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Abstract: In this paper, the infinitesimal orbits around the libration points in the photogravitational
oblate restricted problem are computed. To reach this goal, the Hamiltonian of our dynamical model
taking into account the considered perturbing forces is constructed. A lie operator method, as a
method of solution, is outlined. The Hamiltonian is transferred to any point of the equilibruim point
as an origin. The explicit first order as well as the second order solutions for the coordinates and their
conjugate momenta of a test particle in an infinitesimal orbit around any equilibrium point are
obtained.
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1. Introduction

The meaning of the infinitesimal orbits are defined as follows: Those orbits that are very close
to the equilibrium points. The radii of these orbits are very small. The scientific significance of these
orbits come from the fact that the mission designers require to place missions at equilibrium points to
have the advantage of these points. The infinitesimal orbits are already used for the mission near any
point of the equilibrium points.

The restricted three bodies problem (in brief RTBP) can be investigated directly from the
equations of motion given in any textbook of celestial mechanics. Authors can treat this problem
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even though with some considered perturbations: e.g., relativistic, photogravitational, dynamical
shapes of the primaries, drag, ....etc. The history of the restricted problem is so long as the beginning
of the reviviscence era began with Euler and Lagrange continues with Jacobi, Poincaréand Birkhoff.
It continues intensively to the date, one cannot conclusive survey of these works but some relevant
works are; Ahmed, et al. [1], Douskos and Perdios [2], Abd El-Salam and Abd EI-Bar [3,4], Abd EI-
Salam and Katour [5], and Abd El-Salam [6]. The Infinitesimal orbits around the equilibrium points
in the restricted three body problem (in brief RTBP) are very important for space community. NASA
in 1978 launched ISEE3 into a halo orbit at the L; of the Earth-Sun system. It was designed to study
the Earth-Sun connection through the interaction between the magnetic field of the Earth and the
solar wind. In 1996 the SOHO mission was launched to investigate deepily the Sun's internal
structure, the solar extensive outer atmosphere and the solar wind origin.

The dynamical behavior of the test particle near the libration points, namely the infinitesimal
orbits has been collected in a work by Duncombe and Szebehely [7]. Richardson [8] used successive
approximations technique in conjunction with a proceedure similar to Poincare-Lindstedt technique
to obtain a 3 order analytical solution of halo type periodic orbits applied for the Earth-Moon
system. Barden and Howell [9] used the centeral manifold theory to analyze the motions in the
vicinity of the collinear equilibrium points. Howell [10] studied the families of orbits in the
neighbourhood of the collinear libration points.

Gomez, et al. [11] gave some families of quasi-halo orbits in Sun- (Earth-Moon) and in Earth-
Moon systems around L; and L,. While Gomez, et al. [12] treated the transfer problem between
infinitesimal orbits. Selaru and Dimitrescu [13] used asymptotic approximations based on Von
Zeipel-type method to study the motions in the vicinity of a equilibrium point in the planar elliptic
problem. The eccentricity and inclination effects on small amplitude librations around the triangular
points L, and Ls have been studied by Namouni and Murray [14]. The analytical continuation
method have been used by Corbera and Llibre [15] to investigate the symmetric periodic orbits
around a collinear point is the RTBP. Hamdy, et al. [16] used a perturbation proceedure based on Lie
series to develope explicit analytical solutions for infinitesimal orbits about the equilibrium points in
the elliptic RTBP.

Abd El-Salam [17] studied the periodic orbits around the libration points in the relativistic
RTBP. He analysed the elliptic, hyperbolic and degenerate hyperbolic orbits in the vicinity of the L,
L, and Ls. He found as well as elliptic orbits in the neighborhood of the L, and Ls.

Ibrahim, et al. [18] presented the special solutions of the RTBP specifying the locations of the
equilibrium points. They obtained periodic orbits around these libration points analytically and
numerically. Tiwary, et al. [19] described a third-order analytic approximation for computing the
three-dimensional periodic halo orbits near the collinear L; and L, Lagrangian points for the photo
gravitational circular RTBP in the Sun-Earth system. Tiwary and Kushvah [20] computed halo orbits
using Lindstedt-Poincaré method up to fourth order approximation, then analyzed the effects of
radiation pressure and oblateness on the orbits around Libration points L; and L.

In this work, we will use the Hamiltonian approach to compute the infinitesimal trajectories
around the equilibrium points. We will construct first the Hamiltonian of the problem, then it will be
followed by outlining of the perturbation proceedure used, namely the Delva-Hanselmeir technique,
Delva [21] and Hanslmeier [22].
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Mittal, et al. [23] have studied periodic orbits generated by Lagrangian solutions of the RTBP
when both of the primaries is an oblate body. They have illustrated the periodic orbits for different
values of the problem parameters.

Peng, et al. [24] proposed an optimal periodic controller based on continuous low-thrust for the
stabilization missions of spacecraft station-keeping and formation-keeping along periodic Libration
point orbits of the Sun-Earth system.

Peng, et al. [25] presented the nonlinear closed-loop feedback control strategy for the spacecraft
rendezvous problem with finite low thrust between libration orbits in the Sun-Earth system.

Jiang [26] investigated the equilibrium points and orbits around asteroid 1333 Cevenola by
considering the full gravitational potential caused by the 3D irregular shape. They calculated
gravitational potential and effective potential of asteroid 1333 Cevenola. They also discussed the
zero-velocity curves for a massless particle orbiting in the gravitational environment.

Wang [27] applied the developed symplectic moving horizon estimation method to the Earth-
Moon L, libration point navigation. their numerical simulations demonstrated that though more time-
consuming, the proposed method results in better estimation performance than the EKF and the
UKF.

