Citation: Ning Bai, Juan Zhang , Li Li, Zhen Jin. Evaluating the effect of virus mutation on the transmission of avianinfluenza H7N9 virus in China based on dynamical model[J]. Mathematical Biosciences and Engineering, 2019, 16(5): 3393-3410. doi: 10.3934/mbe.2019170
[1] | Bertrand Haut, Georges Bastin . A second order model of road junctions in fluid models of traffic networks. Networks and Heterogeneous Media, 2007, 2(2): 227-253. doi: 10.3934/nhm.2007.2.227 |
[2] | Mohamed Benyahia, Massimiliano D. Rosini . A macroscopic traffic model with phase transitions and local point constraints on the flow. Networks and Heterogeneous Media, 2017, 12(2): 297-317. doi: 10.3934/nhm.2017013 |
[3] | Caterina Balzotti, Maya Briani . Estimate of traffic emissions through multiscale second order models with heterogeneous data. Networks and Heterogeneous Media, 2022, 17(6): 863-892. doi: 10.3934/nhm.2022030 |
[4] | Emiliano Cristiani, Smita Sahu . On the micro-to-macro limit for first-order traffic flow models on networks. Networks and Heterogeneous Media, 2016, 11(3): 395-413. doi: 10.3934/nhm.2016002 |
[5] | Maya Briani, Emiliano Cristiani . An easy-to-use algorithm for simulating traffic flow on networks: Theoretical study. Networks and Heterogeneous Media, 2014, 9(3): 519-552. doi: 10.3934/nhm.2014.9.519 |
[6] | Alberto Bressan, Khai T. Nguyen . Conservation law models for traffic flow on a network of roads. Networks and Heterogeneous Media, 2015, 10(2): 255-293. doi: 10.3934/nhm.2015.10.255 |
[7] | Simone Göttlich, Camill Harter . A weakly coupled model of differential equations for thief tracking. Networks and Heterogeneous Media, 2016, 11(3): 447-469. doi: 10.3934/nhm.2016004 |
[8] | Paola Goatin . Traffic flow models with phase transitions on road networks. Networks and Heterogeneous Media, 2009, 4(2): 287-301. doi: 10.3934/nhm.2009.4.287 |
[9] | Michael Herty, Adrian Fazekas, Giuseppe Visconti . A two-dimensional data-driven model for traffic flow on highways. Networks and Heterogeneous Media, 2018, 13(2): 217-240. doi: 10.3934/nhm.2018010 |
[10] | Alberto Bressan, Ke Han . Existence of optima and equilibria for traffic flow on networks. Networks and Heterogeneous Media, 2013, 8(3): 627-648. doi: 10.3934/nhm.2013.8.627 |
A taxis is the movement of an organism in response to a stimulus such as chemical signal or the presence of food. Taxes can be classified based on the types of stimulus, such as chemotaxis, prey-taxis, galvanotaxis, phototaxis and so on. According to the direction of movements, the taxis is said to be attractive (resp. repulsive) if the organism moves towards (resp. away from) the stimulus. In the ecosystem, a widespread phenomenon is the prey-taxis, where predators move up the prey density gradient, which is often referred to as the direct prey-taxis. However some predators may approach the prey by tracking the chemical signals released by the prey, such as the smell of blood or specific odo, and such movement is called indirect prey-taxis (cf. [1]). Since the pioneering modeling work by Kareiva and Odell [2], prey-taxis models have been widely studied in recent years (cf. [3,4,5,6,7,8,9,10,11,12]), followed by numerous extensions, such as three-species prey-taxis models (cf. [13,14,15]) and predator-taxis models (cf. [16,17]). The indirect prey-taxis models have also been well studied (cf. [18,19,20]).
Recently, a predator-prey model with attraction-repulsion taxis mechanisms was proposed by Bell and Haskell in [21] to describe the interaction between direct prey-taxis and indirect chemotaxis, where the direct prey-taxis describes the predator's directional movement towards the prey density gradient, while the indirect chemotaxis models a defense mechanism in which the prey repels the predator by releasing odour chemicals (like a fox breaking wind in order to escape from hunting dogs). The model reads as
{ut=dΔu+u(a1−a2u−a3v),x∈Ω, t>0,vt=∇⋅(∇v+χv∇w−ξv∇u)+ρv(1−v)+ea3uv,x∈Ω, t>0,wt=ηΔw+ru−γw,x∈Ω, t>0,∇u⋅ν=∇v⋅ν=∇w⋅ν=0,x∈∂Ω,t>0,(u,v,w)(x,0)=(u0,v0,w0)(x),x∈Ω, | (1.1) |
where the unknown functions u(x,t), v(x,t) and w(x,t) denote the densities of the prey, predator and prey-derived chemical repellent, respectively, at position x∈Ω and time t>0. Here, Ω⊂Rn is a bounded domain (habitat of species) with smooth boundary ∂Ω, and ν is the unit outer normal vector of ∂Ω. The parameters d, η, χ, ξ, a1, a2, a3, e, ρ, r, γ are all positive, where χ>0 and ξ>0 denote the (attractive) prey-taxis and (repulsive) chemotaxis coefficients, respectively. The predator v is assumed to be a generalist, so that it has a logistic growth term ρv(1−v) with intrinsic growth rate ρ>0. More modeling details with biological interpretations are referred to in [21]. We remark that the predator-prey model with attraction-repulsion taxes has some similar structures to the so-called attraction-repulsion chemotaxis model proposed originally in [22], where the species elicit both attractive and repulsive chemicals (see [23,24,25,26] and references therein for some mathematical studies).
The initial data satisfy the following conditions:
v0∈C0(¯Ω),u0,w0∈W1,∞(Ω), and u0, v0, w0≩0 in ¯Ω. | (1.2) |
In [21], the global existence of strong solutions to (1.1) was established in one dimension (n=1), and the existence of nontrivial steady state solutions alongside pattern formation was studied by the bifurcation theory. The main purpose of this paper is to study the global dynamics of (1.1) in higher dimensional spaces, which are usually more physical in the real world. Specifically, we shall show the existence of global classical solutions in all dimensions and explore the global stability of constant steady states, by which we may see how parameter values play roles in determining these dynamical properties of solutions.
The first main result is concerned with the global existence and boundedness of solutions to (1.1). For the convenience of presentation, we let
K1=max{a1a2,‖u0‖L∞(Ω)}, K2=max{a1K1+a2K21,a3K1} | (1.3) |
and
K3(z)=23z−12zdz(n+2(z−1)K22z+1)z+12((z−1)(4z2+n)K21)z−12+23zz2d1z((z−1)ξ2z+1)z+1z((4z2+n)K21)1z. | (1.4) |
Then, the result on the global boundedness of solutions to (1.1) is stated as follows.
Theorem 1.1 (Global existence). Let Ω⊂Rn(n⩾ be a bounded domain with smooth boundary and parameters d , \eta , \chi , \xi , a_1 , a_2 , a_3 , e , \rho , r , \gamma be positive. If
\rho\begin{cases} > 0, &n\leqslant2, \\ \geqslant\frac{2K_3\left(\left[\frac{n}{2}\right]+1\right)}{\left[\frac{n}{2}\right]+1}, &n > 2, \end{cases} |
where K_3(p) is defined in (1.4), then for any initial data (u_0, v_0, w_0) satisfying (1.2), the system (1.1) admits a unique classicalsolution (u, v, w) satisfying
u, \ v, \, w\in C^0(\overline{\Omega}\times[0, +\infty))\cap C^{2, 1}(\overline{\Omega}\times(0, +\infty)), |
and u, v, w > 0 in \Omega\times(0, +\infty) . Moreover, there exists a constant C > 0 independent of t such that
\begin{equation*} \left\|u(\cdot, t)\right\|_{W^{1, \infty}(\Omega)}+\|v(\cdot, t)\|_{L^\infty(\Omega)}+\|w(\cdot, t)\|_{W^{1, \infty}(\Omega)}\leqslant C\quad\mathit{\text{for all}}\ t > 0. \end{equation*} |
Our next goal is to explore the large-time behavior of solutions to (1.1). Simple calculations show the system (1.1) has four possible homogeneous equilibria as classified below:
\begin{equation*} \begin{cases} (0, 0, 0), \ (0, 1, 0), \ \big(\frac{a_1}{a_2}, 0, \frac{ra_1}{\gamma a_2}\big), &\quad\text{if} \ a_1\leqslant a_3, \\ (0, 0, 0), \ (0, 1, 0), \ \big(\frac{a_1}{a_2}, 0, \frac{ra_1}{\gamma a_2}\big), (u_*, v_*, w_*), &\quad\text{if} \ a_1 > a_3, \end{cases} \end{equation*} |
with
\begin{equation} u_* = \frac{\rho(a_1-a_3)}{\rho a_2+ea_3^2}, \quad v_* = \frac{ea_1a_3+\rho a_2}{\rho a_2+ea_3^2}, \quad w_* = \frac{r\rho(a_1-a_3)}{\gamma(\rho a_2+ea_3^2)} \end{equation} | (1.5) |
where the trivial equilibrium (0, 0, 0) is called the extinction steady state, (0, 1, 0) is the predator-only steady state, and (u_*, v_*, w_*) is the coexistence steady state. We shall show that if a_1 > a_3 , then the coexistence steady state is globally asymptotically stable with exponential convergence rate, provided that \xi and \chi are suitably small, while if a_1\leqslant a_3 , the predator-only steady state is globally asymptotically stable with exponential or algebraic convergence rate when \xi and \chi are suitably small. To state our results, we denote
\begin{equation} \Gamma = \frac{4d\rho(a_1-a_3)}{K_1^2(ea_1a_3+\rho a_2)}, \quad \Phi = \frac{2a_2\rho}{a_3^2}+e, \quad \Psi = \frac{\gamma\eta a_3^2K_1^2(\rho a_2+ea_3^2)}{d\rho^2 r^2(a_1-a_3)} \end{equation} | (1.6) |
and
\begin{equation} A = \frac{\xi^2}{4d}, \quad B = \frac{ea_2}{a_1}, \quad D = \frac{16\eta\gamma a_1}{r^2}, \end{equation} | (1.7) |
where K_1 is defined in (1.3). Then, the global stability result is stated in the following theorem.
Theorem 1.2 (Global stability). Let the assumptions in Theorem 1.1 hold. Then, the following results hold.
(1) Let a_1 > a_3 . If \xi and \chi satisfy
\xi^2 < \Gamma\Big(\Phi+\sqrt{\Phi^2-e^2} \Big) \ \mathit{\text{and}} \ \chi^2 < \Psi\max\limits_{y\in[a, b]}\frac{(\Gamma y-\xi^2)(-y^2+2\Phi y-e^2)}{y}, |
where a = \max\big\{\frac{\xi^2}{\Gamma}, \Phi-\sqrt{\Phi^2-e^2}\big\}, b = \Phi+\sqrt{\Phi^2-e^2} , then there exist some constants T_* , C , \alpha > 0 such that the solution (u, v, w) obtained in Theorem 1.1 satisfies for all t\geqslant T_*
\|u(\cdot, t)-u_*\|_{L^\infty(\Omega)}+\|v(\cdot, t)-v_*\|_{L^\infty(\Omega)}+\left\|w(\cdot, t)-w_*\right\|_{L^\infty(\Omega)}\leqslant Ce^{-\alpha t}. |
(2) Let a_1\leqslant a_3 , If \xi and \chi satisfy
\xi^2 < \frac{4 d e a_2}{a_1}\quad\mathit{\text{and}}\quad\chi^2 < D\left(A+B-2\sqrt{AB}\right), |
then there exist some constants T^* , C , \beta > 0 such that the solution (u, v, w) obtained in Theorem 1.1 satisfies, for all t\geqslant T^* ,
\|u(\cdot, t)\|_{L^\infty(\Omega)}+\|v(\cdot, t)-1\|_{L^\infty(\Omega)}+\left\|w(\cdot, t)\right\|_{L^\infty(\Omega)}\leqslant \begin{cases} Ce^{-\beta t}&\mathit{\text{ if }}a_1 < a_3, \\ C(t+1)^{-1}&\mathit{\text{ if }}a_1 = a_3. \end{cases} |
Remark 1.1. In the biological view, the relative sizes of a_1 and a_2 determine the coexistence of the system. The results indicated that a large \frac{a_1}{a_2} facilitates the coexistence of the species.
