Citation: Sharon L. Truesdell, Marnie M. Saunders. Bone remodeling platforms: Understanding the need for multicellular lab-on-a-chip systems and predictive agent-based models[J]. Mathematical Biosciences and Engineering, 2020, 17(2): 1233-1252. doi: 10.3934/mbe.2020063
[1] | B. Clarke, Normal bone anatomy and physiology, J. Am. Soc. Nephrol., 3 (2008), S131-S139. |
[2] | J. Kenkre and J. Bassett, The bone remodelling cycle, Ann. Clin. Biochem., 55 (2018), 308-327. |
[3] | L. G. Raisz, Physiology and pathophysiology of bone remodeling, Clin. Chem., 45 (1999), 1353-1358. |
[4] | D. J. Hadjidakis and I. I. Androulaskis, Bone remodeling, Ann. N. Y. Acad. Sci, 1092 (2006), 385-396. |
[5] | E. L. George, S. L. Truesdell, S. L. York, et al., Lab-on-a-chip platforms for quantification of multicellular interactions in bone remodeling, Exp. Cell Res., 365 (2018), 106-118. |
[6] | W. Zhang, C. Green and N. S. Stott, Bone morphogenetic protein-2 modulation of chondrogenic differentiation in vitro involves gap junction-mediated intercellular communication, J. Cell Physiol., 193 (2002), 233-243. |
[7] | J. Ilvesaro, K. Väänänen and J. Tuukkanen, Bone-resorbing osteoclasts contain gap-junctional connexin-43, J. Bone Miner. Res., 15 (2000), 919-926. |
[8] | S. H. Park, W. Y. Sim, B. H. Min, et al., Chip-based comparison of the osteogenesis of human bone marrow- and adipose tissue-derived mesenchymal stem cells under mechanical stimulation, PLoS ONE, 7 (2012), e46689. |
[9] | Y. Zhang, Z. Gazit, G. Pelled, et al., Patterning osteogenesis by inducible gene expression in microfluidic culture systems, Integr. Biol., 3 (2010), 39-47. |
[10] | B. J. Taylor, A. Howell, K. A. Martin, et al., A lab-on-chip for malaria diagnosis and surveillance, Malar. J., 13 (2014), 179. |
[11] | S. Wang, A. Ip, F. Xu, et al., Development of a microfluidic system for measuring HIV-1 viral load, Proc. SPIE, 7666 (2010), 76661H. |
[12] | M. Wheeler and M. Rubessa, Integration of microfluidics and mammalian IVF, Mol. Hum. Reprod., 23 (2016), 248-256. |
[13] | E. K. Sackmann, A. L. Fulton and D. J. Beebe, The present and future role of microfluidics in biomedical research, Nature, 507 (2014), 181-189. |
[14] | D. Huh, B. D. Matthews, A. Mammoto, et al., Reconstituting organ-level lung functions on a chip, Science, 328 (2010), 1662-1668. |
[15] | R. Baudoin, L. Griscom, M. Monge, et al., Development of a renal microchip for in vitro distal tubule models, Biotechnol. Prog., 23 (2007), 1245-1253. |
[16] | K. J. Jang and K. Y. Suh, A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells, Lab Chip, 10 (2010), 36-42. |
[17] | L. L. Bischel, E. W. Young, B. R. Mader, et al., Tubeless microfluidic angiogenesis assay with three-dimensional endothelial-lined microvessels, Biomaterials, 34 (2013), 1471-1477. |
[18] | M. Tsai, A. Kita, J. Leach, et al., In vitro modeling of the microvascular occlusion and thrombosis that occur in hematologic diseases using microfluidic technology, J. Clin. Invest., 122 (2012), 408-418. |
[19] | M. M. Saunders, Lab-on-a-chip (LOC) for biomimetic bone remodeling, (2018), US Pat. Appl., 1151. |
[20] | K. S. Shah, S. L. York, P. Sethu, et al. Developing a microloading platform for applications in mechanotransduction research, Mechanics of Biological Systems and Materials, Volume 5, Conference Proceedings of the Society for Experimental Mechanics Series, New York: Springer International Publishing, (2013), pp. 197-205. |
[21] | S. L. York, A. R. Arida, K. S. Shah, et al., Osteocyte characterization on polydimethylsiloxane substrates for microsystems applications, J. Biomim. Biomater. Tissue Eng., 16 (2012), 27-42. |
[22] | S. L. York, J. D. King, A. S. Pietros, et al. Development of a microloading platform for in vitro mechanotransduction studies, Mechanics of Biological Systems and Materials, Volume 7, Conference Proceedings of the Society for Experimental Mechanics Series, New York: Springer International Publishing, (2015), pp. 53-59. |