We aim to give the explicit formulas for coordinate and momenta of the infinitesimal orbits
around one of the libration points in the photogravitational oblate RTBP. The article is organized as
follows: In section 1, we gave a brief introduction. While in section 2, we formulated the
Hamiltonian in rotating frame of reference. In section 3 we transformed the Hamiltonian near any
one of the equilibrium point in the considered model. In section 4 we outline the perturbation
approach used. In section 5, and its subsequent subsections we computed the coordinate and
momentum vectors of an infinitesimal body revolving one of the equilibrium point in a halo orbit. At
the end of the paper we summarize our obtained results.

2. Hamiltonian in inertial frame of reference

The Lagrangian of the problem can be obtained from
L=T-U, 1)

where L is the Lagrangian of the problem, T and U are the kinetic and potential energies of the
system respectively, written in terms of the generalised coordinates and velocities and the time (q =g, ,¢ =q;t),
1 =12,..n.

The Legendre transform allows us to switch from the Lagrangian to the Hamiltonian formulism,

H=3p4 -L(a,4t), (2)

where the Hamiltonian function 7{="(q, p) is a function in the generalized coordinates g , and the
conjugate generalized momenta p . The Lagrangian describing the motion of the infinitesimal mass

in the inertial frame of reference is given by
1

'CineniaIZE(Xz—i_Y.z)_U’ (3)
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where X and Y are the velocity components in the inertial frame of reference of the infinitesimal
particle. We will assume the potential energy U of the system is given, in the inertial frame of
reference, by

ql(l_'u) i qA(l—y) n qu + q,AH
((X+p)7+Y2)" 2((X+p)"+Y?)" (X +p=27+Y?)" 2((X +u=1)+Y?)

32 1

where A and A, denote to the oblateness coefficients of the more and less massive primaries
respectively such that 0< A [l 1, (i=1,2), the respective radiation factors for the massive and less
massive primaries are ¢, (i=12) such that 0<1-¢ <1, g=m,/(m+m,), ue(0,1/2) is the
mass ration of the less massive body to the total mass of the system, and X,Y are the coordinate

components in the inertial frame of reference of the infinitesimal particle.
Since the trajectories of the primaries are given by

(X,.Y,)=(-mcosnt,—usinnt), (X,,Y,)=((1-pu)cosnt,(1- u)sinnt), (4)

where nt, the angle of rotation, is the product mean motion n and time t of the problem, and the
location of the infinitesimal body with respect to the primaries in the inertial frame, see Figure 1, is

7 =(X +ucosnt) +(Y +usinnt)’, 1 =(X —(1-u)cos nt)2 +(Y —(1—u)sinnt) (5)

(X,.¥,)

Figure 1. The location of the infinitesimal body with respect to the primaries in the inertial frame.

The ameneded potential U and hence the inertial Lagrangian £ __ is a time independent. To

Inertial
have a clearer insight into many behaviours of the RTBP epecifically the motion near the Lagrangian
points, transform to a rotating system with coordinates £ and 7 using

X =¢&cosnt —psinnt,
} (6)

Y =¢sinnt +ncosnt,

and the the corresponding velocities transform as
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X = &cosnt—zsinnt—&nsinnt—7ncosnt,
Y = £sinnt +7cosnt+&ncosnt —pnsinnt,

where & and 7 are the velocity components in the rotating system. The distances become

C=(E+u) +n i =(E-(1-n) +,
and the new Lagrangian is

Loy (i) =5 (E-nn) 5 (0 4n8) U,

Where the amended potential U is given by

q(1-p) . aA(l-n)
((E+u)+t)" 2((E+p) +17°)"

q,4 4 qQ,AH
((E+u=-D"+n")  2((E+u-1)"+7")

U :2(§2+772)+

32 "

(7)

(8)

(9)

(10)

The distances of the infinitesimal mass from the barycenter is given by r = \/52 +n°,and n is given

by

2 3 3
n _1+§,01+§A2 .

Now, to formulate the Hamiltonian in terms of the generalized coordinates q =(&,7) and their

canonical conjugate momenta p = ( p., p,}) , the follwing relations are required

L (£.611)

n 677

3 85

From Eqgs. (9) and (10), we can obtain

p.=£-n7,

p, =n+né,
solution for & and 77 yields

&=p.+n,

L,y (£1.6011)

(11)

(12)

(13)

(14)
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n=p,—ns. (15)
The Hamiltonian in the rotating frame is given as
Howo (£, E77) = Ep, 40D, ~ L., (Em.E0), (16)
or, using Eq. (15),
Hoo (. E71) = 0. (0. +1)+ D, (B, =1E) =L, (£.,77). (17)

Using Egs. (9), (10) and (15), the Hamiltonian of the problem in terms of the generalized coordinates
q =(&,7) and the generalized momenta p =(p,,p,) can be written in the form

= 1 2 1 2 n . 2 q1(1_:u)
Hepuirs \&1:6) =2 P, +- P +p, —NEP, + (& +77" )+ —
e L A LN Gy
GA(L-4) 0,44 . QWAL ()

2((E+puy+n7)" ((E+u-D+1°)" 2((&+u-1)+7°)

3. Transformed Hamiltonian near any equilibrium point
At this point we are interested in the infintesimal orbits near any equilibrium point.

Moving the origin to any point of equilibrium and denoting to the new coordinates and
momenta be (xl, X,, P, sz), then from the gemetry illustrated in Figure 2, we have

Fr=r+r_, (19)

| X, P(.n)

(x.x.)

