dynamics and find the multiple attractors’ coexistence, 

we presented the bifurcation diagrams including equilibrium points and periodic orbits. The phase 

portraits and attractor basins were exhibited to verify the coexisting attractors. In fact, increasing the 

neighbor-connection weight, the first pair of period orbits was obtained by the Hopf bifurcation, 

which evolved into a multiperiodic orbit and then chaos motion by employing the forward 

period-doubling bifurcation. Furthermore, the chaotic attractor degenerated into a multiperiodic orbit 

via the reversal period-doubling bifurcation. The second and third pairs of period orbits were 

obtained by the Hopf bifurcation of another nontrivial equilibria, which can also be evolved into 

chaos attractors via the period-doubling bifurcation. The difference is that the second pair of period 

orbits regained periodic orbits via the reversal period-doubling bifurcation, and then disappeared via 

homoclinic bifurcation. The third pair evolved into a pair of single-scroll chaotic attractors, which 

transformed into double-scroll chaotic attractors via the attractor merging crisis. Additionally, the 

transient chaos was displayed using phase portraits and time histories.  
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