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Abstract: In this paper, the infinitesimal orbits around the libration points in the photogravitational 

oblate restricted problem are computed. To reach this goal, the Hamiltonian of our dynamical model 

taking into account the considered perturbing forces is constructed. A lie operator method, as a 

method of solution, is outlined. The Hamiltonian is transferred to any point of the equilibruim point 

as an origin. The explicit first order as well as the second order solutions for the coordinates and their 

conjugate momenta of a test particle in an infinitesimal orbit around any equilibrium point are 

obtained. 
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1. Introduction 

The meaning of the infinitesimal orbits are defined as follows: Those orbits that are very close 

to the equilibrium points. The radii of these orbits are very small. The scientific significance of these 

orbits come from the fact that the mission designers require to place missions at equilibrium points to 

have the advantage of these points. The infinitesimal orbits are already used for the mission near any 

point of the equilibrium points. 

The restricted three bodies problem (in brief RTBP) can be investigated directly from the 

equations of motion given in any textbook of celestial mechanics. Authors can treat this problem 

mailto:so_abdelbar@yahoo.com
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even though with some considered perturbations: e.g., relativistic, photogravitational, dynamical 

shapes of the primaries, drag, ....etc. The history of the restricted problem is so long as the beginning 

of the reviviscence era began with Euler and Lagrange continues with Jacobi, Poincaré and Birkhoff. 

It continues intensively to the date, one cannot conclusive survey of these works but some relevant 

works are; Ahmed, et al. [1], Douskos and Perdios [2], Abd El-Salam and Abd El-Bar [3,4], Abd El-

Salam and Katour [5], and Abd El-Salam [6]. The Infinitesimal orbits around the equilibrium points 

in the restricted three body problem (in brief RTBP) are very important for space community. NASA 

in 1978 launched ISEE3 into a halo orbit at the L1 of the Earth-Sun system. It was designed to study 

the Earth-Sun connection through the interaction between the magnetic field of the Earth and the 

solar wind. In 1996 the SOHO mission was launched to investigate deepily the Sun's internal 

structure, the solar extensive outer atmosphere and the solar wind origin. 

The dynamical behavior of the test particle near the libration points, namely the infinitesimal 

orbits has been collected in a work by Duncombe and Szebehely [7]. Richardson [8] used successive 

approximations technique in conjunction with a proceedure similar to Poincare-Lindstedt technique 

to obtain a 3
rd

 order analytical solution of halo type periodic orbits applied for the Earth-Moon 

system. Barden and Howell [9] used the centeral manifold theory to analyze the motions in the 

vicinity of the collinear equilibrium points. Howell [10] studied the families of orbits in the 

neighbourhood of the collinear libration points. 

Gomez, et al. [11] gave some families of quasi-halo orbits in Sun- (Earth-Moon) and in Earth-

Moon systems around L1 and L2. While Gomez, et al. [12] treated the transfer problem between 

infinitesimal orbits. Selaru and Dimitrescu [13] used asymptotic approximations based on Von 

Zeipel-type method to study the motions in the vicinity of a equilibrium point in the planar elliptic 

problem. The eccentricity and inclination effects on small amplitude librations around the triangular 

points L4 and L5 have been studied by Namouni and Murray [14]. The analytical continuation 

method have been used by Corbera and Llibre [15] to investigate the symmetric periodic orbits 

around a collinear point is the RTBP. Hamdy, et al. [16] used a perturbation proceedure based on Lie 

series to develope explicit analytical solutions for infinitesimal orbits about the equilibrium points in 

the elliptic RTBP. 

Abd El-Salam [17] studied the periodic orbits around the libration points in the relativistic 

RTBP. He analysed the elliptic, hyperbolic and degenerate hyperbolic orbits in the vicinity of the L1, 

L2 and L3. He found as well as elliptic orbits in the neighborhood of the L4 and L5. 

Ibrahim, et al. [18] presented the special solutions of the RTBP specifying the locations of the 

equilibrium points. They obtained periodic orbits around these libration points analytically and 

numerically. Tiwary, et al. [19] described a third-order analytic approximation for computing the 

three-dimensional periodic halo orbits near the collinear L1 and L2 Lagrangian points for the photo 

gravitational circular RTBP in the Sun-Earth system. Tiwary and Kushvah [20] computed halo orbits 

using Lindstedt-Poincaré method up to fourth order approximation, then analyzed the effects of 

radiation pressure and oblateness on the orbits around Libration points L1 and L2. 

In this work, we will use the Hamiltonian approach to compute the infinitesimal trajectories 

around the equilibrium points. We will construct first the Hamiltonian of the problem, then it will be 

followed by outlining of the perturbation proceedure used, namely the Delva-Hanselmeir technique, 

Delva [21] and Hanslmeier [22]. 

http://scienceworld.wolfram.com/biography/Euler.html
http://scienceworld.wolfram.com/biography/Lagrange.html
http://scienceworld.wolfram.com/biography/Jacobi.html
http://scienceworld.wolfram.com/biography/Poincare.html
https://en.wikipedia.org/wiki/Halo_orbit
https://en.wikipedia.org/wiki/Earth%27s_magnetic_field
https://en.wikipedia.org/wiki/Solar_wind
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Mittal, et al. [23] have studied periodic orbits generated by Lagrangian solutions of the RTBP 

when both of the primaries is an oblate body. They have illustrated the periodic orbits for different 

values of the problem parameters. 

Peng, et al. [24] proposed an optimal periodic controller based on continuous low-thrust for the 

stabilization missions of spacecraft station-keeping and formation-keeping along periodic Libration 

point orbits of the Sun-Earth system. 

Peng, et al. [25] presented the nonlinear closed-loop feedback control strategy for the spacecraft 

rendezvous problem with finite low thrust between libration orbits in the Sun-Earth system. 

Jiang [26] investigated the equilibrium points and orbits around asteroid 1333 Cevenola by 

considering the full gravitational potential caused by the 3D irregular shape. They calculated 

gravitational potential and effective potential of asteroid 1333 Cevenola. They also discussed the 

zero-velocity curves for a massless particle orbiting in the gravitational environment. 

Wang [27] applied the developed symplectic moving horizon estimation method to the Earth-

Moon L2 libration point navigation. their numerical simulations demonstrated that though more time-

consuming, the proposed method results in better estimation performance than the EKF and the 

UKF. 