SN

Figure 2. The location of the infinitesimal body with respect to the primaries in the inertial frame.

from Eq. (19)

S=X+S, nEX A+, i=12,345 (20)
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where (fL, ., ) I =1,2,3,4,5 are the locations of the equilibruim points, given by Abd El-Salam, et

al. [28], Abd EI-Salam and Abd El-Bar [29,30], disregarding the relativistic effects in these works.
The new momenta read

p,=P —ny,, p,=P, +ns . (21)

Now to obtain the Hamiltonian in the new coordinates, we substitute Egs. (20) and (21) into Eq. (18)

x1 1 Xxp

H(xl,xz,P P ): %(PX1 +nx2)2 +%(sz —nxl)2 +0, (1- )8,

+%q1A1(l_:u)813+qzlusz+%q2AZIUSZs’ (22)
where
S, = 12 2!
\/(X1+§Li +ﬂ) +(X2+77Li) (23)
S = L .
ke 1) (x40, )

4. Perturbation approach and solutions

We utilize an approach developed by Delva [21], and Hanslmeier [22]. They carried out the
procedure with a differential operator D , the Lie operator, which is a special linear operator that
produces a Lie series. The convergence of this latter series is the same as Taylor series, It merely
represents another form of the Taylor series whose terms are generated by the Lie operator. We will
use the Lie series form for two reasons. The first reason is: The requirement to build up a
perturbative scheme at different orders of the orbital elements. The second reason is: Its usefulness
also in treating the non-autonomous system of differential equations and non-canonical systems. This
enables a rapid successive calculation of the orbit. In addition we can arbitrarily choose the stepsize
easily (if necessary). This is an important advantage for the treatment of the problems which has a
variable stepsize, e.g., for the mass change of the primaries. The formulas has an easy analytical
structure and may be programmed without difficulty and without imposing extra conditions on the
convergence. The iteration can be used to generate any desired order of solution, the series can be
continued up to any satisfactory convergence reached. The Lie operator is defined as

__oloBdx o=EdP | o _ __
D“‘EE&EW_F: dt J+5’ 5=8(x(x.P.).P(x.R)). @4

Leibnitz formula can be used for computing the n*" derivative of a product, as
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d
dz

" . ,d"g d""h n!
h(z)] = sc2 98 1 Cr=———. 25
o@n()] = s 00T = =l =

The n* application of the Lie operator denoted by D " takes the form

2 @ O"Ed""x o"Ed""P | OB
D"E=3>C’ L+ |+ : 26
22 {[axm dt  opr dt“m] at‘l (0)
Now using the canonical equations of motion
d, _ oH P, __oH
dt  oP dt  ox,’
o d"x, d"P, , ,
we can evaluate the derivatives pm —, " —5 then we can reach to the solutions (coordinate and

momentum vectors, x and P respectively) as;

x = (@"“"")x

X=Xo j=0 J |

x=x0,P=Py B " . (27)
P=(""")P '

x=x0,P=Pg i=0 J I
As is clear from Eq. (27), the applications of the Lie operator D’E at different orders are evaluated
for the initial conditions of the canonical elements.

5. Solutions at different orders

In this section we are going to evaluate the solutions at different orders. From the definition of
the operator D™, Eq. (26), we get the following explicit expressions at different orders as follows.

5.1. The first order solution

Setting n =1 in Eq. (26) we obtain the required coefficients in Eq. (27) to yield the first order.
The required partial derivatives can be obtained using Eqg. (22) as follows

oH s 3 5

D (P, ~m) 0.0 )X, +, + S, ~ SAA K +E, +408,
_qzﬂ(xi—‘ré_i +,U_l)823 _ngAzﬂ(X1+§Li +/’l_1)825’ (281)

oA ; 3 s

87=n(le+nX2)—q1(l—/J)(X2+77Li )5 = 2AAL-m)x, +7,)S,

2
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. 3 s
_qzlu(xz_'_m_i )Sz _quAzlu(Xz_'_nLi )Sz )

7 _ P +mx),
®po

X1

o7
=(P, —nx
GP( D

(28.2)

(28.3)

(28.4)

Substituting Egs. (28.1)—(28.4) into Eq. (26) and neglecting the very small magnitude terms yields

ZZOJW,
A/
> K

7
'

Where the nonvanishing included coefficients are given by

J, =X, +P X, —nP x +P_x +nP_x —nx;
+0,5'X" +3A0,S’X* —n*X +nx X, +0,S°X X, + (3/2) Aq,S X X,
—°X X, +(3/2) A0S, X7, +0,S/XE, +0,57%71, +3A0S XS,
J, =0Sx,+3AQ,Sx,—0,Sx,-3A04,5,Xx, —qS’x —3Aq.S x;
+0,5,X +3A0,8X —6,5,xX, —(3/2)A0S)X X, +0,5;XX,
+(3/2)A0,S;xx, —,5x7, —(3/2)Aq,S;x7, +(3/2)A0,S;x7,
+3A0,5,x.&, —qS5x,& —3A0S X, +0,Sx.& +9,S)x.7,
J, =-0Sx,-3A0Sx,+q,5.x, +3A0,S.X,
N, =x,+P.x,-nP x,+P _x,+nP_x,—nx X, -n’xx,
+0,5'x x, +3A0,S X X, + X —n*X’ +q,S’X’ +(3/2)Ag,S X

+ q1813X277|_i + (3/2) Aqlsfxznq + q1slsxzé:|_i + 31 Atqslsngh

N!=qSx,-0,Sx,—0qS’x X, +q,SX+q,Sx X, +3A0SX X, —

17172 272772 272771772 2727712

(29)