The rest of this paper is organized as follows. In Section 2, we state the local existence of solutions to (1.1) with extensibility conditions. Then, we deduce some a priori estimates and prove Theorem 1.1 in Section 3. Finally, we show the global convergence to the constant steady states and prove Theorem 1.2 in Section 4.
For convenience, in what follows we shall use C_i(i = 1, 2, \cdots) to denote a generic positive constant which may vary from line to line. For simplicity, we abbreviate \int_{0}^{t}\int_\Omega f(\cdot, s)dxds and \int_\Omega f(\cdot, t)dx as \int_{0}^{t}\int_\Omega f and \int_\Omega f , respectively. The local existence and extensibility result of problem (1.1) can be directly established by the well-known Amman's theory for triangular parabolic systems (cf. [27,28]). Below, we shall present the local existence theorem without proof for brevity, and we refer to [21] for the proof in one dimension as a reference.
Lemma 2.1 (Local existence and extensibility). Let \Omega\subset \mathbb{R}^n be a bounded domain with smooth boundary. The parameters d , \eta , \chi , \xi , a_1 , a_2 , a_3 , e, \rho , r, \gamma are positive. Then, for the initial data (u_0, v_0, w_0) satisfying (1.2), there exists T_{max}\in(0, \infty] such that the system (1.1) admits a unique classicalsolution (u, v, w) satisfying
u, \ v, \ w\in C^0(\overline{\Omega}\times[0, T_{max}))\cap C^{2, 1}(\overline{\Omega}\times(0, T_{max})), |
and u, v, w > 0 in \Omega\times(0, T_{max}) . Moreover, we have
\mathit{\text{either}}\ T_{max} = +\infty\ \mathit{\text{or}}\ \limsup\limits_{t\nearrow T_{max}}\left(\|u(\cdot, t)\|_{W^{1, \infty}(\Omega)}+\|v(\cdot, t)\|_{L^\infty(\Omega)}+\|w(\cdot, t)\|_{W^{1, \infty}(\Omega)}\right) = +\infty. |
We recall some well-known results which will be used later frequently. The first one is an uniform Grönwall inequality [29].
Lemma 2.2. Let T_{max} > 0 , \tau\in(0, T_{max}) . Suppose that c_1 , c_2 , y are three positive locally integrable functions on (0, T_{max}) such that y' is locally integrable on (0, T_{max}) and satisfies
y'(t) \leqslant c_1(t)y(t)+c_2(t)\quad\mathit{\text{for all}}\ t\in(0, T_{max}). |
If
\int_{t}^{t+\tau} c_1\leqslant C_{1}, \quad\int_{t}^{t+\tau} c_2 \leqslant C_{2}, \ \ \int_{t}^{t+\tau} y \leqslant C_{3}\quad\mathit{\text{for all}}\ t\in[0, T_{max}-\tau), |
where C_{i}(i = 1, 2, 3) are positive constants, then
y(t)\leqslant\left(\frac{C_{3}}{\tau}+C_{2}\right) e^{C_{1}}\quad \mathit{\text{for all}}\ t\in[\tau, T_{max}). |
Next, we recall a basic inequality [30].
Lemma 2.3. Let p\in[1, \infty) . Then, the following inequality holds:
\int_\Omega|\nabla u|^{2(p+1)}\leqslant2\left(4 p^{2}+n\right)\|u\|_{L^\infty(\Omega)}^2\int_{\Omega}|\nabla u|^{2(p-1)}|D^2u|^2 |
for any u\in C^{2}(\bar{\Omega}) satisfying \frac{\partial u}{\partial \nu} = 0 on \partial \Omega , where D^{2}u denotes the Hessian of u .
The last one is a Gagliardo-Nirenberg type inequality shown in [31,Lemma 2.5].
Lemma 2.4. Let \Omega be a bounded domain in \mathbb{R}^2 with smooth boundary. Then, for any \varphi\in W^{2, 2}(\Omega) satisfying \frac{\partial \varphi}{\partial \nu}|_{\partial\Omega} = 0 , there exists a positive constant C depending only on \Omega such that
\begin{equation} \|\nabla \varphi\|_{L^4(\Omega)}\leq C(\| \Delta \varphi\|_{L^2(\Omega)}^\frac{1}{2}\|\nabla \varphi\|_{L^2(\Omega)}^\frac{1}{2}+\|\nabla \varphi\|_{L^2(\Omega)}). \end{equation} | (2.1) |
In this section, we establish the global boundedness of solutions to the system (1.1). To this end, we will proceed with several steps to derive a priori estimates for the solution of the system (1.1). The first one is the uniform-in-time L^\infty(\Omega) boundedness of u .
Lemma 3.1. Let (u, v, w) be the solution of (1.1) and K_1 be as defined in (1.3). Then, we have
\|u\|_{L^{\infty}(\Omega)} \leqslant K_1\quad\mathit{\text{for all}}\ t \in\left(0, T_{max}\right). |
Furthermore, there is a constant C > 0 such that for any 0 < \tau < \min\{T_{max}, 1\} , it follows that
\int_t^{t+\tau}|\nabla u|^2 \leq C\ \ \mathit{\text{for all}} \ \ t\in(0, T_{max}-\tau). |
Proof. The result is a direct consequence of the maximum principle applied to the first equation in (1.1). Indeed, if we let \bar{u} = \max\left\{\frac{a_{1}}{a_{2}}, \left\|u_{0}\right\|_{L^\infty(\Omega)}\right\} , then \bar{u} satisfies
\begin{cases}\bar{u}_{t}\geqslant d \Delta \bar{u}+\bar{u}\left(a_{1}-a_{2} \bar{u}-a_{3} v\right), & x \in \Omega, t > 0, \\ \nabla \bar{u} \cdot \nu = 0, & x \in \partial \Omega, t > 0, \\ \bar{u}(x, 0) \geqslant u_{0}(x), & x \in \Omega .\end{cases} |
Apparently, the comparison principle of parabolic equations gives u\leqslant \bar{u} on \Omega \times\left(0, T_{\max }\right) .
Next, we multiply the first equation of (1.1) by u and integrate the result to get
\begin{eqnarray*} \frac{d}{dt}\int_\Omega u^2 +d\int_\Omega |\nabla u|^2 = a_1\int_\Omega u^2-\int_\Omega u(a_2u+a_3v)\leq a_1K_1^2 |\Omega|. \end{eqnarray*} |
Then, the integration of the above inequality with respect to t over (t, t+\tau) completes the proof by noting that \int_\Omega u_0^2 is bounded.
Having at hand the uniform-in-time L^\infty(\Omega) boundedness of u , the a priori estimate of w follows immediately.
Lemma 3.2. Let (u, v, w) be the solution of (1.1). We can find a constant C > 0 satisfying
\|w\|_{W^{1, \infty}(\Omega)} \leqslant C\quad\mathit{\text{for all}}\ t \in\left(0, T_{max}\right). |
Proof. Noting the boundedness of \|u\|_{L^\infty(\Omega)} from Lemma 3.1, we get the desired result from the third equation of (1.1) and the regularity theorem [32,Lemma 1].
Now, the a priori estimate of v can be obtained as below.
Lemma 3.3. Let (u, v, w) be the solution of (1.1). Then, there exists a constant C > 0 such that
\begin{equation} \int_{\Omega}v \leqslant C\quad \mathit{\text{for all}}\ t \in\left(0, T_{max }\right), \end{equation} | (3.1) |
and
\begin{equation} \int_t^{t+\tau}\int_{\Omega}v^2 \leqslant C\quad \mathit{\text{for all}}\ t \in(0, T_{max}-\tau), \end{equation} | (3.2) |
where \tau is a constant such that 0 < \tau < \min\{T_{max}, 1\} .
Proof. Integrating the second equation of (1.1) over \Omega by parts, using Young's inequality and Lemma 3.1, we find some constant C_1 > 0 such that
\begin{equation} \begin{aligned} \frac{d}{dt}\int_{\Omega}v = &\rho\int_{\Omega} v-\rho\int_{\Omega} v^{2}+e a_{3} \int_{\Omega} u v\\ \leqslant&\left(\rho+e a_{3}\sup\limits_{t\in(0, T_{max})}\|u\|_{L^\infty(\Omega)}\right)\int_{\Omega} v-\rho \int_{\Omega} v^{2}\\ \leqslant&-\int_{\Omega} v-\frac{\rho}{2}\int_{\Omega} v^{2}+C_{1}\quad\text{for all}\ t \in\left(0, T_{max}\right). \end{aligned} \end{equation} | (3.3) |
Hence, (3.1) is obtained by the Grönwall inequality. Integrating (3.3) over (t, t+\tau) , we get (3.2) immediately.
Due to the estimates of u and v obtained in Lemmas 3.1 and 3.3 respectively, we have the following improved uniform-in-time L^2(\Omega) boundedness of \nabla u and the space-time L^2 boundedness of \Delta u when n = 2 .
Lemma 3.4. Let (u, v, w) be the solution of (1.1). If n = 2 , then we can find a constant C > 0 such that
\begin{equation} \int_{\Omega}|\nabla u|^{2}\leqslant C\quad \mathit{\text{for all}}\ t\in(0, T_{max}) \end{equation} | (3.4) |
and
\begin{equation} \int_t^{t+\tau}\int_{\Omega}|\Delta u|^2 \leqslant C\quad \mathit{\text{for all}}\ t \in\left(0, T_{max}-\tau\right), \end{equation} | (3.5) |
where \tau is defined in Lemma 3.3.