We aim to give the explicit formulas for coordinate and momenta of the infinitesimal orbits 

around one of the libration points in the photogravitational oblate RTBP. The article is organized as 

follows: In section 1, we gave a brief introduction. While in section 2, we formulated the 

Hamiltonian in rotating frame of reference. In section 3 we transformed the Hamiltonian near any 

one of the equilibrium point in the considered model. In section 4 we outline the perturbation 

approach used. In section 5, and its subsequent subsections we computed the coordinate and 

momentum vectors of an infinitesimal body revolving one of the equilibrium point in a halo orbit. At 

the end of the paper we summarize our obtained results. 

2. Hamiltonian in inertial frame of reference 

The Lagrangian of the problem can be obtained from 

T U  ,                                                                               (1) 

where ℒ is the Lagrangian of the problem, T  and U  are the kinetic and potential energies of the 

system respectively, written in terms of the generalised coordinates and velocities and the time  ; ,q ,q
i i

q q t   

1,2,... .i n  

The Legendre transform allows us to switch from the Lagrangian to the Hamiltonian formulism, 

 
1

= , ,
n

i i
i

p q


 q q,t                                                            (2) 

where the Hamiltonian function  q, p  is a function in the generalized coordinates q , and the 

conjugate generalized momenta p . The Lagrangian describing the motion of the infinitesimal mass 

in the inertial frame of reference is given by 

 2 2

inertia

1
,

2
l

X Y U                                                      (3) 
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where X  and Y are the velocity components in the inertial frame of reference of the infinitesimal 

particle. We will assume the potential energy U  of the system is given, in the inertial frame of 

reference, by 

 

 

 

     
1 1 1 2 2 2

1/2 3/2 1/2 3/2
2 2 2 2 2 2 2 2

1 1
= ,

( ) 2 ( ) ( 1) 2 ( 1)

q q A q q A
U

X Y X Y X Y X Y

   

   

 
  

         
 

where 1A  and 2A  denote to the oblateness coefficients of the more and less massive primaries 

respectively such that 1,iA  ( 1, 2i  ), the respective radiation factors for the massive and less 

massive primaries are ,iq ( 1, 2i  ) such that 1iq  ,  2 1 2
/ ( ), 0,1/ 2m m m     is the 

mass ration of the less massive body to the total mass of the system, and ,X Y  are the coordinate 

components in the inertial frame of reference of the infinitesimal particle. 

Since the trajectories of the primaries are given by 

          1 1 2 2
, cos , sin , , 1 cos , 1 sin ,X Y nt nt X Y nt nt                                    (4)

 

where ,nt  the angle of rotation, is the product mean motion n  and time t  of the problem, and the 

location of the infinitesimal body with respect to the primaries in the inertial frame, see Figure 1, is 

         
2 22 2

2 2

1 2
cos sin , 1 cos 1 sin .r X nt Y nt r X nt Y nt                          (5) 

 

Figure 1. The location of the infinitesimal body with respect to the primaries in the inertial frame. 

The ameneded potential U  and hence the inertial Lagrangian 
inertial

 is a time independent. To 

have a clearer insight into many behaviours of the RTBP epecifically the motion near the Lagrangian 

points, transform to a rotating system with coordinates   and   using 

cos sin ,

sin cos ,

X nt nt

Y nt nt

 

 

  


  
                                                       (6)

 

and the the corresponding velocities transform as 

 

1 

  

O 

1
r   



  

( , )
1 1

X Y

  2
r

  
nt

  

( , )X Y

 

( , )
2 2

X Y   
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cos sin sin cos ,

sin cos cos sin ,

X nt nt n nt n nt

Y nt nt n nt n nt

   

   

    


    
                                         (7) 

where   and   are the velocity components in the rotating system. The distances become 

    
22

2 2 2 2

1 2
, 1r r            ,                                     (8) 

and the new Lagrangian is 

     
2 21 1

, , ,
2 2

rotating
n n U            ,                                  (9) 

Where the amended potential U  is given by 

 
 

 

 

 
1 1 12 2

1/2 3/2
2 2 2 2

1 1
=

2 ( ) 2 ( )

q q An
U

 
 

     

 
  

   
 

   
2 2 2

1/2 3/2
2 2 2 2

.
( 1) 2 ( 1)

q q A 

     
 

     
                                         (10) 

The distances of the infinitesimal mass from the barycenter is given by
2 2

r    , and n  is given 

by 

2 3 3

1 22 2
1 A An    . 

Now, to formulate the Hamiltonian in terms of the generalized coordinates  , q
 
and their 

canonical conjugate momenta  ,p p
 

p , the follwing relations are required 

   , , , , , ,
, .

rotating rotating

p p
 

       

 

 
 

 
                            (11) 

From Eqs. (9) and (10), we can obtain 

,p n


                                                              (12) 

,p n


                                                               (13) 

solution for   and    yields 

,p n


                                                               (14) 
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.p n


                                                              (15) 

The Hamiltonian in the rotating frame is given as 

   , , , , , ,
rotating rotating

p p
 

            ,                                  (16) 

or, using Eq. (15), 

       , , , , , , .
rotating rotating

p p n p p n
   

                                    (17) 

Using Eqs. (9), (10) and (15), the Hamiltonian of the problem in terms of the generalized coordinates 

 , q  and the generalized  momenta  ,p p
 

p  can be written in the form 

 

   
 

 
12 2 2 2

1/2
2 2

11 1
, , ,

2 2 2 ( )
rotating

qn
p p n p n p

  


       

  


      

 
 

       

 

     
1 1 2 2 2

3/2 1/2 3/2
2 2 2 2 2 2

1
.

2 ( ) ( 1) 2 ( 1)

q A q q A  

        


  

       

   

(18) 

3. Transformed Hamiltonian near any equilibrium point 

At this point we are interested in the infintesimal orbits near any equilibrium point. 

Moving the origin to any point of equilibrium and denoting to the new coordinates and 

momenta be  1 2 1 2
, , ,

x x
x x P P , then from the gemetry illustrated in Figure 2, we have 

Li
r r r  ,                                                              (19) 

 

Figure 2. The location of the infinitesimal body with respect to the primaries in the inertial frame. 

from Eq. (19) 

1 2
= , = , 1,2,3,4,5

L Li i
x x i                                     (20) 
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where  , , 1, 2,3,4,5
L Li i

i    are the locations of the equilibruim points, given by Abd El-Salam, et 

al. [28], Abd El-Salam and Abd El-Bar [29,30], disregarding the relativistic effects in these works. 