3 2
ql 1X2
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—(3/2)Aq,S)x; +(3/2)A0,S)x; — a5/, — (3/2)Ad,S; X1, +0,5.%7,
—3A0,5;%, +(3/2)A0,5;%,7, —4,5%.&, —3A4S XS, +0,5%&, +3A0,5XS,
N =-3AQS°x,—-0qSx,+0q,Sx, +3Aq,S.X,
Ks=P, +P:=nP’+P P _+nP P —nP x —n’P x +P qSX,
+3AP g5 x +nP x, —n’P x, + P q,S’x, +(3/2) AP 0,5/,
+(3/2)AP,aSn, +P,4,S’S, +3AP.qSE +3P.¢,

IC = anle +3AP .S S - P.d S —-3A,P.Q,S , = P.asS X, - 3AP. QS X,
+P,0,5)x, +3AP,0,5;x —P,aS’x, - (3/2)AP,q,S’x, + P,q,SX,
+(3/2)AP,q,5]x, - P,0,S/n, - (3/2)AP,q,S/n, +P,0,5;7,
+(3/2)AP,q,S;n, —P,q,S'¢, —3AP,qS¢, +3AP0,S)¢,

K, =-PaS’-3APqS’ +Pq,S;’+3APqS;,

G =P +PP —nP P +P’+nP’-nP x —n°P_x +P_qS’x

+3AP_0,S x +nP_x, —n’P_x, +P_q,S’x, +(3/2)AP,q,S;X,
—P,n, +P,aSn, +(3/2)AP,qS/n, +P,qS’¢, +3AP 04S¢,

g = szqle +3AP.04S L= szqZSZ3 - 3A2Px2q2825 —3AP QS X,
-(3/2)AP,q,517, +P,0.5;x +3APR,0,5)x -3AP,qS55, +P,q,S.7,
-P,aS¢, +(3/2)AP,q,Sx, + P q,S], —P,a.S/n, —(3/2)AP,q.S/X,
-P_gS’x,+P q,5)x,—-P g5/,

g, =-P.aS -3AP.aS'P g5 +3AP.0S,.

X

5.2. The second order solution

Setting N =2 in Eq. (26) we obtain the required coefficients in Eq. (27) to yield the second
order solution as;
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ST S A (6 0 ~DAAC S

+(15/2)q AL— ) (X +&, +)*S —q,uS,’ +3q,u(x + &, +p—=1)°S;
- (3/2)q2 A&Iuszs + (15/2)q2 Az/u(xl + §|_i +u _1)2 S27 ,

8271/ 2 3 205 5
L =g, 1)S] +30,A- )X, +7,)'S. ~ (/A - 1S,

2

+(15/2)q, AL 1) (X, +1,)’S, —q,uS,’ +30q,u(x, +17,)°S,’

—(3/2)0,AuS, +(15/2)q,Au(x, +7,)'S,

4
OX,OX

=30,(1- )X + &, +4)(X, +71,)S] +(15/2)q,AL— p)(X, + &, + 1)

x(X, +11,)S, +3q,u(X + &, + u=1)(x, +1,)S,

+(15/2)q, A p(x +&, +u=1)(x,+n,)S,

O'H
oP 0P,

oOH
opoP

oOH
OXOP,

(30.1)

(30.2)

(30.3)

(30.4)

(30.5)

(30.6)

Substituting Egs. (30.1)—(30.6) into Eq. (26) and neglecting the very small magnitude terms yields

yields the second order solution as

Zﬁjzu‘,
DX, ZNZ
D“P, ZlCﬂ ,
DP, =3>G'u .

Where the nonvanishing included coefficients are given by

(31)
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J, =2P_—2nP x,—2n°P X —2n°x X, —2n°X X, +2nP_x, —2n°P, X,
+P.0S/x +P,qS’x +(3/2)AP,qS/x +(3/2)AP,q,5x +0,5'xX,
+2n0,Sx X, +(3/2) Aq,S; X X, +3nAQ,SX X, +0,5 X7,
+Nq,S;X7, +(3/2)A0,S; X7, +(3/2)nAq,S; X7, —3P,4,S/X7,
—3P_0.S’X,7, +3nq.S X7, —6P_q.S’X X7, +3nq,S XX 17,
—3P,0,S/x77; —(15/2) AR, q,S/ X7 +3n0a,S/X/77; + (15/2)nAq,S/X/77;
+0,5'%&, —na,SIx &, +(3/2)AaSIxS, —(3/2)nAg,SIx &,
—-6P_q.S'x;& —3P a.Sxx,& —3P _gS/xx,& —3ng.S X/ X,&

-3n0,S;/x /&, —3P,a,5x7, &, —3P, 0,51, &, —(15/2)AP,q,S/x7, <,

—(15/2)AP,0,S/xn, &, +3n0,S/x'n, &, +(15/2)nAg,S/ X1, &,
-3P,q,S/x,&’ —3ng.S/’x X, ;7. & —3n9.S;X X &
—(15/2)nAq,S/x x.&; —(15/2) AP, 0,5/x & —(15/2)nAg,S X X,7,S,

J! =05/ —nq,S’x — P05’ —P,a,5x +(3/2)Ag,Sx —(3/2)nAg,S;x,
—q,SX,+0,Sx) —q.S’X X, —2n9.S’X X, +0,S X X, +2nq,S X X,
—3n0,S;x X, —nq,S’x 77, —0,5%7, —(3/2)nA0,S;x7, — (3/2)AG,S; X7,
—3P,0,5;/ %77, —3P,0,5/x7, +9,5;X7, +(3/2)Ad,S; X7,
+(3/2nAq,S;xn, +3P,0,5;X77, —2n0,S)X; +0,S)X —0,S/X X,
—-2nq,S;’X X, +0,SX X, —nq.S’x.n +nq,S x ;7 +3P 05X,
+3nq,S7X, 77, —3nq,S;X, 77, +3nq,S;X X,n. +3P _q.SX,n
—3P,0,5;,x77; —3nq, S/ X7 +(3/2)nAq,S/x &, —(3/2)Aq,Sx &,
—6P,0,5/x&, —Nna,S)x&, +(3/2)Ad,S;x S, —(3/2nAa,Sx &,