Proof. Integrating the first equation of (1.1) by parts and using Lemma 3.1, we find a constant C_1 > 0 such that
\begin{equation} \begin{aligned} \frac{d}{d t} \int_{\Omega}|\nabla u|^{2}& = 2\int_{\Omega} \nabla u \cdot \nabla u_{t} = -2\int_{\Omega}u_{t}\Delta u\\ & = -2\int_{\Omega} \Delta u\left(d\Delta u+a_{1} u-a_{2} u^{2}-a_{3} u v\right)\\ &\leqslant-2d\int_{\Omega}|\Delta u|^{2}+C_1\int_{\Omega}(v+1)|\Delta u|\quad\text{for all}\ t \in\left(0, T_{max}\right). \end{aligned} \end{equation} | (3.6) |
The Gagliardo-Nirenberg inequality in Lemma 2.4, Young's inequality and Lemma 3.1 yield some constants C_2, C_3 > 0 satisfying
\begin{equation*} \int_{\Omega}|\nabla u|^{2} = \|\nabla u\|^2_{L^2(\Omega)}\leqslant C_2\left(\|\Delta u\|_{L^2(\Omega)}\|u\|_{L^2(\Omega)}+\|u\|^2_{L^\infty(\Omega)}\right)\leqslant\frac{d}{2}\int_{\Omega}|\Delta u|^{2}+C_3 \end{equation*} |
and
C_1\int_{\Omega}(v+1)|\Delta u|\leqslant\frac{d}{2} \int_{\Omega}|\Delta u|^{2}+C_3\int_{\Omega} v^{2}+C_3\quad\text{for all}\ t \in\left(0, T_{max}\right), |
which along with (3.6) imply
\begin{equation} \frac{d}{d t}\int_{\Omega}|\nabla u|^{2}+\int_{\Omega}|\nabla u|^{2}+d\int_{\Omega}|\Delta u|^{2}\leqslant C_3\int_{\Omega} v^{2}+2C_3\quad\text{for all}\ t \in\left(0, T_{max}\right). \end{equation} | (3.7) |
Then, applications of Lemma 2.2, 3.1 and 3.3 give (3.4). Finally, (3.5) can be obtained by integrating (3.7) over (t, t+\tau) .
Now, the uniform-in-time boundedness of v in L^2(\Omega) can be established when n = 2 .
Lemma 3.5. Let (u, v, w) be the solution of (1.1). If n = 2 , then there exists a constant C > 0 such that
\begin{equation*} \int_{\Omega}v^2 \leqslant C\quad \mathit{\text{for all}}\ t \in\left(0, T_{max }\right). \end{equation*} |
Proof. Multiplying the second equation of (1.1) by v , integrating the result by parts and using Young's inequality, we have
\begin{align*} \frac{d}{dt}\int_{\Omega}v^2+2\int_\Omega|\nabla v|^2 = &-2\chi\int_\Omega v\nabla v\cdot\nabla w+2\xi\int_\Omega v\nabla u\cdot\nabla v\\ &\quad+2\rho\int_\Omega v^2-2\rho\int_\Omega v^3+2ea_3\int_\Omega uv^2\\ \leqslant&\int_\Omega|\nabla v|^2+2\chi^2\|\nabla w\|^2_{L^\infty(\Omega)}\int_\Omega v^2+2\xi^2\int_\Omega v^2|\nabla u|^2\\ &\quad+2\rho\int_\Omega v^2-2\rho\int_\Omega v^3+2ea_3\|u\|_{L^\infty(\Omega)}\int_\Omega v^2, \end{align*} |
which along with Lemma 3.1 and Lemma 3.2 gives some constant C_1 > 0 such that
\begin{equation} \frac{d}{dt}\int_{\Omega}v^2+\int_\Omega|\nabla v|^2\leqslant2\xi^2\int_\Omega v^2|\nabla u|^2+C_1\int_\Omega v^2-2\rho\int_\Omega v^3\quad\text{for all}\ t \in\left(0, T_{max}\right). \end{equation} | (3.8) |
Using Lemmas 3.1 and 3.3, Hölder's inequality, Lemma 2.4 and Young's inequality, we find some constants C_2, C_3, C_4 > 0 such that
\begin{equation} \begin{aligned} &2\xi\int_\Omega v^2|\nabla u|^2\leqslant2\xi\|v\|_{L^4(\Omega)}^2\|\nabla u\|_{L^4(\Omega)}^2\\ \leqslant&C_2\left(\|\nabla v\|_{L^2(\Omega)}^{\frac{1}{2}}\|v\|_{L^2(\Omega)}^{\frac{1}{2}}+\|v\|_{L^2(\Omega)}\right)^2\left(\|\Delta u\|_{L^2(\Omega)}^{\frac{1}{2}}\|u\|_{L^\infty(\Omega)}^{\frac{1}{2}}+\|u\|_{L^\infty(\Omega)}\right)^2\\ \leqslant&C_3\Big(\|\nabla v\|_{L^2(\Omega)}\|v\|_{L^2(\Omega)}\|\Delta u\|_{L^2(\Omega)}+\|\nabla v\|_{L^2(\Omega)}\|v\|_{L^2(\Omega)}\\ &\quad+\|\Delta u\|_{L^2(\Omega)}\|v\|_{L^2(\Omega)}^2+\|v\|_{L^2(\Omega)}^2\Big)\\ \leqslant&\|\nabla v\|_{L^2(\Omega)}^2+C_4\left(1+\|\Delta u\|^2_{L^2(\Omega)}\right)\|v\|_{L^2(\Omega)}^2\quad\text{for all}\ t \in\left(0, T_{max}\right). \end{aligned} \end{equation} | (3.9) |
Furthermore, Young's inequality yields some constant C_5 > 0 such that
\begin{equation} C_1\int_\Omega v^2-2\rho\int_\Omega v^3\leqslant C_5\quad\text{for all}\ t \in\left(0, T_{max}\right). \end{equation} | (3.10) |
Substituting (3.9) and (3.10) into (3.8), we get
\frac{d}{dt}\int_{\Omega}v^2\leqslant C_4\left(1+\|\Delta u\|^2_{L^2(\Omega)}\right)\|v\|_{L^2(\Omega)}^2+C_5\quad\text{for all}\ t \in\left(0, T_{max}\right), |
which alongside Lemma 2.2, Lemma 3.3 and Lemma 3.4 completes the proof.
To get the global existence of solutions in any dimensions, we derive the following functional inequality which gives an a priori estimate on \nabla u .
Lemma 3.6. Let (u, v, w) be the solution of (1.1) and q\geqslant2 . If n\geqslant1 , then there exists a constant C > 0 such that
\begin{align*} &\frac{d}{dt}\int_{\Omega}|\nabla u|^{2q}+dq\int_{\Omega}|\nabla u|^{2(q-1)}|D^2u|^2\\ \leqslant&\frac{q(n+2(q-1))K_2^2}{d}\int_{\Omega}\left(v^2+1\right)|\nabla u|^{2(q-1)}+C\quad \mathit{\text{for all}}\ t\in(0, T_{max}), \end{align*} |
where K_2 is defined in (1.3).
Proof. From the first equation of (1.1) and the fact 2\nabla u\cdot\nabla\Delta u = \Delta|\nabla u|^2-2|D^2u|^2 , it follows that
\begin{align*} \frac{d}{dt}\int_{\Omega}|\nabla u|^{2q} = &2q\int_{\Omega}|\nabla u|^{2(q-1)}\nabla u\cdot\nabla u_t\\ = &2q\int_{\Omega}|\nabla u|^{2(q-1)}\nabla u\cdot\nabla\left(d\Delta u+a_1 u-a_2u^2-a_3uv\right)\\ = &dq\int_{\Omega}|\nabla u|^{2(q-1)}\Delta|\nabla u|^2-2dq\int_{\Omega}|\nabla u|^{2(q-1)}|D^2u|^2\\ &\quad+2q\int_{\Omega}|\nabla u|^{2(q-1)}\nabla u\cdot\nabla\left(a_1 u-a_2u^2-a_3uv\right) \end{align*} |
which implies
\begin{equation} \begin{aligned} &\frac{d}{dt}\int_{\Omega}|\nabla u|^{2q}+2dq\int_{\Omega}|\nabla u|^{2(q-1)}|D^2u|^2\\ = &dq\int_{\Omega}|\nabla u|^{2(q-1)}\Delta|\nabla u|^2+2q\int_{\Omega}|\nabla u|^{2(q-1)}\nabla u\cdot\nabla\left(a_1 u-a_2u^2-a_3uv\right)\\ = &:I_1+I_2\quad\text{for all} \ t\in(0, T_{max}). \end{aligned} \end{equation} | (3.11) |
Now, we estimate the right hand side of (3.11). Choosing s\in(0, \frac{1}{2}) and
\theta = \frac{\frac{1}{2}-\frac{s+\frac{1}{2}}{n}-q}{\frac{1}{2}-\frac{1}{n}-q}\in(0, 1), |
we get
\frac{1}{2}-\frac{s+\frac{1}{2}}{n} = \theta\left(\frac{1}{2}-\frac{1}{n}\right)+(1-\theta)q, |
which, along with the Gagliardo-Nirenberg inequality, Young's inequality and the embedding
W^{s+\frac{1}{2}, 2}(\Omega)\subset W^{s, 2}(\partial\Omega)\subset L^{2}(\partial\Omega), |
gives some constants C_1 , C_2 , C_3 , C_4 > 0 such that
\begin{align*} \int_{\partial\Omega}|\nabla u|^{2(q-1)}\frac{\partial|\nabla u|^2}{\partial \nu}\leqslant& C_1\int_{\partial\Omega}|\nabla u|^{2q} = C_1\big\||\nabla u|^q\big\|^2_{L^{2}(\partial\Omega)}\\ \leqslant& C_2\big\||\nabla u|^q\big\|_{W^{s+\frac{1}{2}, 2}(\Omega)}^2\\ \leqslant&C_3\big\|\nabla|\nabla u|^q\big\|^{2\theta}_{L^2(\Omega)}\big\||\nabla u|^q\big\|^{2(1-\theta)}_{L^{\frac{1}{q}}(\Omega)}+C_3\big\||\nabla u|^q\big\|^2_{L^{\frac{1}{q}}(\Omega)}\\ \leqslant&\frac{2(q-1)}{q^2}\big\|\nabla|\nabla u|^q\big\|^2_{L^2(\Omega)}+C_4\quad \text{for all}\ t\in(0, T_{max}). \end{align*} |
Therefore, it holds that
\begin{align*} I_1 = &dq\int_{\partial\Omega}|\nabla u|^{2(q-1)}\frac{\partial|\nabla u|^2}{\partial \nu}-dq\int_{\Omega}\nabla|\nabla u|^{2(q-1)}\cdot\nabla|\nabla u|^2\\ \leqslant&\frac{2d(q-1)}{q}\int_{\Omega}\left|\nabla|\nabla u|^q\right|^2+C_4dq-\frac{4d(q-1)}{q}\int_{\Omega}\left|\nabla|\nabla u|^q\right|^2\\ \leqslant&-\frac{2d(q-1)}{q}\int_{\Omega}\left|\nabla|\nabla u|^q\right|^2+C_4dq\quad\text{for all}\ t\in(0, T_{max}). \end{align*} |
Owning to the fact |\Delta u|\leqslant \sqrt{n}|D^2u| , Young's inequality and Lemma 3.1, we have
\begin{align*} I_2 = &-2q(q-1)\int_{\Omega}\left(a_1 u-a_2u^2-a_3uv\right)|\nabla u|^{2(q-2)}\nabla|\nabla u|^2\cdot\nabla u\\ &\quad-2q\int_{\Omega}\left(a_1 u-a_2u^2-a_3uv\right)|\nabla u|^{2(q-1)}\Delta u\\ \leqslant&2q(q-1)K_2\int_{\Omega}(v+1)|\nabla u|^{2(q-2)}\left|\nabla|\nabla u|^2\right|\left|\nabla u\right|\\ &\quad+2q\sqrt{n}K_2\int_{\Omega}(v+1)|\nabla u|^{2(q-1)}|D^2 u|\\ \leqslant&\frac{qd(q-1)}{2}\int_{\Omega}|\nabla u|^{2(q-2)}\left|\nabla|\nabla u|^2\right|^2+\frac{2q(q-1)K_2^2}{d}\int_{\Omega}\left(v^2+1\right)|\nabla u|^{2(q-1)}\\ &\quad+dq\int_{\Omega}|\nabla u|^{2(q-1)}|D^2u|^2+\frac{qnK_2^2}{d}\int_{\Omega}\left(v^2+1\right)|\nabla u|^{2(q-1)}\\ = &\frac{2d(q-1)}{q}\int_{\Omega}\left|\nabla|\nabla u|^q\right|^2+dq\int_{\Omega}|\nabla u|^{2(q-1)}|D^2u|^2\\ &\quad+\frac{q(n+2(q-1))K_2^2}{d}\int_{\Omega}\left(v^2+1\right)|\nabla u|^{2(q-1)}\quad \text{for all}\ t\in(0, T_{max}), \end{align*} |
where K_2 is defined in (1.3). Hence, substituting the estimates I_1 and I_2 into (3.11), we finish the proof of the lemma.