The new momenta read 

1 2
= , = .

x L x Li i
p P n p P n

 
                                       (21) 

Now to obtain the Hamiltonian in the new coordinates, we substitute Eqs. (20) and (21) into Eq. (18) 

:  

       
2 2

1 2 2 1 1 11 2 1 2

1 1
, , , = 1

2 2
x Xx x x

x x P P P nx P nx q S      

       3 3

1 1 1 2 2 2 2 2

1 1
1

2 2
q A S q S q A S      ,                             (22)

 

where 

   

   

1 2 2

1 2

2 2 2

1 2

1
,

1
.

1

L Li i

L Li i

S

x x

S

x x

  

  


 

    


     

                                              (23) 

4. Perturbation approach and solutions 

We utilize an approach developed by Delva [21], and Hanslmeier [22]. They carried out the 

procedure with a differential operator D , the Lie operator, which is a special linear operator that 

produces a Lie series. The convergence of this latter series is the same as Taylor series, It merely 

represents another form of the Taylor series whose terms are generated by the Lie operator. We will 

use the Lie series form for two reasons. The first reason is: The requirement to build up a 

perturbative scheme at different orders of the orbital elements. The second reason is: Its usefulness 

also in treating the non-autonomous system of differential equations and non-canonical systems. This 

enables a rapid successive calculation of the orbit. In addition we can arbitrarily choose the stepsize 

easily (if necessary). This is an important advantage for the treatment of the problems which has a 

variable stepsize, e.g., for the mass change of the primaries. The formulas has an easy analytical 

structure and may be programmed without difficulty and without imposing extra conditions on the 

convergence. The iteration can be used to generate any desired order of solution, the series can be 

continued up to any satisfactory convergence reached. The Lie operator is defined as 

    
2

=1

= , , ,
xi i

i x i xi i
i

i xi

dPdx
D x P x P

x dt P dt t

   
      

= ,P
 

   x ,                   (24) 

Leibnitz formula can be used for computing the thn  derivative of a product, as 
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=0

!
= , =

!( )!

n m n m
n

n n

m mn m n m
m

d d g d h n
g z h z C C

dZ dZ dZ m n m




    

.                 (25) 

The thn  application of the Lie operator denoted by  n

D  takes the form 

 
2

=1 =0

=

n mn mm m n
n

xn n i i

m m n m m n m n
i m

i xi

d Pd x
D C

x dt P dt t



 

    
          

  
 .                              (26) 

Now using the canonical equations of motion 

=i

x i

dx

dt P




,                         =

x i

i

dP

dt x





, 

we can evaluate the derivatives 
n m

i

n m

d x

dt




, 

n m

x i

n m

d P

dt




 then we can reach to the solutions (coordinate and 

momentum vectors, x  and P  respectively) as; 

        

      

1 2
,0 0 0=0 =0

,0 0

1 2, ,0 0 0 0=0 =0
,0 0

( ) ( )
= ( ) = = ,

! !

( ) ( )
= ( ) .

! !

j j

t t D j j j

j j

j j

t t D j jj

x x
j j

t t t t
e D D x D x

j j

t t t t
e D D P D P

j j

 


 


 
 




  
   



 

 

= = P=P

= P=P

= P=P = P=P

= P=P

P P P

x x x x

x x

x x x x

x x

x x x

    

              (27) 

As is clear from Eq. (27), the applications of the Lie operator 
jD   at different orders are evaluated 

for the initial conditions of the canonical elements. 

5. Solutions at different orders 

In this section we are going to evaluate the solutions at different orders. From the definition of 

the operator  n

D , Eq. (26), we get the following explicit expressions  at different orders as follows. 

5.1. The first order solution 

Setting = 1n  in Eq. (26) we obtain the required coefficients in Eq. (27) to yield the first order. 

The required partial derivatives can be obtained using Eq. (22) as follows 

1 1 1 1 1 1 1 12

1

3 53
( ) (1 )( ) (1 )( )

2
x L Li i

n P nx q x S q A x S
x

     


          


 

2 1 2 2 2 1

3 5

2

3
( 1) ( 1)

2
L Li i

q x S q A x S             ,                                       (28.1) 

                    
2 1 2 1 1 1 2 11

2

3 53
( ) (1 )( ) (1 )( )

2
x L Li i

n P nx q x S q A x S
x
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2 2 2 2 2 2

3 5

2

3
( ) ( )

2
L Li i

q x S q A x S       ,                                                     (28.2)
 

21

1

( ),
x

x

P nx
P


 


                                                                         (28.3) 

12

2

( )
x

x

P nx
P


 


.                                                                         (28.4) 

Substituting Eqs. (28.1)–(28.4) into Eq. (26) and neglecting the very small magnitude terms yields 

 

 

 

 

2
1 1

1
0

2
1 1

2
0

2
1 1

1 0

2
1 1

2 0

,

,

,

.

i

i
i

i

i
i

i

x i
i

i

x i
i

D x

D x

D P

D P

















 



  


 

 


                                                                   (29) 

Where the nonvanishing included coefficients are given by 

1 2

0 1 1 1 1 1 11 1 2 2x x x x
x P x nP x P x nP x nx       

                              
3 2 5 2 2 2 3 5

1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 2
3 (3 2)q S x Aq S x n x nx x q S x x Aq S x x       

                            
2 5 3 3 5

1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(3 2) 3

L L L Li i i i
n x x Aq S x q S x q S x Aq S x       

                              
1 3 5 3 5 3 2 5 2

1 1 1 1 1 1 1 1 2 2 1 2 2 2 1 1 1 1 1 1 1 1
3 3 3q S x A q S x q S x A q S x q S x A q S x     

 

3 2 5 2 3 5 3

2 2 1 2 2 2 1 1 1 1 2 1 1 1 1 2 2 2 1 2
3 (3 2)q S x A q S x q S x x Aq S x x q S x x    

 

                               
5 3 5 5

2 2 2 1 2 1 1 1 1 1 1 1 2 2 2 1
(3 2) (3 2) (3 2)