+6Px1q2825x1§|_i _6nq1815X1X zé_i +q2823X1§|_i +6nq2825X1X zé_i _3nq2825X1X 2;_2,
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+ an zS st 1277Li é:L, + 3Px2q1s 15X 177|_i §Li + Bnqls 15X 1X an, §L| - 3nq zS 25X 1X 277|_, §Li

-3nq,S’x,n. &, +3P q,S’x,& —3P 0,5;X,& +3nq.S/X X, &

J}=—pqS X, +nu’qS’x, —qSx, +nqS;’X,

N7 =2P_ ~-2nx,—2nP x,-2n"P x,+2nP_x,-2n°P _x,+0SX X,
+P 0,S’x, +(3/2)AP.q,S’X, + (3/2) AP_q,S X, —2n°X X, + 2n°X X,
—2nq,S/x X, +(3/2)Aq,S;x X, —3nAQ,S’X X, +0,S X,77, +N0,S’X,77,
—2m°x2 +0,5'X +2nq,S:X? —2n°X? +(3/2)Ag,S’ X +3nAQg,S X
+(3/2)Aq,S; X1, +(3/2)nAQ,S, X,77,, +Nwud,S; %77, —3P,0,S X X,7,
—3P_q,S/xx,7, —6P_0,S X7, +(15/2)nAq,S/x X,77; +3nq,S X X, 7,
+3n0,S;XX,77, — (15/2)A P a.S/x,;7. +3nq,S;x X7, —3P_q,5X,77;
+(3/2)AqS;x.&, +0,5/%.&, —ng,SIx&, —(3/2nAGSIX,E, +40,S)X.E,
—6P,q,S/xx,&, —3P,0,5/x¢, —3P, qS'x¢, —(15/2)AP,0,5/x,7,¢,
—3n0,S;xX;¢, —3nq,S;/ ¢, —3P,0,5/%,1,&, +(15/2)nA0,S X X,17.&,

—(15/2)nAq,S/x;n7, &, —3P,a,5%,17,£, —3na,S/X;;7, &, —3P, 0,5, %,&;
—(15/2)AP,0,5/%,77,&, —3nq, S/, & +3n0, S/ X7, &, — 1A, S)X.E,
+P,q,5/x, —(15/2)AP,0,5/%,& — (15/2)nA0,S/X;&;

N7 =0qS/x,—nqgS’x,—P g,S’x, —P_q,S'x+(3/2)Aq,S;x, — (3/2)nAq,S;X,
—0q,S;%,+nq,S;x, + P,q,S;x, + P_q,S;x, — (3/2)Ag,S; X, + (3/2)nAq,S; X,
—0,5/x; —2nq,S/x; —(3/2) Aq,S;x X, +0,5;x X, —3P,qQ,S;X, —q,S’X X,
+2n9,S;X.X, —2nq,S X X, +0,S;X; +2nq,S X —3nq,S X, —q.SX 7,

—nq,S/x,17, —(3/2)Aa,S7x,7, — (3/2)nAg,S .17, —3P,0,S;%,7,
—3P,a,S/x,17, +(3/2)Aa,S;x,17, +(3/2)nAq,S]X,77, +0,5;X.77,
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+3P,q,S;x,n, +3P_q,S;X,;7, +3nq,S’X X,n. —3nQ,S X X 7,
+3nq,S;x;n, +3P_a.Sx,n. —3P_q,S;X,n. —3nq.SX X 7
+nq,S; X8, — (3/2)Aq.S; X8, + (3/2)nAq,S’ X6, —6 Pqulsf X,&,,
—Ng,S$;x.&, +(3/2)A0,S;x.¢&, —(3/2)nAq,S)x,&, —6nq,S)XE,
+6nq9,S;x;& +3P_qSx,n & +6P q,S:x,& +3P qSX,1. &
-3P.q,S;x,n. & —3P_q,5x ;7. & +3nqS7x; & —3P,0,5.X,&;
+3nq,S’x,;n, & +3P_0SX,& —3nq.S X, X,n, & —3nq,S;X ;&
—-3nq,S,x;n. & +3nq,S;x x,n. & —3nq,S/X . +3n0,S )X X, 1]

N =pa.S:x, —nu'q,S.x, — 98X, +nuqSx,

K =2nP P_-2nP.P,+PqS’+P P qS’-3PqS/x,& —2nP qS’x,
+(3/2)AP,P_q,S’ —2n’x —2n°P x +2n°P, X +20,S’X + P g,S’x +2nP,
+(3/2)AP;q,S +3A0,S X +(3/2)AP,0,S7x, —3nAP,0,S7X, —2n"P X,
—-2n°P x, + P q,S’x, +2nP q,S’x, + (3/2) AP,q,S X, +3nAP q,SX,
+(15/2)nAP,q,S/x7;, +nP,q,S'n, +(3/2)AP,a,S/7, +(3/2)nAP,q,S/7,
—3P;q,S;x7, —(15/2)AP,P,q,S/7 +P,aSs, —nP,q,S’¢, —3P,P,a.S7;
+3A0,S¢, +(3/2)APR,0,S S, - (3/2)nAP,q,S S, —6P[0,S/X &, —2n°P;
-3PqS’¢&’ —3nP qS/x x,&6 +29S7¢ —3PqSn & —3P P Sy &,
—(15/2)AP[q,S/n, &, —(15/2)APR,P,a,S/n &, +(15/2)nAP, 0,57, &,
-3n F’nqlexznLi &~ (15/2) APquIijfi + PqulsfryLi - ?:nPqulsij‘fu - 2an12
—3nP g,S/x,&’ —(15/2)nAP,q,S/x,&° —3P P q,S x,& +3P,0,S’E]
—2nP,0,S/& +310,S;&; +3nP,q,S7x7, &, —(15/2)nAP,0,5/x.7,&,