Now, we show the following functional inequality to derive the a priori estimate on v in any dimensions.
Lemma 3.7. Let (u, v, w) be the solution of (1.1) and q\geqslant2 . If n\geqslant1 , we can find a constant C > 0 such that
\frac{d}{dt}\int_{\Omega} v^{q}+\frac{2(q-1)}{q}\int_{\Omega}\left|\nabla v^{\frac{q}{2}}\right|^2+\rho q\int_{\Omega} v^{q+1}\leqslant q(q-1)\xi^2\int_{\Omega} v^{q}|\nabla u|^2+C\int_{\Omega} v^{q} |
for all t\in(0, T_{max}) .
Proof. Utilizing the second equation of (1.1) and integration by parts, we get
\begin{equation} \begin{aligned} \frac{d}{d t} \int_{\Omega} v^{q} = &q\int_{\Omega} v^{q-1} v_{t} = q\int_{\Omega} v^{q-1}\left(\nabla \cdot(\nabla v+\chi v \nabla w-\xi v \nabla u)+v\left(\rho(1-v)+e a_{3} u\right)\right)\\ = &-q(q-1) \int_{\Omega} v^{q-2}|\nabla v|^{2}-\chi q(q-1) \int_{\Omega} v^{q-1} \nabla w\cdot \nabla v\\ &\quad+\xi q\left(q-1\right)\int_{\Omega} v^{q-1} \nabla u\cdot \nabla v+\rho q \int_{\Omega} v^{q}-\rho q\int_{\Omega} v^{q+1}+e a_{3}q \int_{\Omega} u v^{q}. \end{aligned} \end{equation} | (3.12) |
Now, we estimate the right hand side of (3.12). An application of Young's inequality and Lemma 3.2 yields some constant C_1 > 0 such that
\begin{align*} -\chi q(q-1) \int_{\Omega} v^{q-1} \nabla w \cdot \nabla v \leqslant& \chi q(q-1)\sup\limits_{t\in(0, T_{max})}\|\nabla w\|_{L^{\infty}(\Omega)} \int_{\Omega} v^{q-1}|\nabla v|\\ \leqslant&\frac{q(q-1)}{4} \int_{\Omega} v^{q-2}|\nabla v|^{2}+C_1\int_{\Omega} v^{q} \end{align*} |
and
\xi q(q-1) \int_{\Omega} v^{q-1} \nabla u \cdot \nabla v \leqslant \frac{q(q-1)}{4} \int_{\Omega} v^{q-2}|\nabla v|^{2}+q(q-1)\xi^2\int_{\Omega} v^{q}|\nabla u|^2, |
which along with (3.12), Lemma 3.1 and the fact
v^{q-2}|\nabla v|^2 = \frac{4}{q^2}\left|\nabla v^{\frac{q}{2}}\right|^2 |
gives a constant C_2 > 0 such that
\begin{align*} &\frac{d}{dt}\int_{\Omega} v^{q}+\frac{2(q-1)}{q}\int_{\Omega}\left|\nabla v^{\frac{q}{2}}\right|^2\\ \leqslant&q(q-1)\xi^2\int_{\Omega} v^{q}|\nabla u|^2+(\rho q+C_1)\int_{\Omega} v^{q}-\rho q\int_{\Omega} v^{q+1}+e a_{3} q\int_{\Omega} u v^{q}\\ \leqslant&q(q-1)\xi^2\int_{\Omega} v^{q}|\nabla u|^2-\rho q\int_{\Omega} v^{q+1}+C_2\int_{\Omega} v^{q}\quad\text{for all}\ t \in\left(0, T_{max}\right). \end{align*} |
Hence, we finish the proof of the lemma.
Combining Lemmas 3.6 and 3.7, we have the following inequality which can help us to achieve the global existence of solutions in any dimensions.
Lemma 3.8. Let (u, v, w) be the solution of (1.1) and p\geqslant2 . If n\geqslant1 , we can find a constant C > 0 such that
\begin{align*} &\frac{d}{dt}\left(\int_{\Omega}|\nabla u|^{2p}+\int_{\Omega}v^p\right)+\frac{2(p-1)}{p}\int_{\Omega}\left|\nabla v^{\frac{p}{2}}\right|^2+\int_{\Omega}|\nabla u|^{2p}+\int_{\Omega} v^{p}\\ \leqslant&\left(K_3(p)-\frac{\rho p}{2}\right)\int_{\Omega} v^{p+1}+C\quad\mathit{\text{for all}}\ t\in(0, T_{max}), \end{align*} |
where K_3(p) is defined in (1.4).
Proof. Combining Lemmas 3.6 and 3.7, we see for any p = q\geqslant2 there exists a constant C_1 > 0 such that for all t \in\left(0, T_{max}\right)
\begin{equation} \begin{aligned} &\frac{d}{dt}\left(\int_{\Omega}|\nabla u|^{2p}+\int_{\Omega}v^p\right)+\frac{2(p-1)}{p}\int_{\Omega}\left|\nabla v^{\frac{p}{2}}\right|^2+dp\int_{\Omega}|\nabla u|^{2(p-1)}|D^2u|^2+\rho p\int_{\Omega} v^{p+1}\\ \leqslant&\frac{p(n+2(p-1))K_2^2}{d}\int_{\Omega}v^2|\nabla u|^{2(p-1)}+p(p-1)\xi^2\int_{\Omega} v^{p}|\nabla u|^2\\ &\quad+C_1\int_{\Omega}|\nabla u|^{2(p-1)}+C_1\int_{\Omega} v^{p}+C_1. \end{aligned} \end{equation} | (3.13) |
Now, we estimate the right hand side of the above inequality. Indeed, owing to Lemma 2.3 and Young's inequality, for all t \in\left(0, T_{max}\right) , we have
\begin{equation*} \begin{aligned} &\frac{p(n+2(p-1))K_2^2}{d}\int_{\Omega}v^2|\nabla u|^{2(p-1)}\\ \leqslant&\frac{dp}{8(4p^2+n)\|u\|^2_{L^\infty(\Omega)}}\int_{\Omega}|\nabla u|^{2(p+1)}\\ &\quad+\frac{2}{p+1}\left(\frac{dp(p+1)}{8(p-1)(4p^2+n)\|u\|^2_{L^\infty(\Omega)}}\right)^{-\frac{p-1}{2}}\left(\frac{p(n+2(p-1))K_2^2}{d}\right)^\frac{p+1}{2}\int_{\Omega}v^{p+1}\\ \leqslant&\frac{dp}{4}\int_{\Omega}|\nabla u|^{2(p-1)}|D^2u|^2+\frac{2^{\frac{3p-1}{2}}p}{d^p}\left(\frac{n+2(p-1)K_2^2}{p+1}\right)^{\frac{p+1}{2}}\left((p-1)(4p^2+n)K_1^2\right)^{\frac{p-1}{2}}\int_{\Omega}v^{p+1} \end{aligned} \end{equation*} |
and
\begin{equation*} \begin{aligned} &p(p-1)\xi^2\int_{\Omega} v^{p}|\nabla u|^2\\ \leqslant&\frac{dp}{8(4p^2+n)\|u\|^2_{L^\infty(\Omega)}}\int_{\Omega}|\nabla u|^{2(p+1)}\\ &\quad+\frac{p}{p+1}\left(\frac{dp(p+1)}{8(4p^2+n)\|u\|^2_{L^\infty(\Omega)}}\right)^{-\frac{1}{p}}\left(p(p-1)\xi^2\right)^\frac{p+1}{p}\int_{\Omega}v^{p+1}\\ \leqslant&\frac{dp}{4}\int_{\Omega}|\nabla u|^{2(p-1)}|D^2u|^2+\frac{2^{\frac{3}{p}}p^2}{d^{\frac{1}{p}}}\left(\frac{(p-1)\xi^2}{p+1}\right)^\frac{p+1}{p}\left((4p^2+n)K_1^2\right)^{\frac{1}{p}}\int_{\Omega}v^{p+1}, \end{aligned} \end{equation*} |
where K_1 and K_2 are defined in (1.3). Similarly, we can find a constant C_2 > 0 such that
\begin{align*} &C_1\int_{\Omega}|\nabla u|^{2(p-1)}\leqslant\frac{dp}{8(4p^2+n)\|u\|^2_{L^\infty(\Omega)}}\int_{\Omega}|\nabla u|^{2(p+1)}+C_2\\ \leqslant&\frac{dp}{4}\int_{\Omega}|\nabla u|^{2(p-1)}|D^2u|^2+C_2\quad\text{for all}\ t \in\left(0, T_{max}\right). \end{align*} |
Substituting the above estimates into (3.13), we get
\begin{equation} \begin{aligned} &\frac{d}{dt}\left(\int_{\Omega}|\nabla u|^{2p}+\int_{\Omega}v^p\right)+\frac{2(p-1)}{p}\int_{\Omega}\left|\nabla v^{\frac{p}{2}}\right|^2\\ &\quad+\frac{dp}{4}\int_{\Omega}|\nabla u|^{2(p-1)}|D^2u|^2+\rho p\int_{\Omega} v^{p+1}\\ \leqslant&K_3(p)\int_{\Omega} v^{p+1}+C_1\int_{\Omega} v^{p}+C_1+C_2\quad\text{for all}\ t \in\left(0, T_{max}\right), \end{aligned} \end{equation} | (3.14) |
where K_3(p) is given in (1.4). Furthermore, we can use Young's inequality and Lemma 2.3 to get a constant C_3 > 0 such that
(C_1+1)\int_{\Omega} v^{p}\leqslant\frac{\rho p}{2}\int_{\Omega} v^{p+1}+C_3, |
and
\begin{align*} \int_{\Omega}|\nabla u|^{2p}\leqslant&\frac{dp}{8\left(4 p^{2}+n\right)\|u\|_{L^\infty(\Omega)}^2}\int_{\Omega}|\nabla u|^{2(p+1)}+C_3\\ \leqslant&\frac{dp}{4}\int_{\Omega}|\nabla u|^{2(p-1)}|D^2u|^2+C_3\quad\text{for all}\ t \in\left(0, T_{max}\right), \end{align*} |
which together with (3.14) finishes the proof.
Next, we shall deduce a criterion of global boundedness of solutions for the system (1.1) inspired by an idea of [33].