L L Li i i
A q S x x q S x Aq S x A q S x     

 

                               
5 3 5 3 3

2 2 2 1 1 1 1 1 1 1 1 2 2 1 2 2 1
3 3

L L L L Li i i i i
A q S x q S x A q S x q S x q S x        

 

1 3 5 3 5

2 1 1 1 1 1 1 1 2 2 1 2 2 2 1
3 3q S x A q S x q S x A q S x      

               
1 2

0 2 2 2 2 2 1 2 1 21 1 2 2x x x x
x P x nP x P x nP x nx x n x x      

 

                        
3 5 2 2 2 3 2 5 2

1 1 1 2 1 1 1 1 2 2 2 1 1 2 1 1 1 2
( 23 3 )q S x x Aq S x x nx n x q S x Aq S x     

 

              
3 5 3 5

1 1 2 1 1 1 2 1 1 2 1 1 1 2
(3 2) 3

L L L Li i i i
q S x Aq S x q S x AqS x        

                                       
1 3 3 3 3 2 3 5 3 2

1 1 1 2 2 2 2 1 1 1 2 2 2 2 2 2 1 2 2 2 2 1 2 1 1 2
3q S x q S x q S x x q S x q S x x A q S x x q S x        
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5 2 5 2 3 5 3

1 1 1 2 2 2 2 2 1 1 2 1 1 1 2 2 2 2
(3 2) (3 2) (3 2)

L L Li i i
Aq S x A q S x q S x Aq S x q S x      

 

                              
5 5 3 5 3 5

2 2 2 2 2 2 2 2 1 1 2 1 1 1 2 2 2 2 2 2 2 2
3 (3 2) 3 3

L L L L Li i i i i
A q S x A q S x q S x Aq S x q S x A q S x         

 
1 5 3 3 5

2 1 1 1 2 1 1 2 2 2 2 2 2 2 2
3 3A q S x q S x q S x A q S x      

      
1 2 2 2 3

0 1 1 1 1 11 1 1 1 2 1 2 1 1 1x x x x x x x x x x
P P nP P P nP P nP x n P x P q S x         

5 2 3 5

1 1 1 1 2 2 1 1 2 1 1 1 21 1 1 1 1
3 (3 2)

x x x x x
A P q S x nP x n P x P q S x A P q S x      

5 3 5

1 1 1 1 1 1 1 11 1 1 1
(3 2) 3 3

x L x L x L x Li i i i
A P q S P q S A P q S P        

              
1 3 5 3 5 3 5

1 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 1 11 1 1 1 1 1
3 3 3

x x x x x x
P q S A P q S P q S A P q S P q S x A P q S x       

       
3 5 3 5 3

2 2 1 2 2 2 1 1 1 2 1 1 1 2 2 2 21 1 1 1 1
3 (3 2)

x x x x x
P q S x A P q S x P q S x A P q S x P q S x      

5 3 5 3

2 2 2 2 1 1 1 1 1 2 21 1 1 1
(3 2) (3 2)

x x L x L x Li i i
A P q S x P q S A P q S P q S       

5 3 5 5

2 2 2 1 1 1 1 1 2 2 21 1 1 1
(3 2) 3 3

x L x L x L x Li i i i
A P q S P q S A P q S A P q S        

1 3 5 3 5

2 1 1 1 1 1 2 2 2 2 21 1 1 1
3 3 ,

x x x x
P q S A P q S P q S A P q S      

      
1 2 2 2 3

0 1 1 1 1 12 1 2 1 2 2 2 2 2 2x x x x x x x x x x
P P P nP P P nP nP x n P x P q S x         

5 2 3 5

1 1 1 1 2 2 1 1 2 1 1 1 22 2 2 2 2
3 (3 2)

x x x x x
A P q S x nP x n P x P q S x A P q S x      

    
3 3 5 3 5

1 1 1 1 1 1 1 1 1 12 2 2 2 2
(3 2) 3

x L x L x L x L x Li i i i i
P P q S A P q S P q S A P q S          

1 3 5 3 5 5

1 1 1 1 1 1 2 2 2 2 2 1 1 1 12 2 2 2 2
3 3 3

x x x x x
P q S A P q S P q S A P q S A P q S x      

              
3 5 5 3

2 2 1 2 2 2 1 1 1 1 2 22 2

5

1 1 12 2 2
(3 2) 3 3

x x x L x Li ix Li
P q S x A P q S qA x A P q SP P Sq S        

               
3 5 3 3 5

1 1 2 2 2 2 2 2 1 1 1 1 1 22 2 2 2 2
(3 2) (3 2)

x L x x L x L xi i i
P q S A P q S x P q S P q S A P q S x       

                                
3 3 3

1 1 1 2 2 2 1 1 22 2 2x x x
P q S x P q S x P q S x  

   

                                 
1 3 5 3 5

2 1 1 1 1 1 2 2 2 2 22 2 2 2
3 3

x x x x
P q S A P q S P q S A P q S    . 

5.2. The second order solution 

Setting = 2n  in Eq. (26) we obtain the required coefficients in Eq. (27) to yield the second 

order solution as; 
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2

2 2

1 1 1

3 5 5

2 1 1 1 1 1

1

(1 ) 3 (1 )( ) (3 2) (1 )
Li

n q S q x S q A S
x


      


       

          
7 3 52 2

1 1 1 1 2 2 2 1 2
(15 2) (1 )( ) 3 ( 1)

L Li i
q A x S q S q x S                

72

2 2 2 2 2 1

5

2
(3 2) (15 2) ( 1)

Li
q A S q A x S        ,                                     (30.1) 

2

3 5 5

2

2 2

1 1 1 1 12 1 1

2

(1 ) 3 (1 )( ) (3 2) (1 )
Li

n q S q x S q A S
x


     


      

52 2

1 1 2 1 2 2 2 2 2

7 3(15 2) (1 )( ) 3 ( )
L Li i

q A x S q S q x S           

2

5 72

2 2 2 2 2 2
(3 2) (15 2) ( )

Li
q A S q A x S     ,                                              (30.2) 

       

2

1 1 2 1 1 1

1 2

5

1
3 (1 )( )( ) (15 2) (1 )( )

L L Li i i
q x x S q A x

x x


       





        

