Citation: Songyu Hu, Ruifeng Hu, Liping Tang, Weiwei Jiang, Banglin Deng. Quantitative generation of microfluidic flow by using optically driven microspheres[J]. Mathematical Biosciences and Engineering, 2019, 16(6): 6696-6707. doi: 10.3934/mbe.2019334
[1] | L. H. Hung and A. P. Lee, Microfluidic devices for the synthesis of nanoparticles and biomaterials, J. Med. Biol. Eng., 27(2007), 1–6. |
[2] | P. Yager, T. Edwards, E. Fu, et al., Microfluidic diagnostic technologies for global public health, Nature, 442(2006), 412–418. |
[3] | J. Mairhofer, K. Roppert and P. Ertl, Microfluid systems for pathogen sensing: A review, Sensors, 9(2009), 4804–4823. |
[4] | M. Shamsi, M. Saghafian, M. Dejam, et al., Mathematical modeling of the function of Warburg effect in tumor microenvironment, Sci Rep, 8(2018), 8903. |
[5] | M. Shamsi, A. Sedaghatkish, M. Dejam, et al., Magnetically assisted intraperitoneal drug delivery for cancer chemotherapy, Drug Deliv., 25(2018), 846–861. |
[6] | J. L Li, D. Day and M. Gu, Design of a compact microfluidic device for controllable cell distribution, Lab Chip, 10(2010), 3054–3057. |
[7] | Q. Wang, L. Huang, K. Wen, et al., The mean and noise of stochastic gene transcription with cell division, Math. Biosci. Eng., 15(2018), 1255–1270. |
[8] | R. Dhumpa and M. G. Roper, Temporal gradients in microfluidic systems to probe cellular dynamics: a review, Anal Chim Acta., 19(2012), 9–18. |
[9] | Ahmed and J. I. Siddique, The effect of magnetic field on flow induced-deformation in absorbing porous tissues, Math. Biosci. Eng., 16(2019), 603–618. |
[10] | M. Dejam, H. Hassanzadeh and Z. Chen, Shear dispersion in combined pressure-driven and electro-osmotic flows in a channel with porous walls, Chem. Eng. Sci., 137(2015), 205–215. |
[11] | V. Faustino, S. O. Catarino, R. Lima, et al., Biomedical microfluidic devices by using low-cost fabrication techniques: a review, J. Biomech., 49(2016), 2280–2292. |
[12] | K. S. Tee, M. S. Saripan, H. Y. Yap, et al., Development of a mechatronic syringe pump to control fluid in a microfluidic device based on polyimide film, IOP Conference Series: Materials Science and Engineering, 226(2017), 012031. Available from: https://iopscience.iop.org/article/10.1088/1757-899X/226/1/012031/meta |
[13] | T. Bayraktar and S. B. Pidugu, Characterization of liquid flows in microfluidic systems, Int. J. Heat Mass Transf., 49(2006), 815–824. |
[14] | M. P. Hughes, Strategies for dielectrophoretic separation in laboratory on-a-chip systems, Electrophoresis, 23(2002), 2569–2582. |
[15] | F. Petersson, L. Aberg, A. M. Swärd-Nilsson, et al., Free flow acoustophoresis: microfluidic-based mode of particle and cell separation, Anal. Chem., 79(2007), 5117–5123. |
[16] | S. Kim and K. Ishiyama, Magnetic robot and manipulation for active locomotion with targeted drug release, IEEE-ASME Trans.Mechatron., 19(2014), 1651–1659. |
[17] | C. Pawashe, S. Floyd and M. Sitti, Modeling and experimental characterization of an untethered magnetic micro-robot, Int. J. Robot. Res., 28(2009), 1077–1094. |
[18] | J. Köhler, R. Ghadiri, S. I. Ksouri, et al., Generation of microfluidic flow using an optically assembled and magnetically driven microrotor, J. Phys. D. Appl. Phys., 47(2014), 505501. |