K =-PR,a,S/¢, +nP.qSE —3AqS’E, —(3/2)AR,4,S/E, —nP.qS]y,
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+(3/2)nAP, 4SS, +3A0,S;x, —nP,q,S;& +3A0,S;S +3nPq,5:x7;
—(3/2nAP0,S;¢, +20,57¢, +6P/0,S;5, —6nP, q,S7X,&, +6nP,q,5]Xx.¢,
+ 3Pqu18 f’nLi &, +3P,P.asS fnLi &, +3nP qsS X M6+ 3Pqu18 f§: +nP qg.S ;
—(3/2)nAP,q,S/n, +(3/2)AP,q,S;&, —3P/0,S&! +3nP,0,5/X,&;
—-3nP q,5;x,&. —3nP q,5x,n, &, 3488 —3Pa,S,7, &, —P.a.s,;
—3P,P,a,5;7,£, —3nP,q,5;/x7, &, +3nP,0,5x7, &, —(3/2)nAP,q,S;
+29,S'+P,q,S'-nPqS’-P/qS’—P P, S’ +3AqS’ +(3/2)ARS;
—2q,S; +P,P,0,5] -3A0,S; - (3/2)AP,q,S; +(3/2nAP,q,S; + P[q,S;
-29.5’x,—P_q.S'x, +2nP qS’x, —3A0,S’X, +29,S X, +P 0,5 X,
—-2nP qS’x,+P_q,S;x,-2nP q,S)x,-3P’q,S; -P qS’x,+P.q.S ¢
- (3/2)AP,q,S/7, +2nP,q,S7x, —3nP,q,S]x, - P,q,S, —3P/q,S/7,
+(3/2)AP,q,S;n, —3P,P,qS/n, —3P,P,q,S;n7 +nP,q,S7,

2

+3P/q,S;n, —3P,P_ q,S xn, —3nP q,S;7, +(3/2)nAP q,Sn

2

+ 3an1q1S 1577Li - 3npx1q18 15X an, - 6Px1 Px qus 13X 1 i + 3an1q 2S 23X ani

+ San1q1S 15X X ani + 3ij szq18 1577in + 3Px1 szq zS 2577Li + 3an1qls 15X 177Li
+ 3an1q1S 1777: - 3an1qls 15X 177in - Zlqls 13§Li - 6Pqu1s 15§Li + leq zs 2377Li
g = _2q1Sf _luz Px1q1813 + an1q1813 + 2qu: + leqZS: - anquSZS _SAqISIS +3Azqzsz5

2

g =-2nP P_-2n*P P_+2nP’-2n°P’ +P P qS’+P’qS’ +P qSx

171 1

+(3/2)AP_P_ g’ +(3/2)AP.q,S; —2n’P_x +2n°P_x, —2nP _q,S’x

17171

+(3/2)AP,0q,S7x, —3nAP,0,S/x —2n°X, —2nR, X, - 2n°P X, + 20,5/X,
+ F)xquSlaXZ + anxqusfxz + BAqISfXZ + szqlsfm + (B/Z)Aszqlslsxz
+ 3nA1szqls 15X 2 + 3A1qls 1577'4 + 2qls 1377Li + anzq;LS 1377|_i + (3/2) nAlpxqus 1577|_i
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+(3/2)AP,q,S;77, —3P,P,a,S/x7, +3nP,q,S/x17, —6P;,S'X,77,
-3P P qSx,6 —-3P:qS’x,& —3nP _qS’x;& —3P P qS’n & —2nP,
—3P,P,q,5;¢! +3uP P a5 ¢! — (15/2) APq,S/n7, &, —3nP,0,S/%,&!
+(15/2)nAP,q,S/xn, &, +3nP,0,S X7, &, —(15/2)AP.P,qS/S + P qSS,
—3nP,q,S;x,n,&, +3nP, a,S/x X, —3P;q,S/n; —(15/2)AP;0,S/7;

+ (15/ 2) nA sz q1817 X177L2, +3n sz qlsls X177L2| + (3/ 2) A sz qlsls gLi —nN sz qlslagLi

- 6 F)xl F)xz qlslsxlgq - (3/ 2) nA F)xz qlslsgLi - 3n F)xz qlsls X1X2§Li - 3F)x§ q1S1577|_i gLi

Q

= (3/2)AR2 qlsls - (3/2) nA sz q1815 - szqlsf/,le (:11813 - an2q1813 - le Px2q1813
- l:)xzqzsz3 + rll:)xzqzsz3 + lepxzqzsza + szqzsj _(3/2)AP><2qZS; + (3/2)nAsz2q2825
-3P. P q,S; - PXZqISfx1 +2nP_q.S °X .+ P.d.S X — 2nP_q.S X, —20SX,

-P_q.S’x,-2nP_qS’x,-3AQqS X, +2q,SX, +P _q,Sx,+2nP, _q,S X,
—-P_qS’n, +29,S)7, +3A0,S;x,—-3nP_q,S;x,-29S’n, —nP_qS’n,
—3A0q,Sn, — (3/2)AP,0,S/n, — (3/2nAP,_qS/n, —3P,P,a.S7,