2 1 2 1 2

7 5

2
( ) 3 ( 1)( )

L L Li i i
x S q x x S            

2

7

2 1 2 2
(15 2) ( 1)( )

L Li i
q A x x S        ,                                                (30.3)

 

2

1 1

1
x x

P P 


 ,                                                                          (30.4) 

2

2 2

1
x x

P P 


 ,                                                                         (30.5) 

2

1 2

.
x

P
n

x 




                                                                            (30.6) 

Substituting Eqs. (30.1)–(30.6) into Eq. (26) and neglecting the very small magnitude terms yields 

yields the second order solution as 

 

 

 

 

2
2

1 ,2
0

2
2 2

2
0

2
2 2

1 0

2
2 2

2 0

,

,

,

.

i

i
i

i

i
i

i

x i
i

i

x i
i

D x

D x

D P

D P

















 



  


 

 


                                                             (31) 

Where the nonvanishing included coefficients are given by 
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2 2 2 3 2

0 1 1 2 1 2 1 11 1 1 2 2
2 2 2 2 2 2 2

x x x x x
P nP x n P x n x x n x x nP x n P x        

3 3 5 5 3

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 21 2 1 2
(3 2) (3 2)

x x x x
P q S x P q S x A P q S x A P q S x q S x x      

3 5 5 3

1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1
2 (3 2) 3

Li
nq S x x Aq S x x nAq S x x q S x      

3 5 5 5 2

1 1 1 1 1 1 1 1 1 1 1 1 1 11
(3 2) (3 2) 3

L L L x Li i i i
nq S x Aq S x nAq S x P q S x       

5 2 5 3 5 5 2

1 1 1 1 1 1 1 1 1 2 1 1 1 22 2
3 3 6 3

x L L x L Li i i i
P q S x nq S x P q S x x nq S x x        

    
5 2 7 2 5 2 2 7 2 2

1 1 1 1 1 1 1 1 1 1 1 1 1 12 2
3 (15 2) 3 (15 2)

x L x L L Li i i i
P q S x A P q S x nq S x nAq S x        

3 3 5 5

1 1 1 1 1 1 1 1 1 1 1 1 1 1
(3 2) (3 2)

L L L Li i i i
q S x nq S x Aq S x nAq S x        

5 2 5 5 5 2

1 1 1 1 1 1 2 1 1 1 2 1 1 1 21 1 2
6 3 3 3

x L x L x L Li i i i
P q S x P q S x x P q S x x nq S x x        

     
5 2 5 5 7

1 1 1 2 1 1 1 1 1 1 1 1 1 11 2 1
3 3 3 (15 2)

L x L L x L L x L Li i i i i i i
nq S x x P q S x P q S x A P q S x           

7 5 2 7 2

1 1 1 1 1 1 1 1 1 1 12
(15 2) 3 (15 2)

x L L L L L Li i i i i i
A P q S x nq S x nAq S x         

5 2 5 5 2

1 1 1 1 1 1 2 1 1 1 21
3 3 3

x L L L Li i i i
P q S x nq S x x nq S x x       

7 2 7 2 7

1 1 1 1 2 1 1 1 1 1 1 1 1 21
(15 2) (15 2) (15 2)

L x L L Li i i i
nAq S x x A P q S x nAq S x x       

    
2 3 3 3 3 5 5

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 2
(3 2) (3 2)

x x
q S x nq S x P q S x P q S x Aq S x nAq S x       

3 3 2 3 3 3 3

2 2 1 2 2 1 1 1 1 2 1 1 1 2 2 2 1 2 2 2 1 2
2 2q S x q S x q S x x nq S x x q S x x nq S x x       

      
5 3 3 5 5

2 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 (3 2) (3 2)

L L L Li i i i
nq S x x nq S x q S x nAq S x Aq S x         

5 5 3 5

1 1 1 1 1 1 2 2 1 2 2 2 11 2
3 3 (3 2)

x L x L L Li i i i
P q S x P q S x q S x A q S x        

5 5 3 2 3 2 3

2 2 2 1 2 2 1 2 2 1 2 2 1 1 1 1 21
(3 2) 3 2

L x Li i
nA q S x P q S x nq S x q S x q S x x       

                          
3 3 3 3 5

1 1 1 2 2 2 1 2 1 1 1 2 2 1 2 2 12
2 3

L L x Li i i
nq S x x q S x x nq S x nq S x P q S x        

5 2 5 2 5 5 2

1 1 1 2 2 1 2 2 1 2 1 1 12
3 3 3 3

L L L x Li i i i
nq S x nq S x nq S x x P q S x        

5 2 5 2 2 5 5

2 2 1 1 1 1 1 1 1 1 1 1 1 12
3 3 (3 2) (3 2)

x L L L Li i i i
P q S x nq S x nAq S x Aq S x        

5 3 5 5

1 1 1 2 2 1 2 2 2 1 2 2 2 11
6 (3 2) (3 2)

x L L L Li i i i
P q S x nq S x A q S x nA q S x        

            
5 5 3 5 5 2

2 2 1 1 1 1 2 2 2 1 2 2 1 2 2 2 1 21
6 6 6 3

x L L L L Li i i i i
P q S x nq S x x q S x nq S x x nq S x x          
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5 2 5 5 5

