Citation: Nikita Ratanov. A two-state neuronal model with alternating exponential excitation[J]. Mathematical Biosciences and Engineering, 2019, 16(5): 3411-3434. doi: 10.3934/mbe.2019171
[1] | A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its applica- tion to conduction and excitation in nerve, J. Physiol., 117 (1952), 500–544. |
[2] | M. L. Lapicque, Recherches quantitatives sur l'excitation électrique des nerfs traitée comme une polarisation, (French) [Quantitative research on electrical excitation of nerves treated as a polarization], J. De Physiol. Pathol. Gen., 9 (1907), 620–635. |
[3] | R. B. Stein, A theoretical analysis of neuronal variability, Biophys. J., 5 (1965), 173–194. |
[4] | P. Lánsk´ y and V. Lánská, Diffusion approximation of the neuronal model with synaptic reversal potentials, Biol. Cybern., 56 (1987), 19–26. |
[5] | V. Capasso and D. Bakstein, An Introduction to Continuous-Time Stochastic Processes. The- ory, Models, and Applications to Finance, Biology, and Medicine, Springer-Verlag, New York, Heidelberg, Dordrecht, London, 2012. |
[6] | S. Olmi, D. Angulo-Garcia, A. Imparato, et al., Exact firing time statistics of neurons driven by discrete inhibitory noise, Sci. Rep., 7 (2017), 1577. |
[7] | A. Di Crescenzo and B. Martinucci, Analysis of a stochastic neuronal model with excitatory inputs and state-dependent effects, Math. Biosci., 209 (2007), 547–563. |
[8] | E. N. Brown, R. Barbieri, V. Ventura, et al., The time-rescaling theorem and its application to neural spike train data analysis, Neural Comput., 14 (2001), 325–346. |
[9] | H. C. Tuckwel, Introduction to Theoretical Neurobiology, Volume 2, Nonlinear and Stochastic Theories, Cambridge University Press, 1988. |
[10] | R. Rudnicki and M. Tyran-Kami´ nska, Piecewise Deterministic Processes in Biological Models, Spinger-Verlag, 2017. |
[11] | H. U. Bauer and K. Pawelzik, Alternating oscillatory and stochastic dynamics in a model for a neuronal assembly, Phys. D Nonlin. Phenom., 69 (1993), 380–393. |
[12] | M. Walczak and T. Błasiak, Midbrain dopaminergic neuron activity across alternating brain states of urethane anaesthetized rat. Eur. J. Neurosci., 45 (2017), 1068–1077. |
[13] | A. D. Kolesnik and N. Ratanov, Telegraph Processes and Option Pricing, Springer-Verlag, Heidelberg-New York-Dordrecht-London, 2013. |
[14] | S. Zacks, Sample Path Analysis and Distributions of Boundary Crossing Times, Lecture Notes in Mathematics, vol. 2203, Springer-Verlag, 2017. |
[15] | N. Ratanov, First crossing times of telegraph processes with jumps, Methodol. Comput. Appl. Probab., (2019). https://doi.org/10.1007/s11009-019-09709-5 |
[16] | L. Beghin, L. Nieddu and E. Orsingher, Probabilistic analysis of the telegrapher's process with drift by means of relativistic transformations, J. Appl. Math. Stoch. Anal., 14 (2001), 11–25. |
[17] | L. Bogachev and N. Ratanov, Occupation time distributions for the telegraph process, Stoch. Process. Appl., 121 (2011), 1816–1844. |
[18] | O. López and N. Ratanov, On the asymmetric telegraph processes, J. Appl. Prob. 51 (2014), 569–589. |
[19] | N. Ratanov, Self-exciting piecewise linear processes, ALEA Lat. Am. J. Probab. Math. Stat. 14 (2017), 445–471. |
[20] | A. A. Pogorui, R. M. Rodrguez-Dagnino and T. Kolomiets, The first passage time and estimation of the number of level-crossings for a telegraph process, Ukr. Math. J. 67 (2015), 998–1007. |
[21] | G. D'Onofrio, C. Macci and E. Pirozzi, Asymptotic results for first-passage times of some expo- nential processes, Methodol. Comput. Appl. Probab., 20 (2018), 1453–1476. |
[22] | A. Di Crescenzo and A. Meoli, On a jump-telegraph process driven by an alternating fractional Poisson process, J. Appl. Probab., 55 (2018), 94–111. |
[23] | M. Abundo, On the first hitting time of a one-dimensional diffusion and a compound Poisson process, Methodol. Comput. Appl. Probab., 12 (2010), 473–490. |
[24] | N. Ratanov, Option pricing model based on a Markov-modulated diffusion with jumps, Braz. J. Probab. Stat. 24 (2010), 413–431. |
[25] | L. Breuer, First passage times for Markov-additive processes with positive jumps of phase type, J. Appl. Prob. 45 (2008), 779–799. |
[26] | V. Srivastava, S. F. Feng, J. D. Cohen, et al., A martingale analysis of first passage times of time-dependent Wiener diffusion models, J. Math. Psychol., 77 (2017), 94–110. |
[27] | A. N. Shiryaev, On martingale methods in the boundary crossing problems for brownian motion, Sovrem. Probl. Mat., 8 (2007), 3–78. |
[28] | M. T. Giraudo and L. Sacerdote, Jump-diffusion processes as models for neuronal activity, BioSys- tems, 40 (1997), 75–82. |
[29] | N. L. Johnson, S. Kotz and N. Balakrishnan, Continuous Univariate Distributions, Vol. 1 (Wiley Series in Probability and Statistics) Wiley-Interscience, 1994. |
[30] | K. S. Lomax, Business failures; another example of the analysis of failure data, J. Amer. Stat. Assoc., 49 (1954), 847–852. |
[31] | H. C. Tuckwell, Introduction to theoretical neurobiology: Volume 1, Linear Cable Theory and Dendritic Structure, Cambridge University Press, 1988. |
[32] | A. P. Prudnikov, Y. A. Brychkov and O. I. Marichev, Integrals and Series, Vol. 5. Inverse Laplace Transforms, Gordon and Breach Science Publ. 1992. |