Lemma 3.9. Let n\geqslant1 . If there exist M > 0 and p_0 > \frac{n}{2} such that
\begin{equation} \int_{\Omega}v^{p_0}\leqslant M\quad\mathit{\text{for all}}\ t \in\left(0, T_{max}\right), \end{equation} | (3.15) |
then T_{max} = +\infty . Moreover, there exists C > 0 such that
\|u(\cdot, t)\|_{W^{1, \infty}(\Omega)}+\|v(\cdot, t)\|_{L^{\infty}(\Omega)}+\|w(\cdot, t)\|_{W^{1, \infty}(\Omega)}\leqslant C\quad\mathit{\text{for all}}\ t > 0. |
Proof. We divide the proof into two steps.
Step 1: We claim that there exists a constant C_1 > 0 such that
\begin{equation*} \int_{\Omega} v^{2p_0} \leqslant C_1 \quad\text{for all}\ t \in\left(0, T_{max}\right). \end{equation*} |
Indeed, due to Lemma 3.8, for any p = 2p_0 , there exists a constant C_2 > 0 such that
\begin{equation} \begin{aligned} &\frac{d}{dt}\left(\int_{\Omega}|\nabla u|^{4p_0}+\int_{\Omega}v^{2p_0}\right)+\frac{2p_0-1}{p_0}\int_{\Omega}\left|\nabla v^{p_0}\right|^2+\int_{\Omega}|\nabla u|^{4p_0}+\int_{\Omega} v^{2p_0}\\ \leqslant&\left(K_3(2p_0)-\rho p_0\right)\int_{\Omega} v^{2p_0+1}+C_2\quad\text{for all}\ t\in(0, T_{max}). \end{aligned} \end{equation} | (3.16) |
Let
\theta = \frac{n}{n+2} \frac{2p_0+2}{2p_0+1} \in(0, 1). |
Then, \frac{2p_0+1}{2p_0}\theta < 1 due to p_0 > \frac{n}{2} . By the Gagliardo-Nirenberg inequality, Young's inequality and (3.15), we can find some constants C_3, C_4 > 0 such that
\begin{equation*} \begin{aligned} \left(K_3(2p_0)-\rho p_0\right)\int_{\Omega} v^{2p_0+1} = &\left(K_3(2p_0)-\rho p_0\right)\left\|v^{p_0}\right\|_{L^{\frac{2p_0+1}{p_0}}(\Omega)}^{\frac{2p_0+1}{p_0}}\\ \leqslant& C_3\left(\left\|v^{p_0}\right\|_{L^{1}(\Omega)}^{\frac{2p_0+1}{p_0}(1-\theta)}\left\|\nabla v^{p_0}\right\|_{L^{2}(\Omega)}^{\frac{2p_0+1}{p_0} \theta}+\left\|v^{p_0}\right\|_{L^{1}(\Omega)}^{\frac{2p_0+1}{p_0}}\right)\\ \leqslant&C_3\left(M^{\frac{2p_0+1}{p_0}(1-\theta)}\left\|\nabla v^{p_0}\right\|_{L^{2}(\Omega)}^{\frac{2p_0+1}{p_0} \theta}+M^{\frac{2p_0+1}{p_0}}\right)\\ \leqslant&\frac{2p_0-1}{p_0}\int_\Omega \left|\nabla v^{p_0}\right|^2+C_4\quad \text{for all}\ t\in(0, T_{max}), \end{aligned} \end{equation*} |
which along with (3.16) implies
\frac{d}{dt}\left(\int_{\Omega}|\nabla u|^{4p_0}+\int_{\Omega}v^{2p_0}\right)+\int_{\Omega}|\nabla u|^{4p_0}+\int_{\Omega} v^{2p_0} \leqslant C_2+C_4\quad\text{for all}\ t\in(0, T_{max}). |
Therefore, the claim follows from the Grönwall inequality applied to the above inequality.
Step 2: Thanks to the regularity theorem [32,Lemma 1], we can find a constant C_5 > 0 such that \|\nabla u\|_{L^\infty(\Omega)}\leqslant C_5 due to 2p_0 > n . With (3.12) and Lemmas 3.1 and 3.2, we get a constant C_6 > 0 such that for any p\geqslant2
\begin{equation} \frac{d}{dt}\int_\Omega v^p+p(p-1)\int_\Omega v^{p-2}|\nabla v|^2\leqslant p(p-1)(C_6\chi+C_5\xi)\int_\Omega v^{p-1}|\nabla v|+p(\rho+ea_3K_1)\int_\Omega v^p. \end{equation} | (3.17) |
Thanks to Young's inequality, we find a constant C_7 > 0 such that
\begin{equation*} p(p-1)(C_6\chi+C_5\xi)\int_\Omega v^{p-1}|\nabla v|\leqslant\frac{p(p-1)}{2}\int_\Omega v^{p-2}|\nabla v|^2+C_7p(p-1)\int_\Omega v^p, \end{equation*} |
which together with (3.17) implies
\begin{equation} \frac{d}{dt}\int_\Omega v^p+p(p-1)\int_\Omega v^p+\frac{2(p-1)}{p}\int_\Omega|\nabla v^{\frac{p}{2}}|^2\leqslant p(p-1)C_8\int_\Omega v^p, \end{equation} | (3.18) |
with C_8 = C_7+\rho+ea_3K_1+1 . Applying 1+p^n\leqslant(1+p)^n and the following inequality [34]
\|f\|_{L^2}^2\leqslant\varepsilon\|\nabla f\|_{L^2}^2+C_9(1+\varepsilon^{-\frac{n}{2}})\|f\|_{L^1}^2, |
with f = v^{\frac{p}{2}} and \varepsilon = \frac{2}{p^2C_8} , we find a constant C_{10} > 0 such that
\begin{equation} p(p-1)C_8\int_\Omega u^p\leqslant\frac{2(p-1)}{p}\int_\Omega \left|\nabla u^{\frac{p}{2}}\right|^2+C_{10}p(p-1)(1+p^n)\left(\int_\Omega u^{\frac{p}{2}}\right)^2. \end{equation} | (3.19) |
Substituting (3.19) into (3.18), we have
\begin{equation*} \frac{d}{dt}\int_\Omega u^p+p(p-1)\int_\Omega u^p\leqslant C_{10}p(p-1)(1+p)^n\left(\int_\Omega u^{\frac{p}{2}}\right)^2. \end{equation*} |
Then, employing the standard Moser iteration in [35] or a similar argument as in [34], we can prove that there exists a constant C_{11} > 0 such that
\begin{equation*} \|v\|_{L^\infty(\Omega)}\leqslant C_{11}\quad\text{for all}\ t\in(0, T_{max}). \end{equation*} |
Thus, with the help of Lemma 3.2, we finish the proof.
Now, utilizing the criterion in Lemma 3.9, we prove the global existence and boundedness of solutions for the system (1.1).
Proof of Theorem 1.1. If n\leqslant2 , then the conclusion of the theorem can be obtained by Lemmas 3.3, 3.5 and 3.9. If n\geqslant3 and
\rho\geqslant \frac{2K_3\left(\left[\frac{n}{2}\right]+1\right)}{\left[\frac{n}{2}\right]+1}, |
then according to Lemma 3.8, by fixing p = [\frac{n}{2}]+1 we can find a constant C_1 > 0 such that
\frac{d}{dt}\left(\int_{\Omega}|\nabla u|^{2\left[\frac{n}{2}\right]+2}+\int_{\Omega}v^{\left[\frac{n}{2}\right]+1}\right)+\int_{\Omega}|\nabla u|^{2\left[\frac{n}{2}\right]+2}+\int_{\Omega} v^{\left[\frac{n}{2}\right]+1} \leqslant C_1\quad\text{for all}\ t\in(0, T_{max}), |
which along with the Grönwall inequality gives a constant C_2 > 0 ,
\int_{\Omega} v^{\left[\frac{n}{2}\right]+1} \leqslant C_2\quad\text{for all}\ t\in(0, T_{max}). |
Together with Lemma 3.9, we finish the proof by Lemma 2.1.
In this section, we will employ suitable Lyapunov functionals to study the large-time behavior of u , v and w . We first improve the regularity of the solution.
Lemma 4.1. There exist constants \theta_1, \theta_2, \theta_3\in(0, 1) and C > 0 such that
\|u\|_{C^{2+\theta_1, 1+\frac{\theta_1}{2}}(\overline{\Omega}\times[t, t+1])}+\|v\|_{C^{2+\theta_2, 1+\frac{\theta_2}{2}}(\overline{\Omega}\times[t, t+1])}+\|w\|_{C^{2+\theta_3, 1+\frac{\theta_3}{2}}(\overline{\Omega}\times[t, t+1])}\leqslant C\quad\mathit{\text{for all}}\ t > 1. |
In particular, one can find C > 0 such that
\|\nabla u\|_{L^\infty(\Omega)}+\|\nabla v\|_{L^\infty(\Omega)}+\|\nabla w\|_{L^\infty(\Omega)}\leqslant C\quad\mathit{\text{for all}}\ t > 1. |
Proof. The conclusion is a consequence of the regularity of parabolic equations in [36].
We split our analysis into two cases: a_1 > a_3 and a_1\leqslant a_3 .
We know that there are four homogeneous equilibria (0, 0, 0) , (0, 1, 0) , \left(\frac{a_1}{a_2}, 0, \frac{ra_1}{\gamma a_2}\right) and (u_*, v_*, w_*) when a_1 > a_3 , where u_*, v_* and w_* are defined in (1.5). In this case, we shall prove the coexistence steady state (u_*, v_*, w_*) is globally exponentially stable under certain conditions. Define an energy functional for (1.1) as follows:
\mathcal{F}(t) = \varepsilon_1\int_\Omega\left(u-u_*-u_*\ln\frac{u}{u_*}\right)+\int_\Omega\left(v-v_*-v_*\ln\frac{v}{v_*}\right)+\frac{\varepsilon_2}{2}\int_\Omega\left(w-w_*\right)^2, |
where \varepsilon_1 and \varepsilon_2 are to be determined below.
Proof of Theorem 1.2–(1). We complete the proof in four steps.