2 2 1 1 1 1 1 1 1 2 2 2 1 22
3 3 3 3

L L x L L L L L Li i i i i i i i
nq S x P q S x nq S x x nq S x x            

                          
5 2 5 2 5 2 5 2

1 1 1 1 1 1 2 2 1 1 1 1 21 1
3 3 3 3

L L x L x L Li i i i i
nq S x P q S x P q S x nq S x x         

2 2 3 2 3 3 3

2 1 1 1 1 1 1 1 1 1 1 1 1
q S x n q S x q S x nq S x       

   
2 2 2 3

0 1 2 2 2 2 1 1 1 22 1 1 2 2
2 2 2 2 2 2

x x x x x
P nx nP x n P x nP x n P x q S x x        

3 5 5 2 3

1 1 2 1 1 1 2 1 1 1 2 1 2 1 21 1 2
(3 2) (3 2) 2 2

x x x
P q S x A P q S x A P q S x n x x n x x      

 
3 5 5 3 3

1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 2 1 1 2
2 (3 2) 3

L Li i
nq S x x Aq S x x nAq S x x q S x nq S x       

 
3 2 3 2 3 2 2 2 5 2 5 2

2 1 1 2 1 1 2 2 1 1 1 2 1 1 1 2
2 2 2 (3 2) 3n x q S x nq S x n x Aq S x nAq S x       

 
5 5 3 5

1 1 1 2 1 1 1 2 2 2 2 1 1 1 21
(3 2) (3 2) 3

L L L x Li i i i
Aq S x nAq S x n q S x P q S x x         

 
5 5 2 7 2 5 2

1 1 1 2 1 1 2 1 1 1 1 2 1 1 1 22 2
3 6 (15 2) 3

x L x L L Li i i i
P q S x x P q S x nAq S x x nq S x x        

 
5 2 7 2 5 2 5 2

1 1 1 2 1 1 1 2 1 1 1 2 1 1 22 2
3 (15 2) 3 3

L x L L x Li i i i
nq S x x A P q S x nq S x x P q S x        

        
5 3 3 5 3

1 1 1 2 1 1 2 1 1 2 1 1 1 2 2 2 2
(3 2) (3 2)

L L L L Li i i i i
Aq S x q S x nq S x nAq S x q S x           

 
5 5 2 5 2 7

1 1 1 2 1 1 2 1 1 2 1 1 1 21 1 2 2
6 3 3 (15 2)

x L x L x L x L Li i i i i
P q S x x P q S x P q S x A P q S x         

 
5 2 5 3 5 7

1 1 1 2 1 1 2 1 1 2 1 1 1 1 21
3 3 3 (15 2)

L L x L L L Li i i i i i
nq S x x nq S x P q S x nAq S x x          

7 2 5 5 2 5 2

1 1 1 2 1 1 2 1 1 2 1 1 22 1
(15 2) 3 3 3

L L x L L L L x Li i i i i i i
nAq S x P q S x nq S x P q S x           

                         
7 5 2 2 5 3

1 1 1 2 1 1 2 1 1 1 2 1 1 21
(15 2) 3 3

x L L L L L Li i i i i i
A P q S x nq S x nq S x x q S x           

3 7 2 7 2 2

1 1 2 1 1 1 2 1 1 1 22 1
(15 2) (15 2)

x x L Li i
P q S x A P q S x nAq S x     

    
2 3 3 3 3 5 5

1 1 1 2 1 1 2 1 1 2 1 1 1 1 1 2 1 1 1 21 2
(3 2) (3 2)

x x
q S x nq S x P q S x P q S x Aq S x nAq S x       

        
3 3 3 3 5 5

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 21 2
(3 2) (3 2)

x x
q S x nq S x P q S x P q S x A q S x nA q S x       

3 2 3 2 5 3 5 3

1 1 2 1 1 2 1 1 1 1 2 2 2 1 2 2 2 2 1 1 1 21
2 (3 2) 3

x
q S x nq S x Aq S x x q S x x P q S x q S x x       

      
3 3 3 2 3 2 5 2 3

1 1 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 1 1 2
2 2 2 3

Li
nq S x x nq S x x q S x nq S x nq S x q S x        

3 5 5 5

1 1 2 1 1 1 2 1 1 1 2 1 1 21
(3 2) (3 2) 3

L L L x Li i i i
nq S x Aq S x nAq S x P q S x        

5 5 5 3

1 1 2 2 2 2 2 2 2 2 2 2 2 22
3 (3 2) (3 2)

x L L L Li i i i
P q S x A q S x nA q S x q S x        
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5 5 5 5

2 2 2 2 2 2 1 1 1 2 2 2 1 21 2
3 3 3 3

x L x L L Li i i i
P q S x P q S x nq S x x nq S x x        

5 2 5 2 5 2 5 2

2 2 2 1 1 2 2 2 2 1 1 1 22 2
3 3 3 3

L x L x L Li i i i
nq S x P q S x P q S x nq S x x        

3 5 5 5

1 1 2 1 1 1 2 1 1 1 2 1 1 21
(3 2) (3 2) 6

L L L x Li i i i
nq S x Aq S x nAq S x P q S x        

3 5 5 5 2

2 2 2 2 2 2 2 2 2 2 2 1 1 2
(3 2) (3 2) 6

L L L Li i i i
nq S x A q S x nA q S x nq S x        

5 2 5 5 5

2 2 2 1 1 2 2 2 2 1 1 21 1 2
6 3 6 3

L x L L x L x L Li i i i i i
nq S x P q S x P q S x P q S x          

5 5 5 2 2 5 2

2 2 2 2 2 2 1 1 2 2 2 21 2 1
3 3 3 3

x L L x L L L x Li i i i i i
P q S x P q S x nq S x P q S x          

5 2 5 2 5 5 2 2

1 1 2 1 1 2 1 1 1 2 2 2 21
3 3 3 3

L L x L L L Li i i i i i
nq S x P q S x nq S x x nq S x          

5 2 5 5 2 5 2

2 2 2 2 2 1 2 1 1 2 2 2 1 2
3 3 3 3

L L L L L Li i i i i i
nq S x nq S x x nq S x nq S x x          

2 2 3 2 3 2 3 2 3

2 2 2 2 2 2 2 1 1 2 1 1 2
q S x n q S x q S x n q S x        

   
2 2 2 3 3 2 5 3

0 2 1 1 1 1 1 1 2 1 1 11 2 1 1 1 2 1 1
2 2 3 2

x x x x x x x x L xi
nP P n P P P q S P P q S P q S x nP q S x       

     
5 2 2 3 3 3

1 1 1 1 1 1 1 1 1 1 1 11 2 1 1 1 2
(3 2) 2 2 2 2 2

x x x x x x
A P P q S n x n P x n P x q S x P q S x nP        

2 5 5 5 5 2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 21 1 1 1
(3 2) 3 (3 2) 3 2

x x x x
A P q S Aq S x A P q S x nA P q S x n P x      

3 3 3 5 5

2 1 1 2 1 1 2 1 1 1 2 1 1 1 21 1 1 1 1
2 2 (3 2) 3

x x x x x
n P x P q S x nP q S x A P q S x nA P q S x      

   
7 2 3 5 5

1 1 1 1 1 1 1 1 1 1 1 11 1 1 1
(15 2) (3 2) (3 2)