+P,q,5;n, +nP,q,S;7, +3A0,S;n, +(3/2)AP,q,S;n, +(3/2)nAP 9,57,
+3P P q,S;n, +3P’q,S;n, +3nP_qS’x.n —3nP _q,S)xn —3nP _qSX,n,
+3nP, _q,S;x,n. +3P;aS/n. —3P q,S;n’ —3nuP, qSX,n. —6P P 0S¢
+3nP,0,8;%7; +NuP,q5'¢, —(3/2)AP,0S;, +(3/2nAP,qS;¢, +P,q,S¢,
—nP,q,S}¢, +(3/2)AP,0,5;&, —(3/2)nAPR,q,5]¢, +6P,P,a,S& —P,aS¢,
—6nP,q,5/x,¢, +3nP_0,5;x7,¢&, +3P,P,aS7 ¢, +3PqSn, &, —3P.P g5
—3P’a.S;7,&, —3P,P,0,5;7,&, —3nP,a,5;x,n,&, +3nP 0,5 X,
—3nP,q,5;x,¢; +3nP,q,5/x7,5, —3nP,q,5,x7,5, +6nP,q,5x,5, 3P 0,57,

gzz — _szqlsf + nPqule + szqZS; - anZquz3
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6. Conclusion

We can conclude our work in this research as follows: First we have outlined briefly the
restricted three body problem, then we defined the infinitesimal orbits. We expressed the
photogravitational oblate RTBP in both inertial and rotated coordinate systems. The Hamiltonian of
the problem under investigation is constructed. Then it is transferred to any point of the equilibruim
point as an origin. We have reviewed the Lie operator method, as a method of solution. Finally we
have obtained the explicit first order as well as the second order solutions for the coordinates and
their conjugate momenta of a test particle in an infinitesimal orbit around any equilibrium point.

Conflict of interests
The authors declare that there are no Conflict of interests associated with this work.
References

1. M. K. Ahmed, F. A. Abd El-Salam and S. E. Abd EI-Bar, On the stability of the triangular
Lagrangian equilibrium points in the relativistic restricted three-body problem, Am. J. Appl. Sci.,
3 (2006), 1993-1998.

2. C. N. Douskos, E. A. Perdios, On the stability of equilibrium points in the relativistic restricted
three-body problem, Celest. Mech. Dyn. Astron., 82 (2002), 317-321.

3. F. A Abd El-Salam, S. E. Abd El-Bar, Formulation of the post-Newtonian equations of motion
of the restricted three body problem, Appl. Math., 2 (2011), 155-164.

4. F. A. Abd El-Salam, S. E. Abd El-Bar, Combined effects of oblatness and photogravitational
perturbations of the stability of the equilibrium points in the relativistic RTBP, Can. J. Phys., 93
(2015), 300-311.

5. F. A Abd El-Salam, D. A. Katour, Relativistic restricted three body problem with oblatness and
photo-gravitational corrections to triangular equilibrium points, Astrophys. Space Sci., 351
(2014), 143-149.

6. F.A. Abd EI-Salam, Stability of triangular equilibrium points in the elliptic restricted three body
problem with oblate and triaxial primaries, Astrophys. Space Sci., 357 (2015), 1-9.

7. R. Duncombe, V. Szebehely, Methods of Astrodynamics and Celestial Mechanics, New York:
Academic press, 1966.

8. D. L. Richardson, Analytic construction of periodic orbits about the collinear points, Celest.
Mech. Dyn. Astron., 22 (1980), 241-253.

9. B. T. Barden, K. C. Howell, Fundamental motions near collinear libration points and their
transitions, J. Astronaut. Sci., 46 (1998), 361-378.

10. K. C. Howell, Families of orbits in the vicinity of the collinear libration points, J. Astronaut.
Sci., 49 (2001), 107-125.

11. G. Gamez, J. Masdemont and C. Simo, Quasihalo orbits associated with libration points, J.
Astronaut. Sci., 46 (1998), 135-176.

12. G. Gdmez, A. Jorba, J. Masdemont, et al., Study of the transfer between halo orbits, Acta
Astronaut., 43 (1998), 493-520.

Mathematical Biosciences and Engineering Volume 16, Issue 6, 8144-8161.


http://taibah.proxy.deepknowledge.io/MuseSessionID=0410n3ugt/MuseProtocol=https/MuseHost=link.springer.com/MusePath/article/10.1007/BF01229511

8161

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

P>

D. Selaru, C. Cucu-Dumitrescu, Infinitesimal orbit around Lagrange points in the elliptic
restricted three body problem, Celest. Mech. Dyn. Astron., 61 (1995), 333-346.

F. Namouni, C. D. Murray, The effect of eccentricity and inclination on the motion near the
Lagrangian points L4 and Ls, Celest. Mech. Dyn. Astron., 76 (2000), 131-138.

M. Corbera, J. Llibre, Periodic orbits of a collinear restricted three-body problem, Celest. Mech.
Dyn. Astron., 86 (2003), 163-183.

A. Hamdy, M. K. Ahmed, M. Radwan, et al., Infinitesimal orbits around the libration points in
the elliptic restricted three body problem, Earth, Moon, Planets, 93 (2003), 261-273.

F. A. Abd El-Salam, Periodic and degenerate orbits around the equilibrium points in the
relativistic restricted three-body problem, Iran. J. Sci. Technol. A, 43 (2018), 173-192.

A. H. Ibrahim, M. N. Ismail, A. S. Zaghrout, et al., Orbital motion around the collinear libration
points of the restricted three-body problem, JAMCS, 29 (2018), 1-16.

R. D. Tiwary, V. K. Srivastava and B. S. Kushvah, Computation of three-dimensional periodic
orbits in the Sun-Earth system, Phys. Astron. Int. J., 2 (2018), 98-107.