Step 1: The parameters \varepsilon_1 and \varepsilon_2 can be chosen in the following way. First, we recall from (1.5) and (1.6) that
\begin{equation} \Gamma = \frac{4du_*}{K_1^2v_*}, \Phi = \frac{2 a_2 \rho}{a_3^2}+e, \Psi = \frac{\gamma\eta a_3^2K_1^2}{d\rho^2 r^2u_*}. \end{equation} | (4.1) |
Let
f(y) = \frac{\Psi(\Gamma y-\xi^2)(-y^2+2\Phi y-e^2)}{y}, \quad y > 0. |
It is clear that f\in C^0((0, +\infty)) . Then, if
\frac{\xi^2}{\Gamma} < \Phi+\sqrt{\Phi^2-e^2}, |
the following holds:
\begin{equation} \frac{\xi^2K_1^2 v_*}{4du_*} < \frac{2a_2\rho}{a_3^2}+e+\frac{2}{a_3}\sqrt{a_2\rho\left(\frac{a_2\rho}{a_3^2}+e\right)}. \end{equation} | (4.2) |
Under (4.2), we let a = \max\left\{\frac{\xi^2}{\Gamma}, \Phi-\sqrt{\Phi^2-e^2}\right\} and b = \Phi+\sqrt{\Phi^2-e^2} with a < b . Then, f(y) is continuous on [a, b] with f(a) = f(b) = 0 , and consequently f(y) must attain the maximum at some point, say \varepsilon_1 , in (a, b) , namely f(\varepsilon_1) = \max \limits_{y\in [a, b]} f(y) . Then, a < \varepsilon_1 < b , or equivalently (see (4.1))
\begin{equation} \max\left\{\frac{\xi^2u^2 v_*}{4du_*}, \frac{2a_2\rho}{a_3^2}+e-\frac{2}{a_3}\sqrt{a_2\rho\left(\frac{a_2\rho}{a_3^2}+e\right)}\right\} < \varepsilon_1 < \frac{2a_2\rho}{a_3^2}+e+\frac{2}{a_3}\sqrt{a_2\rho\left(\frac{a_2\rho}{a_3^2}+e\right)}. \end{equation} | (4.3) |
Next, we assume \chi > 0 is suitably small such that
\begin{align*} \chi^2 < f(\varepsilon_1) = &\frac{\gamma\eta a_3^2K_1^2}{d\rho r^2u_*\varepsilon_1}\left(\frac{4du_*\varepsilon_1}{v_*K_1^2}-\xi^2\right)\left(-\varepsilon_1^2+2\left(\frac{2a_2\rho}{a_3^2}+e\right)\varepsilon_1-e^2\right)\\ = &\frac{4\gamma\eta}{d\rho r^2u_*v_*\varepsilon_1}\left(4du_*\varepsilon_1-\xi^2v_*K_1^2\right)\left(a_2\rho\varepsilon_1-\frac{a_3^2(\varepsilon_1-e)^2}{4}\right), \end{align*} |
which implies
\frac{d\chi^2u_*v_*^2\varepsilon_1}{\eta\left(4du_*v_*\varepsilon_1-\xi^2v_*^2K_1^2\right)} < \frac{4\gamma}{\rho r^2}\left(a_2\rho\varepsilon_1-\frac{a_3^2(\varepsilon_1-e)^2}{4}\right). |
Hence, there exists a constant \varepsilon_2 > 0 such that
\begin{equation*} \label{24} \frac{d\chi^2u_*v_*^2\varepsilon_1}{\eta\left(4du_*v_*\varepsilon_1-\xi^2v_*^2K_1^2\right)} < \varepsilon_2 < \frac{4\gamma}{\rho r^2}\left(a_2\rho\varepsilon_1-\frac{a_3^2(\varepsilon_1-e)^2}{4}\right) \end{equation*} |
which along with Lemma 3.1 yields
\begin{equation} \frac{d\chi^2u_*v_*^2\varepsilon_1}{\eta\left(4du_*v_*\varepsilon_1-\xi^2v_*^2u^2\right)} < \varepsilon_2 < \frac{4\gamma}{\rho r^2}\left(a_2\rho\varepsilon_1-\frac{a_3^2(\varepsilon_1-e)^2}{4}\right). \end{equation} | (4.4) |
Step 2: We claim
\|u-u_*\|_{L^{\infty}(\Omega)}+\|v-v_*\|_{L^{\infty}(\Omega)}+\|w-w_*\|_{L^{\infty}(\Omega)} \rightarrow0\quad\text{as}\ t\rightarrow +\infty. |
Indeed, using the equations in system (1.1) along with integration by parts, we have
\begin{aligned} &\frac{d}{dt}\int_\Omega\left(u-u_*-u_*\ln\frac{u}{u_*}\right) = \int_\Omega \frac{u-u_*}{u}u_t\\ = &-du_*\int_\Omega\frac{|\nabla u|^2}{u^2}+\int_\Omega(u-u_*)(a_1-a_2u-a_3v)\\ = &-du_*\int_\Omega\frac{|\nabla u|^2}{u^2}-a_2\int_\Omega(u-u_*)^2-a_3\int_\Omega(u-u_*)(v-v_*). \end{aligned} |
Similarly, we obtain
\begin{aligned} &\frac{d}{dt}\int_\Omega\left(v-v_*-v_*\ln\frac{v}{v_*}\right) = \int_\Omega \frac{v-v_*}{v}v_t\\ = &-v_*\int_\Omega\frac{|\nabla v|^2}{v^2}-\chi v_*\int_\Omega\frac{\nabla v\cdot\nabla w}{v}+\xi v_*\int_\Omega\frac{\nabla u\cdot\nabla v}{v}+\int_\Omega(v-v_*)(\rho-\rho v+ea_3u)\\ = &-v_*\int_\Omega\frac{|\nabla v|^2}{v^2}-\chi v_*\int_\Omega\frac{\nabla v\cdot\nabla w}{v}+\xi v_*\int_\Omega\frac{\nabla u\cdot\nabla v}{v}\\ &\quad-\rho\int_\Omega(v-v_*)^2+ea_3\int_\Omega(u-u_*)(v-v_*) \end{aligned} |
and
\begin{align*} \frac{d}{dt}\int_\Omega\left(w-w_*\right)^2 = &2\int_\Omega\left(w-w_*\right)w_t = 2\int_\Omega\left(w-w_*\right)\left(\eta \Delta w+ru-\gamma w\right)\\ = &-2\eta\int_\Omega|\nabla w|^2+2r\int_\Omega(u-u_*)(w-w_*)-2\gamma\int_\Omega(w-w_*)^2\quad\text{for all}\ t > 0. \end{align*} |
Then, it follows that
\begin{align*} \frac{d}{dt}\mathcal{F}(t) = &-du_*\varepsilon_1\int_\Omega\frac{|\nabla u|^2}{u^2}-v_*\int_\Omega\frac{|\nabla v|^2}{v^2}-\eta \varepsilon_2\int_\Omega|\nabla w|^2\\ &\quad-\chi v_*\int_\Omega\frac{\nabla v\cdot\nabla w}{v}+\xi v_*\int_\Omega\frac{\nabla u\cdot\nabla v}{v}\\ &\quad-a_2\varepsilon_1\int_\Omega(u-u_*)^2-\rho\int_\Omega(v-v_*)^2-\gamma\varepsilon_2\int_\Omega(w-w_*)^2\\ &\quad-a_3(\varepsilon_1-e)\int_\Omega(u-u_*)(v-v_*)+r\varepsilon_2\int_\Omega(u-u_*)(w-w_*)\\ = &:-X^TSX-Y^TTY, \end{align*} |
where X = (\nabla u, \nabla v, \nabla w) , Y = (u-u_*, v-v_*, w-w_*) , and
S = \left[\begin{array}{ccc} \frac{du_*\varepsilon_1}{u^2} & -\frac{\xi v_*}{2v} & 0\\ -\frac{\xi v_*}{2v} & \frac{v_*}{v^2} & \frac{\chi v_*}{2v}\\ 0 & \frac{\chi v_*}{2v} & \eta\varepsilon_2 \end{array}\right], \quad T = \left[\begin{array}{ccc} a_2\varepsilon_1 & \frac{a_3(\varepsilon_1-e)}{2} & -\frac{r\varepsilon_2}{2}\\ \frac{a_3(\varepsilon_1-e)}{2} & \rho & 0\\ -\frac{r\varepsilon_2}{2} & 0 & \gamma\varepsilon_2 \end{array}\right]. |
Note that (4.3) yields
\frac{du_*v_*\varepsilon_1}{u^2v^2}-\frac{\xi^2v_*^2}{4v^2} > \frac{v_*^2}{4v^2}\bigg(\frac{4d u_*\varepsilon}{K_1^2}-\xi^2\bigg) > 0, |
and (4.4) gives
\frac{\eta du_*v_*\varepsilon_1\varepsilon_2}{u^2v^2}-\frac{d\chi^2u_*v_*^2\varepsilon_1}{4u^2v^2}-\frac{\eta \xi^2v_*^2\varepsilon_2}{4v^2} > 0. |
The above results indicate that matrix S is positive definite. Using (4.3) and (4.4) again, we observe that
a_2\rho\varepsilon_1-\frac{a_3^2(\varepsilon_1-e)^2}{4} > 0, |
and
a_2\rho\gamma\varepsilon_1\varepsilon_2-\frac{\rho r^2\varepsilon_2^2}{4}-\frac{a_3^2\gamma(\varepsilon_1-e)^2\varepsilon_2}{4} > 0, |
which imply that matrix T is positive definite. Therefore, one can choose a constant C_1 > 0 such that
\begin{equation} \frac{d}{dt}\mathcal{F}(t)\leqslant-C_1\left(\int_\Omega(u-u_*)^2+\int_\Omega(v-v_*)^2+\int_\Omega(w-w_*)^2\right)\quad\text{for all}\ t > 0. \end{equation} | (4.5) |
Integrating the above inequality with respect to time, we get a constant C_2 > 0 satisfying
\int_{1}^{+\infty}\int_\Omega(u-u_*)^2+\int_{1}^{+\infty}\int_\Omega(v-v_*)^2+\int_{1}^{+\infty}\int_\Omega(w-w_*)^2\leqslant C_2, |
which together with the uniform continuity of u, v and w due to Lemma 4.1 yields
\begin{equation} \int_\Omega(u-u_*)^2+\int_\Omega(v-v_*)^2+\int_\Omega(w-w_*)^2\rightarrow0, \quad\text{as}\ t\rightarrow +\infty. \end{equation} | (4.6) |
By the Gagliardo-Nirenberg inequality, we can find a constant C_3 > 0 such that
\begin{equation} \|u-u_*\|_{L^{\infty}(\Omega)} \leqslant C_3\|u-u_*\|_{W^{1, \infty}(\Omega)}^{\frac{n}{n+2}}\|u-u_*\|_{L^{2}(\Omega)}^{\frac{2}{n+2}}, \end{equation} | (4.7) |
\begin{equation} \|v-v_*\|_{L^{\infty}(\Omega)} \leqslant C_3\|v-v_*\|_{W^{1, \infty}(\Omega)}^{\frac{n}{n+2}}\|v-v_*\|_{L^{2}(\Omega)}^{\frac{2}{n+2}} \end{equation} | (4.8) |
and
\begin{equation} \|w-w_*\|_{L^{\infty}(\Omega)} \leqslant C_3\|w-w_*\|_{W^{1, \infty}(\Omega)}^{\frac{n}{n+2}}\|w-w_*\|_{L^{2}(\Omega)}^{\frac{2}{n+2}}\quad\text{for all}\ t > 1, \end{equation} | (4.9) |
which along with (4.6) and Lemma 4.1 prove the claim.