x L x L x L x Li i i i
nA P q S x nP q S A P q S nA P q S        

     
2 5 7 2 3 5 2

1 1 1 1 1 1 1 1 1 1 2 1 11 1 2 1 1 1

53 (15 2) 3
x L x x L x L x L x x Li i i i i

P q S x A P P q S P q S nP q S P P q S          

5 5 5 2 5 2 2

1 1 1 1 1 1 1 1 1 1 1 11 1 1 1
3 (3 2) (3 2) 6 2

L x L x L x L xi i i i
Aq S A P q S nA P q S P q S x n P         

      
2 5 2 5 3 2 5 5

1 1 1 1 1 2 1 1 1 1 1 11 1 1 1 2
3 3 2 3 3

x L x L L x L L x x L Li i i i i i i
P q S nP q S x x q S P q S P P q S            

2 7 7 7

1 1 1 1 1 1 1 1 1 11 1 2 1
(15 2) (15 2) (15 2)

x L L x x L L x L Li i i i i i
A P q S A P P q S nA P q S x         

5 2 7 2 3 5 2 2

1 1 2 1 1 1 1 1 1 1 21 1 1 1 1
3 (15 2) 3 2

x L L x L x L x L xi i i i i
nP q S x A P q S P q S nP q S x nP          

5 2 7 2 5 3 3

1 1 2 1 1 1 2 1 1 2 1 11 1 1 2 1
3 (15 2) 3 3

x L x L x x L x Li i i i
nP q S x nA P q S x P P q S x P q S       

3 3 3 3 5 7

1 1 2 2 1 1 1 1 1 1 21 1 1
2 3 3 (15 2)

x L L x L L x L Li i i i i i
nP q S q S nP q S x nA P q S x           

2 3 3 5 5 3

1 1 1 1 1 1 1 1 1 1 1 1 21 1 1 1
(3 2)3

x L x L L x L x Li i i i i
P q S nP q S Aq S A P q S nP q S           
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5 5 3 5 5 2

1 1 1 2 2 2 1 2 2 2 2 2 2 2 11 1 1
(3 2) 3 3 3

x L x L L x Li i i i
nA P q S A q S x nP q S A q S nP q S x         

5 3 2 5 5 5

2 2 2 2 2 2 2 1 1 2 2 2 21 1 1 1
(3 2) 2 6 6 6

x L L x L x L x Li i i i i
nA P q S q S P q S nP q S x nP q S x          

      
2 5 5 5 2 5 2 3

1 1 1 1 1 1 2 1 1 2 21 1 2 1 1 1
3 3 3 3

x L L x x L L x L L x L xi i i i i i i
P q S P P q S nP q S x P q S nP q S            

5 5 2 5 2 5 2

1 1 1 2 2 2 2 2 1 1 21 1 1 1
(3 2) (3 2) 3 3

x L x L x L x Li i i i
nA P q S A P q S P q S nP q S x        

5 2 5 3 3 2 5 3

2 2 2 2 2 2 1 1 2 2 2 21 1 1 1
3 3 3 3

x L x L L L x L L xi i i i i i
nP q S x nP q S x q S P q S P q S           

5 5 5 5

2 2 1 1 1 2 2 1 1 1 11 2 1 1 1
3 3 3 (3 2)

x x L L x L L x L L xi i i i i i
P P q S nP q S x nP q S x nA P q S          

3 3 3 2 3 3 5 5

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 2 1
2 3 (3 2)

x x x x x x
q S P q S nP q S P q S P P q S Aq S A P q S        

3 3 5 5 5 2 3

2 2 2 2 2 2 2 2 2 2 2 2 2 2 21 2 1 1 1
2 3 (3 2) (3 2)

x x x x x
q S P P q S A q S A P q S nA P q S P q S       

3 3 3 5 3 3

1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 2 2 11 1 1
2 2 3 2

x x x
q S x P q S x nP q S x A q S x q S x P q S x       

3 3 3 2 5 3 3

1 1 2 2 2 2 2 2 1 2 2 1 1 2 2 21 1 1 1 1 1
2 2 3

x x x x x x Li
nP q S x P q S x nP q S x P q S P q S x P q S        

5 3 5 3 2 5

1 1 1 2 2 2 2 2 2 1 1 1 11 1 1 1 1
(3 2) 2 3 3

x L x x x L x Li i i
A P q S nP q S x nP q S x P q S P q S        

5 5 5 2 3

2 2 2 1 1 2 2 2 21 1 2 1 2 1
(3 2) 3 3

x L x x L x x L x Li i i i
A P q S P P q S P P q S nP q S        

2 5 5 5 7 2

12 2 1 2 21 21 2 21 2 1 1
3 3 3 (3 2)

x L x x L x L x Li i i i
P q S P P q S nP q S nA P Sx q        

5 3 3

1 1 1 2 1 1 21 1 1 1

5

1 2 2 2 2
3 3 6 3

x L x L x x L x Li i i i
nP q S nP q S P Px q S nP qx S x        

5

1 2

2 2 5

1 1 2 2 1 1

2 5 5

1 11 1 1 2 1 12
3 3 3 3

x L x x L x x L x Li i i i
nP q S P P q S P P q S nP Sx xqx         

7 2 2 2 5

1 1 1 1 1

5 3 3

1 1 1 2 21 11 1 1 1
3 23 6

x L x L L x L x Li i i i i
nP q S xnP q S q S P q S P q S        

   
52 3 2 3 3 3

2

3

1

5

2 2

3

1 1 1 1 1 2 2 2 21 1 1 1 1 2 21 21
2 2 3 3

x x x x
P nP qq S q S nP q S q S P S S Aq S Aq q S        

2 2 2 2 2 3 2 3 3

0 1 1 1 1 1 1 11 2 1 2 2 2 1 2 2 2
2 2 2 2

x x x x x x x x x x
nP P n P P nP n P P P q S P q S P q S x         

5 2 5 2 3 3

1 1 1 1 1 1 1 1 1 1 11 2 2 2 2 2
(3 2) (3 2) 2 2 2

x x x x x x
A P P q S A P q S n P x n P x nP q S x      

5 5 2 2 3 3

1 1 1 1 1 1 1 1 2 2 2 1 1 22 2 2 2
(3 2) 3 2 2 2 2

x x x x
A P q S x nA P q S x n x n P x n P x q S x       

3 3 5 3 5

1 1 2 1 1 2 1 1 1 2 1 1 1 1 1 22 2 2 2
2 3 (3 2)

x x x L xi
P q S x nP q S x Aq S x P q S A P q S x      

5 5 3 3 5

1 1 1 2 1 1 1 1 1 1 1 1 1 12 2 2
3 3 2 (3 2)

x L L x L x Li i i i
nA P q S x A q S q S nP q S nA P q S         
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5 5 5 2 2 5