[19] | X. Wang, X. Gou, S. Chen, et al., Cell manipulation tool with combined microwell array and optical tweezers for cell isolation and deposition, J. Micromech. Microeng., 23(2013), 075006. |
[20] | A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, et al., Observation of a single-beam gradient force optical trap for dielectric particles, Opt. Lett., 11(1986), 288–290. |
[21] | K. Svoboda and S. M. Block, Biological applications of optical forces, Annu. Rev. Biophys. Biomol. Struct., 23(1994), 247–285. |
[22] | D. McGloin, Optical tweezer: 20 years on, Phil. Trans. R. Soc. A, 364(2006), 3521–3537. |
[23] | T. Yang, Y. Chen and P. Minzioni, A review on optical actuators for microfluidic systems, J. Micromech. Microeng., 27(2017), 123001. |
[24] | A. Terray, J. Oakey and D. W. M. Marr, Microfluidic control using colloidal devices, Science, 296(2002), 1841–1844. |
[25] | S. L. Neale, M. P. MacDonald, K. Dholakia, et al., All-optical control of microfluidic components using form birefringence, Nat. Mater., 4(2005), 530–533. |
[26] | S. Maruo and H. Inoue, Optically driven micropump produced by three-dimensional two-photon microfabrication, Appl. Phys. Lett., 89(2006), 144101. |
[27] | U. G. Būtaitė, G. M. Gibson, Y. L. Ho, et al., Indirect optical trapping using light driven micro-rotors for reconfigurable hydrodynamic manipulation, Nat. Commun., 10(2019), 1215. |
[28] | J. Leach, H. Mushfique, R. d. Leonardo, et al., An optically driven pump for microfluidics, Lab Chip, 6(2006), 735–739. |
[29] | T. Wu, T. A. Nieminen, S. Mohanty, et al., A photon-driven micromotor can direct nerve fibre growth, Nat. Photonics, 6(2012), 62–67. |
[30] | C. Liu, S. Li, B. Ji and B. Huo, Flow-induced migration of osteoclasts and regulations of calcium signaling pathways, Cell. Mol. Bioeng., 8(2015), 213–223. |
[31] | B. Roy, T. Das, D. Mishra, et al., Oscillatory shear stress induced calcium flickers in osteoblast cells, Integr. Biol., 6(2014), 289–299. |
[32] | Y. Xin, X. Chen, X. Tang, et al., Mechanics and actomyosin-dependent survival and chemoresistance of suspended tumor cells in shear flow, Biophys. J., 116(2019), 1803–1814. |
[33] | S. Hu and D. Sun, Automatic transportation of biological cells with a robot-tweezer manipulation system, Int. J. Robot. Res., 30(2011), 1681–1694. |
[34] | S. Hu, S. Chen, S. Chen, et al., Automated transportation of multiple cell types using a robot-aided cell manipulation system with holographic optical tweezers, IEEE-ASME Trans. Mechatron., 22(2017), 804–814. |
[35] | S. Chowdhury, P. Švec, C. Wang, et al., Automated cell transport in optical tweezers-assisted microfluidic chambers, IEEE Trans. Autom. Sci. Eng., 10(2013), 980–989. |
[36] | X. Li and C. C. Cheah, A simple trapping and manipulation method of biological cell using robot-assisted optical tweezers: singular perturbation approach, IEEE Trans. Ind. Electron., 64(2017), 1656–1663. |
[37] | S. Liu, D. Sun and C. Zhu, A dynamic priority based path planning for cooperation of multiple mobile robots in formation forming, Robot. Comput-Integr. Manuf., 30(2014), 589–596. |
[38] | X. Li, H. Yang, J. Wang, et al., Design of a robust unified controller for cell manipulation with a robot-aided optical tweezers system, Automatica, 55(2015), 279–286. |
[39] | P. Kundu, I. Cohan and D. Dowling, Fluid mechanics, 5th edition, Academic Press, Berlin (2012). |