Step 3: From the L'Hôpital rule, it holds that for any s_0 > 0
\lim\limits_{s\rightarrow s_0}\frac{s-s_0-s_0\ln\frac{s}{s_0}}{(s-s_0)^2} = \lim\limits_{s\rightarrow s_0}\frac{1-\frac{s_0}{s}}{2(s-s_0)} = \lim\limits_{s\rightarrow s_0}\frac{1}{2s} = \frac{1}{2s_0}, |
which gives a constant \eta > 0 such that for all |s-s_0|\leqslant\eta
\begin{equation} \frac{1}{4s_0}(s-s_0)^2\leqslant s-s_0-s_0\ln\frac{s}{s_0}\leqslant\frac{1}{s_0}(s-s_0)^2. \end{equation} | (4.10) |
By (4.6), there exists T_1 > 1 such that
\begin{equation*} \|u-u_*\|_{L^\infty(\Omega)}+\|v-v_*\|_{L^\infty(\Omega)}+\|w-w_*\|_{L^\infty(\Omega)}\leqslant\eta\quad\text{for all}\ t\geqslant T_1. \end{equation*} |
Therefore, by (4.10), we get
\begin{equation} \frac{1}{4u_*}\int_\Omega(u-u_*)^2\leqslant\int_\Omega \left(u-u_*-u_*\ln\frac{u}{u_*}\right)\leqslant\frac{1}{u_*}\int_\Omega(u-u_*)^2\quad\text{for all}\ t\geqslant T_1 \end{equation} | (4.11) |
and
\begin{equation} \frac{1}{4v_*}\int_\Omega(v-v_*)^2\leqslant\int_\Omega \left(v-v_*-v_*\ln\frac{v}{v_*}\right)\leqslant\frac{1}{v_*}\int_\Omega(v-v_*)^2\quad\text{for all}\ t\geqslant T_1. \end{equation} | (4.12) |
Step 4: From (4.11) and (4.12), it follows that
\mathcal{F}(t)\leqslant\max\left\{\frac{\varepsilon_1}{u_*}, \frac{1}{v_*}, \frac{\varepsilon_2}{2}\right\}\left(\int_\Omega(u-u_*)^2+\int_\Omega(v-v_*)^2+\int_\Omega(w-w_*)^2\right), |
which alongside (4.5) yields a constant C_4 > 0 such that
\frac d{dt}\mathcal{F}(t)\leqslant-C_4\mathcal{F}(t)\quad\text{for all}\ t\geqslant T_1. |
This immediately gives a constant C_5 > 0 such that
\begin{equation*} \mathcal{F}(t)\leqslant C_5e^{-C_4 t}\quad\text{for all}\ t\geqslant T_1. \end{equation*} |
Hence, utilizing (4.11) and (4.12) again, one obtains a constant C_6 > 0 such that
\begin{equation*} \int_\Omega(u-u_*)^2+\int_\Omega(v-v_*)^2+\int_\Omega(w-w_*)^2\leqslant C_6e^{-C_4 t}\quad\text{for all}\ t\geqslant T_1. \end{equation*} |
Finally, by (4.7)–(4.9) and Lemma 4.1, we get the decay rates of \|u-u_*\|_{L^\infty(\Omega)} , \|v-v_*\|_{L^\infty(\Omega)} and \|w-w_*\|_{L^\infty(\Omega)} , as claimed in Theorem 1.2–(1).
In this case, there are three homogeneous equilibria (0, 0, 0) , (0, 1, 0) and \left(\frac{a_1}{a_2}, 0, \frac{ra_1}{\gamma a_2}\right) , and we shall show that the steady state (0, 1, 0) is global asymptotically stable, where the convergence rate is exponential if a_1 < a_3 and algebraic if a_1 = a_3 . Define an energy functional for (1.1) as follows:
G(t) = e\int_\Omega u+\frac{\zeta_1}{2}\int_\Omega u^2+\int_\Omega\left(v-1-\ln v\right)+\frac{\zeta_2}{2}\int_\Omega w^2, |
where \zeta_1 and \zeta_2 will be determined below.
Proof of Theorem 1.2–(2). We divide the proof into five steps.
Step 1: We shall choose the appropriate parameters \zeta_1 and \zeta_2 . By the definitions of A and B in (1.7), since A < B , we have
\begin{equation} \left(\frac{\xi^2}{4d}\right)^2 < \frac{\xi^2ea_2}{4da_1} < \left(\frac{ea_2}{a_1}\right)^2. \end{equation} | (4.13) |
Let
g(y) = \frac{16\eta\gamma}{dr^2}\frac{(dy-\frac{\xi^2}{4})(ea_2-a_1y)}{y}, \quad \frac{\xi^2}{4d} < y < \frac{ea_2}{a_1}. |
Then, g\in C^1\left(\left(\frac{\xi^2}{4d}, \frac{ea_2}{a_1}\right)\right) , and g(y) > 0 in \left(\frac{\xi^2}{4d}, \frac{ea_2}{a_1}\right) . We further observe that
g\left(\frac{\xi}{2}\sqrt{\frac{ea_2}{da_1}}\right) = D\left(A+B-2\sqrt{AB}\right) |
which along with \chi^2 < D\left(A+B-2\sqrt{AB}\right) implies
\chi^2 < g\left(\frac{\xi}{2}\sqrt{\frac{ea_2}{da_1}}\right). |
By the definition of g , one has
g'(y_0) = \frac{16\eta\gamma}{dr^2}\left(-da_1+\frac{\xi^2ea_2}{4y_0^2}\right) = 0, |
which alongside (4.13) gives y_0 = \frac{\xi}{2}\sqrt{\frac{ea_2}{da_1}}\in\left(\frac{\xi^2}{4d}, \frac{ea_2}{a_1}\right) . Thus, g(y) is increasing in \left(\frac{\xi^2}{4d}, \frac{\xi}{2}\sqrt{\frac{ea_2}{da_1}}\right) and decreasing in \left(\frac{\xi}{2}\sqrt{\frac{ea_2}{da_1}}, \frac{ea_2}{a_1}\right) . We can find a constant \zeta_1 > 0 such that
\begin{equation} \frac{\xi}{2}\sqrt{\frac{ea_2}{da_1}} < \zeta_1 < \frac{ea_2}{a_1} \end{equation} | (4.14) |
and
0 = g\left(\frac{ea_2}{a_1}\right) < \chi^2 < g(\zeta_1) < g\left(\frac{\xi}{2}\sqrt{\frac{ea_2}{da_1}}\right). |
With the definition of g , we get
\frac{d\chi^2\zeta_1}{4\eta(d\zeta_1-\frac{\xi^2}{4})} < \frac{4\gamma}{r^2}(ea_2-a_1\zeta_1), |
which implies that there exists \zeta_2 > 0 such that
\begin{equation} \frac{d\chi^2\zeta_1}{4\eta(d\zeta_1-\frac{\xi^2}{4})} < \zeta_2 < \frac{4\gamma}{r^2}(ea_2-a_1\zeta_1). \end{equation} | (4.15) |
One can verify that
\begin{equation} \eta d\zeta_1\zeta_2-\frac{d\chi^2}{4}\zeta_1-\frac{\eta \xi^2}{4}\zeta_2 > 0, \end{equation} | (4.16) |
and
\begin{equation} (ea_2-a_1\zeta_1)\rho\gamma\zeta_2-\frac{\rho r^2}{4}\zeta_2^2 > 0. \end{equation} | (4.17) |
Thanks to (4.13) and (4.14), one obtains
\begin{equation} \frac{\xi^2}{4d} < \zeta_1 < \frac{ea_2}{a_1}. \end{equation} | (4.18) |
Step 2: We claim
\begin{equation} \|u\|_{L^{\infty}(\Omega)}+\|v-1\|_{L^{\infty}(\Omega)}+\|w\|_{L^{\infty}(\Omega)} \rightarrow0\quad\text{as}\ t\rightarrow +\infty. \end{equation} | (4.19) |
Indeed, if (u, v, w) is the solution of system (1.1), then we get
\begin{gather} \frac{d}{dt}\int_\Omega u = a_1\int_\Omega u-a_2\int_\Omega u^2-a_3\int_\Omega uv, \end{gather} | (4.20) |
\begin{gather} \frac{d}{dt}\int_\Omega u^2 = 2\int_\Omega uu_t = -2d\int_\Omega|\nabla u|^2+2a_1\int_\Omega u^2-2a_2\int_\Omega u^3-2a_3\int_\Omega u^2v, \end{gather} | (4.21) |
\begin{gather} \begin{aligned} &\frac{d}{dt}\int_\Omega\left(v-1-\ln v\right) = \int_\Omega \frac{v-1}{v}v_t\\ = &-\int_\Omega\frac{|\nabla v|^2}{v^2}-\chi \int_\Omega\frac{\nabla v\cdot\nabla w}{v}+\xi \int_\Omega\frac{\nabla u\cdot\nabla v}{v}+\int_\Omega(v-1)(\rho-\rho v+ea_3u)\\ = &-\int_\Omega\frac{|\nabla v|^2}{v^2}-\chi \int_\Omega\frac{\nabla v\cdot\nabla w}{v}+\xi\int_\Omega\frac{\nabla u\cdot\nabla v}{v}-\rho\int_\Omega(v-1)^2+ea_3\int_\Omega uv-ea_3\int_\Omega u \end{aligned} \end{gather} | (4.22) |
and
\begin{equation} \frac{d}{dt}\int_\Omega w^2 = 2\int_\Omega ww_t = -2\eta\int_\Omega|\nabla w|^2+2r\int_\Omega uw-2\gamma\int_\Omega w^2\quad\text{for all}\ t > 0. \end{equation} | (4.23) |
Then, combining (4.20), (4.21), (4.22) and (4.23), we have from the definition of G(t) that
\begin{equation} \begin{aligned} \frac{d}{dt}G(t)\leqslant&-d\zeta_1\int_\Omega|\nabla u|^2-\int_\Omega\frac{|\nabla v|^2}{v^2}-\eta\zeta_2\int_\Omega|\nabla w|^2\\ &\quad-\chi \int_\Omega\frac{\nabla v\cdot\nabla w}{v}+\xi\int_\Omega\frac{\nabla u\cdot\nabla v}{v}+e(a_1-a_3)\int_\Omega u\\ &\quad-(ea_2-a_1\zeta_1)\int_\Omega u^2-\rho\int_\Omega(v-1)^2-\gamma\zeta_2\int_\Omega w^2+r\zeta_2\int_\Omega uw\\ = &:-X^TPX-Y^TQY+e(a_1-a_3)\int_\Omega u, \end{aligned} \end{equation} | (4.24) |
where X = (\nabla u, \nabla v, \nabla w) , Y = (u, v-1, w) ,
P = \left[\begin{array}{ccc} d\zeta_1 & -\frac{\xi}{2v} & 0\\ -\frac{\xi}{2v} & \frac{1}{v^2} & \frac{\chi}{2v}\\ 0 & \frac{\chi}{2v} & \eta\zeta_2 \end{array}\right]\quad\text{and}\quad Q = \left[\begin{array}{ccc} ea_2-a_1\zeta_1 & 0 & -\frac{r\zeta_2}{2}\\ 0 & \rho & 0\\ -\frac{r\zeta_2}{2} & 0 & \gamma\zeta_2 \end{array}\right]. |
It can be checked that (4.16) and (4.18) ensure that the matrix P is positive definite while (4.17) and (4.18) guarantee that the matrix Q is positive definite. Thus, there is a constant C_1 > 0 such that if a_1 < a_3 , then
\begin{equation} \frac{d}{dt}G(t)\leqslant-C_1\left(\int_\Omega u+\int_\Omega u^2+\int_\Omega(v-1)^2+\int_\Omega w^2\right)\quad\text{for all}\ t > 0, \end{equation} | (4.25) |
and if a_1 = a_3 , then
\begin{equation} \frac{d}{dt}G(t)\leqslant-C_1\left(\int_\Omega u^2+\int_\Omega(v-1)^2+\int_\Omega w^2\right)\quad\text{for all}\ t > 0. \end{equation} | (4.26) |
Integrating the above inequalities with respect to time, we find a constant C_2 > 0 satisfying
\int_1^{+\infty}\int_\Omega u^2+\int_1^{+\infty}\int_\Omega(v-1)^2+\int_1^{+\infty}\int_\Omega w^2\leqslant C_2, |
which together with the uniform continuity of u, v and w due to Lemma 4.1 yields
\begin{equation} \int_\Omega u^2+\int_\Omega(v-1)^2+\int_\Omega w^2\rightarrow0, \quad\text{as}\ t\rightarrow +\infty. \end{equation} | (4.27) |
Thus, (4.19) is obtained by the Gagliardo-Nirenberg inequality and Lemma 4.1.