[23] | S. L. York, P. Sethu and M. M. Saunders, In vitro osteocytic microdamage and viability quantification using a microloading platform, Med. Eng. Phys., 38 (2016), 1115-1122. |
[24] | J. D. King, S. L. York and M. M. Saunders, Design, fabrication and characterization of a pure uniaxial microloading system for biologic testing, Med. Eng. Phys., 38 (2016), 411-416. |
[25] | S. L. Truesdell, E. L. George, C. E. Seno, et al., 3D printed loading device for inducing cellular mechanotransduction via matrix deformation, Exp. Mech., 59 (2019), 1223-1232. |
[26] | J. D. King, D. Hayes, K. Shah, et al. Development of a multi-strain profile for cellular mechanotransduction testing, Mechanics of Biological Systems and Materials, Volume 7, Conference Proceedings of the Society for Experimental Mechanics Series, New York: Springer International Publishing, (2015), pp. 61-67. |
[27] | S. L. York, P. Sethu and M. M. Saunders, Impact of gap junctional intercellular communication on MLO-Y4 sclerostin and soluble factor expression, Ann. Biomed. Eng., 44 (2016), 1170-1180. |
[28] | J. M. Delaisse, The reversal phase of the bone-remodeling cycle: Cellular prerequisites for coupling resorption and formation, Bonekey Rep., 3 (2014), 561. |
[29] | N. A. Sims and T. J. Martin, Coupling the activities of bone formation and resorption: A multitude of signals within the basic multicellular unit, Bonekey Rep., 3 (2014), 481. |
[30] | R. Hambli, H. Katerchi, C. L. Benhamou, et al., Multiscale methodology for bone remodelling simulation using coupled finite element and neural network computation, Biomech. Model. Mechanobiol., 10 (2011), 133-145. |
[31] | S. Ilic, K. Hackl and R. Gilbert, Application of the multiscale FEM to the modeling of cancellous bone, Biomech. Model. Mechanobiol., 9 (2010), 87-102. |
[32] | M. D. Ryser, N. Nigam and S. V. Komarova, Mathematical modeling of spatio-temporal dynamics of a single bone multicellular unit, J. Bone Miner. Res., 24 (2009), 860-870. |
[33] | S. Scheiner, P. Pivonka and C. Hellmich, Coupling systems biology with multiscale mechanics, for computer simulations of bone remodeling, Comput. Methods Appl. Mech. Eng., 254 (2013), 181-196. |
[34] | V. Lemaire, F. L. Tobin, L. D. Greller, et al., Modeling the interactions between osteoblast and osteoclast activities in bone remodeling, J. Theor. Biol., 229 (2004), 293-309. |
[35] | P. Pivonka and S. V. Komarova, Mathematical modeling in bone biology: from intracellular signaling to tissue mechanics, Bone, 47 (2010), 181-189. |
[36] | S. A. Colopy, J. Benz-Dean, J. G. Barrett, et al., Response of the osteocyte syncytium adjacent to and distant from linear microcracks during adaptation to cyclic fatigue loading, Bone, 35 (2004), 881-891. |
[37] | J. G. Hazenberg, M. Freeley, E. Foran, et al., Microdamage: A cell transducing mechanism based on ruptured osteocyte processes, J. Biomech., 39 (2006), 2096-2103. |
[38] | O. Verborgt, G. J. Gibson and M. B. Schaffler, Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue in vivo, J. Bone Miner. Res., 15 (2000), 60-67. |
[39] | G. K. Van Scoy, E. L. George, F. Opoku Asantewaa, et al., A cellular automata model of bone formation, Math. Biosci., 286 (2017), 58-64. |
[40] | J. Eberhard, Y. Efendiev, R. Ewing, et al., Coupled cellular models for biofilm growth and hydrodynamic flow in a pipe, Int. J. Multiscale Compt. Eng., 3 (2005), 499-516. doi: 10.1615/IntJMultCompEng.v3.i4.70 |
[41] | D. G. Mallet and L. G. De Pillis, A cellular automata model of tumor-immune system interactions, J. Theor. Biol., 239 (2006), 334-350. |
[42] | A. Prieto-Langarica, H. Kojouharov, B. Chen-Charpentier, et al., A cellular automata model of infection control on medical implants, Appl. Appl. Math., 6 (2011), 1-10. |
[43] | R. Bivand, E. Pebesma and V. Gómez Rubio, Applied spatial data analysis with R, 2013. |
[44] | P. A. Moran, Notes on continuous stochastic phenomena, Biometrika, 37 (1950), 17-23. |