R. D. Tiwary, B. S. Kushvah, Computation of halo orbits in the photogravitational Sun-Earth
System with oblateness, Astrophys. Space Sci., 357 (2015), 73.

M. Delva, Integration of the elliptic restricted three-body problem with Lie series. Celest. Mech.
Dyn. Astron., 34 (1984), 145-154.

A. Hanslmeier, Application of Lie-Series to regularized problem in celestial mechanics, Celest.
Mech. Dyn. Astron., 34 (1984), 135-143.

A. Mittal, Md. S. Suraj and R. Aggarwal, The analysis of periodic orbits generated by
Lagrangian solutions of the restricted three-body problem with non-spherical primaries, New
Astron., 74 (2020), 101287.

H. Peng, J. Zhao, Z. Wu, et al., Optimal periodic controller for formation flying on libration
point orbits, Acta Astronaut., 69 (2011), 537-550.

H. Peng, X. Jiang and B. Chen, Optimal nonlinear feedback control of spacecraft rendezvous
with finite low thrust between libration orbits, Nonlinear Dyn., 76 (2014), 1611-1632.

Y. Jiang, Equilibrium points and orbits around asteroid with the full gravitational potential
caused by the 3D irregular shape, Astrodyn., 2 (2018), 361-373.

X. Wang, H. Peng, A symplectic moving horizon estimation algorithm with its application to the
Earth-Moon L libration point navigation, Astrodyn., 3 (2019), 137-153.

F. A. Abd El-Salam, D. A. Katour and M. O. Shaker, On the equilibrium point L; in the
photogravitational oblate relativistic R3BP with application on Sun-planet systems, Eur. Phys. J.
Plus, 130 (2015), 54.

F. A. Abd El-Salam and S. E. Abd EI-Bar, On the collinear point L3z in the generalized
relativistic R3BP, Eur. Phys. J. Plus, 130 (2015), 234.

F. A. Abd El-Salam and S. E. Abd EI-Bar, The photogravitational and oblateness effects in the
location of collinear point L, in the relativistic R3BP, Sylwan, 158 (2014), 126-149.

rman ©2019 the Author(s), licensee AIMS Press. This is an open access
IMS AJMS Press article distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 16, Issue 6, 8144-8161.


http://taibah.proxy.deepknowledge.io/MuseSessionID=0410n3ulg/MuseProtocol=https/MuseHost=link.springer.com/MusePath/article/10.1023/A%3A1024183003251
http://link.springer.com/search?facet-creator=%22Ashraf+Hamdy%22
http://link.springer.com/search?facet-creator=%22Mostafa+K.+Ahmed%22
http://link.springer.com/search?facet-creator=%22Mohamad+Radwan%22
http://link.springer.com/journal/11038
https://www.researchgate.net/profile/Haijun_Peng?_sg%5B0%5D=6XO5tuQ_fr9yWWgM9ZyrjE31Vm4JfDPvfp3MlLx9XlCF0ppcpyvgIA5my6FAILftlQsNpbw.Yog-V0HeWzflryl7oHiB12h_Juo6FDV_PlGIkakSFi-wdWx-b9mI6kGiN91IOJh1H6oC1p54x6YHMFwcCS5haw&_sg%5B1%5D=YZhu95vgfPKmjz5_ghev6KrABYLiTGzw_QnQmge_mT_VLzzPFiOGffwfaaINuPOo-CvPzQ9wg4WudPte.iV6hdWVplftkWzhhdKpfgqup2mTld7PEcvNvV7QWgROvMIPfxOEZ3veEyOnbwlHnetLV5cqszoU8dEAVlPeh5Q
https://www.researchgate.net/scientific-contributions/2065613198_Xin_Jiang?_sg%5B0%5D=6XO5tuQ_fr9yWWgM9ZyrjE31Vm4JfDPvfp3MlLx9XlCF0ppcpyvgIA5my6FAILftlQsNpbw.Yog-V0HeWzflryl7oHiB12h_Juo6FDV_PlGIkakSFi-wdWx-b9mI6kGiN91IOJh1H6oC1p54x6YHMFwcCS5haw&_sg%5B1%5D=YZhu95vgfPKmjz5_ghev6KrABYLiTGzw_QnQmge_mT_VLzzPFiOGffwfaaINuPOo-CvPzQ9wg4WudPte.iV6hdWVplftkWzhhdKpfgqup2mTld7PEcvNvV7QWgROvMIPfxOEZ3veEyOnbwlHnetLV5cqszoU8dEAVlPeh5Q
https://www.researchgate.net/profile/Biaosong_Chen?_sg%5B0%5D=6XO5tuQ_fr9yWWgM9ZyrjE31Vm4JfDPvfp3MlLx9XlCF0ppcpyvgIA5my6FAILftlQsNpbw.Yog-V0HeWzflryl7oHiB12h_Juo6FDV_PlGIkakSFi-wdWx-b9mI6kGiN91IOJh1H6oC1p54x6YHMFwcCS5haw&_sg%5B1%5D=YZhu95vgfPKmjz5_ghev6KrABYLiTGzw_QnQmge_mT_VLzzPFiOGffwfaaINuPOo-CvPzQ9wg4WudPte.iV6hdWVplftkWzhhdKpfgqup2mTld7PEcvNvV7QWgROvMIPfxOEZ3veEyOnbwlHnetLV5cqszoU8dEAVlPeh5Q
https://link.springer.com/search?facet-creator=%22F.+A.+Abd+El-Salam%22
https://link.springer.com/search?facet-creator=%22D.+A.+Katour%22
https://link.springer.com/search?facet-creator=%22M.+O.+Shaker%22