Step 3: By the L'Hôpital rule, we get
\lim\limits_{s\rightarrow 1}\frac{s-1-\ln s}{(s-1)^2} = \lim\limits_{s\rightarrow 1}\frac{1-\frac{1}{s}}{2(s-1)} = \lim\limits_{s\rightarrow 1}\frac{1}{2s} = \frac{1}{2}, |
which gives a constant \varepsilon > 0 such that
\begin{equation} \frac{1}{4}(s-1)^2\leqslant s-1-\ln s\leqslant(s-1)^2 \ \ \text{for all}\ \ |s-1|\leqslant\varepsilon. \end{equation} | (4.28) |
By (4.19), there exists T_1 > 0 such that
\begin{equation} \|u\|_{L^\infty(\Omega)}+\|v-1\|_{L^\infty(\Omega)}+\|w\|_{L^\infty(\Omega)}\leqslant\varepsilon\quad\text{for all}\ t\geqslant T_1. \end{equation} | (4.29) |
Therefore, it follows from (4.28) that
\begin{equation} \frac{1}{4}\int_\Omega(v-1)^2\leqslant\int_\Omega (v-1-\ln v)\leqslant \int_\Omega(v-1)^2\quad\text{for all}\ t\geqslant T_1. \end{equation} | (4.30) |
Step 4: If a_1 < a_3 , from the definition of G(t) and (4.30), one has
G(t)\leqslant\max\left\{e, \frac{\zeta_1}{2}, \frac{\zeta_2}{2}, 1\right\}\left(\int_\Omega u+\int_\Omega u^2+\int_\Omega(v-1)^2+\int_\Omega w^2\right), |
which along with (4.25) yields a constant C_3 > 0 such that
\frac d{dt}G(t)\leqslant-C_3G(t)\quad\text{for all}\ t\geqslant T_1. |
This gives a constant C_4 > 0 such that
\begin{equation*} G(t)\leqslant C_4e^{-C_3 t}\quad\text{for all}\ t\geqslant T_1. \end{equation*} |
Hence, utilizing (4.30) again, we find a constant C_5 > 0 such that
\begin{equation*} \int_\Omega u^2+\int_\Omega(v-1)^2+\int_\Omega w^2\leqslant C_5e^{-C_3 t}\quad\text{for all}\ t\geqslant T_1. \end{equation*} |
Then, by the Gagliardo-Nirenberg inequality and Lemma 4.1, we get the exponential convergence for \|u\|_{L^{\infty}(\Omega)}+\|v-1\|_{L^{\infty}(\Omega)}+\|w\|_{L^{\infty}(\Omega)} .
Step 5: If a_1 = a_3 , we use (4.29), (4.30) and Young's inequality to find a constant C_6 > 0 :
\begin{align*} G^2(t)\leqslant& C_6\left(\int_\Omega u+\int_\Omega u^2+\int_\Omega(v-1)^2+\int_\Omega w^2\right)^2\\ \leqslant&C_6(\varepsilon+1)^2\left(\int_\Omega u+\int_\Omega(v-1)+\int_\Omega w \right)^2\\ \leqslant&3C_6(\varepsilon+1)^2|\Omega|\left(\int_\Omega u^2+\int_\Omega(v-1)^2+\int_\Omega w^2 \right)\quad\text{for all}\ t\geqslant T_1, \end{align*} |
which alongside (4.26) implies some constant C_7 > 0
\frac{d}{dt}G(t)\leqslant-C_7G^2(t)\quad\text{for all}\ t\geqslant T_1. |
Solving the above inequality directly yields a constant C_8 > 0 such that
G(t)\leqslant C_8(t+1)^{-1}\quad\text{for all}\ t\geqslant T_1. |
Similar to the case a_1 < a_3 , we can use (4.30), the Gagliardo-Nirenberg inequality and Lemma 4.1 to get the convergence rate of \|u\|_{L^{\infty}(\Omega)}+\|v-1\|_{L^{\infty}(\Omega)}+\|w\|_{L^{\infty}(\Omega)} .
The author warmly thanks the reviewers for several inspiring comments and helpful suggestions. The research of the author was supported by the National Nature Science Foundation of China (Grant No. 12101377) and the Nature Science Foundation of Shanxi Province (Grant No. 20210302124080).
The author declares there is no conflict of interest.
[1] | R. Gao, B. Cao, Y. Hu, et al, Human infection with a novel avian-origin influenza A (H7N9) virus, N. Engl. J. Med., 368 (2013), 1888–1897. |
[2] | Q. Li, L. Zhou, M. Zhou, et al, Epidemiology of Human Infections with Avian Influenza A (H7N9) Virus in China, N. Engl. J. Med., 370 (2014), 520–532. |
[3] | L. Fang, X. Li, K. Liu, et al, Mapping Spread and Risk of Avian Influenza A (H7N9) in China, Sci. Rep., 3 (2013), 2722. |
[4] | Avian Influenza Report, Report of the government of the Hong Kong Special Administrative Region, Available from: https://www.chp.gov.hk/sc/resources/29/332.html. |
[5] | X. Wang, H. Jiang, P. Wu, et al, Epidemiology of avian influenza A H7N9 virus in human beings across five epidemics in mainland China, 2013-17: an epidemiological study of laboratory- confirmed case series, Lancet Infect. Dis., 17 (2017), 822–832. |
[6] | A. Badulak, Human Infections with the Emerging Avian Influenza A H7N9 Virus from Wet Market Poultry: Clinical Analysis and Characterization of Viral Genome, J. Emerg. Med., 45 (2013), 484. |
[7] | Z. Chen, H. Liu, J. Lu, et al, Asymptomatic, Mild, and Severe Influenza A(H7N9) Virus Infection in Humans, Guangzhou, China, Emerg. Infect. Dis., 20 (2014), 1535–1540. |
[8] | Human infection with avian influenza A(H7N9) virus - China, Report of World Health Organiza- tion, Available from: http://www.who.int/csr/don/27-february-2017-ah7n9-china/ en/. |
[9] | W. Zhu, J. Zhou, Z. Li, et al, Biological characterisation of the emerged highly pathogenic avian influenza (HPAI) A(H7N9) viruses in humans, in mainland China, 2016 to 2017, Euro. Surveill., 22 (2017). |
[10] | L. Yang , W. Zhu, X. Li, et al, Genesis and Spread of Newly Emerged Highly Pathogenic H7N9 Avian Viruses in Mainland China, J. Virol., 91(2017), JVI.01277-17. |
[11] | C. Quan, W. Shi, Y. Yang, et al, New threats of H7N9 influenza virus: the spread and evolution of highly and low pathogenic variants with high genomic diversity in Wave Five, J. Virol., 92 (2018), JVI.00301-18. |
[12] | Official Veterinary Bulletin, Report of Ministry of Agriculture of the People's Republic of China, Available from: http://jiuban.moa.gov.cn/zwllm/tzgg/gb/sygb/. |
[13] | R. Mu and Y. Yang, Global Dynamics of an Avian Influenza A(H7N9) Epidemic Model with Latent Period and Nonlinear Recovery Rate, Comput. Math. Methods Med., 2018 (2018), 1–11. |
[14] | Y. Chen and Y. Wen, Global dynamic analysis of a H7N9 avian-human influenza model in an outbreak region, J. Theor. Biol., 367 (2015), 180–188. |
[15] | J. Zhang, Z. Jin, G. Sun, et al, Determination of original infection source of H7N9 avian influenza by dynamical model, Sci. Rep., 4 (2014), 4846. |
[16] | Z. Liu and C. Fang, A modeling study of human infections with avian influenza A H7N9 virus in mainland China, Int. J. Infect. Dis., 41 (2015), 73–78. |
[17] | Y. Xing, L. Song, G. Sun, et al, Assessing reappearance factors of H7N9 avian influenza in China, Appl. Math. Comput., 309 (2017), 192–204. |
[18] | M. Kang, L. Ehy, W. Guan, et al, Epidemiology of human infections with highly pathogenic avian influenza A(H7N9) virus in Guangdong, 2016 to 2017, Euro. Surveill., 22 (2017). |
[19] | W. Su, K. Cheng, D. Chu, et al, Genetic analysis of H7N9 highly pathogenic avian influenza virus in Guangdong, China, 2016C2017, J. Infect., 76 (2018). |
[20] | L. Cao, K.B. Li, Y. Liu, et al, Surveillance for circulation and genetic evolution of avian influenza A (H7N9) virus in poultry markets in Guangzhou, 2014 - 2017, Dis. Survell., 33 (2018), 897–901. |
[21] | C. Li, R.Ren, D. Li, et al, Epidemic and death case analysis on human infection with highly pathogenic avian influenza A (H7N9) virus in the mainland of China, 2016 - 2018, Dis. Survell., 33 (2018), 985–989. |
[22] | D. Wu, S. Zou, T. Bai, et al, Poultry farms as a source of avian influenza A (H7N9) virus reassortment and human infection, Sci. Rep., 5 (2015), 7630. |
[23] | K.Tan, S. Jacob, K. Chan, et al, An overview of the characteristics of the novel avian influenza A H7N9 virus in humans, Front Microbiol., 6 (2015), 140. |
[24] | Y. Bi, J. Liu, H. Xiong, et al, A new reassortment of influenza A (H7N9) virus causing human infection in Beijing, 2014, Sci. Rep., 6 (2016), 26624. |
[25] | A. Handel, J. Brown, D. Stallknecht, et al, A Multi-scale Analysis of Influenza A Virus Fit- ness Trade-offs due to Temperature-dependent Virus Persistence, PLoS Comput. Biol., 9 (2013), e1002989. |
[26] | Guangdong statistical yearbook, Report of Guangdong statistical information network, Available from: http://www.gdstats.gov.cn/tjsj/gdtjnj/. |
[27] | Nation data, Report of Nation Bureau of Statistics of China, Available from: http://data. stats.gov.cn/easyquery.htm?cn=E0103. |
[28] | J. Ma and Z. Ma, Epidemic threshold conditions for seasonally forced SEIR models, Math. Biosci. Eng., 3 (2017), 161–172. |
[29] | X. Hu, Threshold dynamics for a Tuberculosis model with seasonality, Math. Biosci. Eng., 9 (2011), 111–122. |
[30] | W. Wang and X. Zhao, Threshold Dynamics for Compartmental Epidemic Models in Periodic Environments, J. Dyn. Differ. Equ., 20 (2008), 699–717. |
[31] | P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equi- libria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. |
1. | Luis E. Ayala-Hernández, Gabriela Rosales-Muñoz, Armando Gallegos, María L. Miranda-Beltrán, Jorge E. Macías-Díaz, On a deterministic mathematical model which efficiently predicts the protective effect of a plant extract mixture in cirrhotic rats, 2023, 21, 1551-0018, 237, 10.3934/mbe.2024011 | |
2. | Rinaldo M. Colombo, Paola Goatin, Elena Rossi, A Hyperbolic–parabolic framework to manage traffic generated pollution, 2025, 85, 14681218, 104361, 10.1016/j.nonrwa.2025.104361 |