1 1 1 1 1 1 1 1 1 1 1 22 1 2 2 2
(3 2) 3 3 6

x L x x L x L x Li i i i
A P q S P P q S x nP q S x P q S x        

5 2 5 5 2 5

1 1 2 1 1 2 1 1 2 1 11 2 2 2 1 2 1
3 3 3 3 2

x x L x L x L x x L L xi i i i i
P P q S x P q S x nP q S x P P q S nP          

5 2 5 2 2 7 5 2

1 1 1 1 1 1 1 1 1 21 2 1 2 2 2
3 3 (15 2) 3

x x L x x L x L L x Li i i i i
P P q S P P q S A P q S nP q S x          

7 5 7 2 3

1 1 1 1 1 1 1 1 1 1 1 12 2 1 2 2
(15 2) 3 (15 2)

x L L x L L x x L x Li i i i i i
nA P q S x nP q S x A P P q S P q S          

5 5 2 5 2 2 7 2

1 1 2 1 1 1 2 1 1 1 1 12 2 2 2
3 3 3 (15 2)

x L L x L x L x Li i i i i
nP q S x nP q S x x P q S A P q S         

7 2 5 2 5 3

1 1 1 1 1 1 1 1 1 1 1 12 2 2 2
(15 2) 3 (3 2)

x L x L x L x Li i i i
nA P q S x nP q S x A P q S nP q S        

5 5 5 2 5

1 1 1 1 1 1 1 1 1 2 1 11 2 2 2 2
6 (3 2) 3 3

x x L x L x L x L Li i i i i
P P q S x nA P q S nP q S x x P q S         

2 5 5 2 3 3 3 3

1 1 1 1 1 1 1 1 1 1 1 1 1 1 12 2 2 2 2 1 2
(3 2) (3 2)

x x x x x x x
A P q S nA P q S P q S P q S nP q S P P q S      

3 3 3 2 3 5 5

2 2 2 2 2 2 2 2 2 2 2 2 2 22 2 1 2 2 2 2
(3 2) (3 2)

x x x x x x x
P q S nP q S P P q S P q S A P q S nA P q S       

5 3 3 3 3 3

2 2 1 1 1 1 1 1 2 2 1 2 2 1 1 1 21 2 2 2 2 2
3 2 2 2

x x x x x x
P P q S P q S x nP q S x P q S x nP q S x q S x       

3 3 5 3 3 3

1 1 2 1 1 2 1 1 1 2 2 2 2 2 2 2 2 2 22 2 2 2
2 3 2 2

x x x x
P q S x nP q S x A q S x q S x P q S x nP q S x       

3 3 5 5 3 3

1 1 2 2 2 2 2 2 2 2 2 1 1 1 12 2 2
2 3 3 2

x L L x L x Li i i i
P q S q S A q S x nP q S x q S nP q S          

5 5 5 5

1 1 1 1 1 1 1 1 1 1 12 2 1 2
3 (3 2) (3 2) 3

L x L x L x x Li i i i
Aq S A P q S nA P q S P P q S        

3 3 5 5 5

2 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2
3 (3 2) (3 2)

x L x L L x L x Li i i i i
P q S nP q S A q S A P q S nA P q S          

   
5 2 5 5 5 5

2 2 2 2 1 1 1 2 2 1 1 1 21 2 2 2 2 2
3 3 3 3 3

x x L x L x L x L x Li i i i i
P P q S P q S nP q S x nP q S x nP q S x          

5 2 5 2 2 5 2 5 2 5

2 2 2 1 1 2 2 1 1 1 1 12 2 2 2 1 2
3 3 3 3 6

x L x L x L x L x x Li i i i i
nP q S x P q S P q S n P q S x P P q S           

5 2 3 5 5 3

2 2 1 1 1 1 1 1 1 1 1 2 22 2 2 2 2
3 (3 2) (3 2)

x L x L x L x L x Li i i i i
nP q S x n P q S A P q S nA P q S P q S           

3 5 5 5 3

2 2 2 2 2 2 2 2 2 2 1 12 2 2 1 2 2
(3 2) (3 2) 6

x L x L x L x x L x Li i i i i
nP q S A P q S nA P q S P P q S P q S          

5 5 5 2 5 5 2

1 1 2 2 2 1 1 1 1 1 2 22 2 1 2 2 1 2
6 3 3 3 3

x L x L L x x L L x L L x x Li i i i i i i i
nP q S x nP q S x P P q S P q S P P q S             

2 5 5 5 5 2

2 2 2 2 2 2 2 1 1 22 1 2 2 2
3 3 3 3

x L L x x L L x L L x Li i i i i i i
P q S P P q S nP q S x nP q S x           

5 2 5 5 5 2 5

2 2 2 1 1 2 1 1 1 2 2 2 1 12 2 2 2 2
3 3 3 6 3

x L x L L x L L x L x Li i i i i i i
nP q S x nP q S x nP q S x nP q S x P q S          

 

2 3 3 3 3

2 1 1 1 1 2 2 2 22 2 2 2x x x x
P q S nP q S P q S nP q S      



8160 

Mathematical Biosciences and Engineering                                                            Volume 16, Issue 6, 8144–8161. 

6. Conclusion 

We can conclude our work in this research as follows: First we have outlined briefly the 

restricted three body problem, then we defined the infinitesimal orbits. We expressed the 

photogravitational oblate RTBP in both inertial and rotated coordinate systems. The Hamiltonian of 

the problem under investigation is constructed. Then it is transferred to any point of the equilibruim 

point as an origin. We have reviewed the Lie operator method, as a method of solution. Finally we 

have obtained the explicit first order as well as the second order solutions for the coordinates and 

their conjugate momenta of a test particle in an infinitesimal orbit around any equilibrium point. 
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