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Abstract: We develop a stochastic neural model based on point excitatory inputs. The nerve cell
depolarisation is determined by a two-state point process corresponding the two states of the cell. The
model presumes state-dependent excitatory stimuli amplitudes and decay rates of membrane potential.
The state switches at each stimulus time.
We analyse the neural firing time distribution and the mean firing time. The limit of the firing time at
a definitive scaling condition is also obtained.
The results are based on an analysis of the first crossing time of the depolarisation process through the
firing threshold. The Laplace transform technique is widely used.
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1. The model of neural activity with alternating states

A neuron is surrounded by a membrane with selective conductivity depending on its current state.
The membrane potential V = V (t) undergoes a sudden change, which is called the “spike” potential.
The spike (impulse) is generated in response to an external influence and only when it exceeds a certain
threshold. Since most cells of central nervous system are characterised by spontaneously emitted train
of impulses, stochastic modelling is of primary interest in the field. It is assumed that the excitatory
stimuli that occur in random time are random and depend on the current state of the neuron. Each
stimulus is followed by a refractory period, which corresponds to an exponential decay of the potential.
In view of this, the first-passage-time problem for the underlying stochastic processes is important for
the description of the neuronal firing.

A large number of models of single neurons were developed: from simple threshold models to
biologically plausible “portrait” models. Best results were achieved when complicated experimental
features were combined with a rather simple mathematical model, see, for example, the mathematical
model of the Nobel Prize winner Hodgkin’s of the squid giant axon by [1]. The first simple threshold
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neuron model is considered to be the model proposed by Louis Lapicque in 1907 [2] which is usually
called the “leaky integrator” or the “forgetful integrate-and-fire” model. In modern terms, the simplest
version of this model with an external forcing term described by a Brownian motion W =W (t) yields
the following stochastic differential equation

dV (t) =
(

I
C
− V (t)

CR

)
dt +σdW (t), V (0) =V0.

A spike is generated, once the process V (t) hits the firing threshold H.
Since excitatory stimuli are intermittent, synaptic input should be modelled by means of point

processes. This approach was proposed by R. Stein [3], see also [4]. In [5], Stein’s model is briefly
presented in a rigorous manner. See also recent paper [6] on this subject.

Stein’s model presumes a time evolution of the potential described by a stochastic equation based
on two independent Poisson processes N+ and N−

dV (t) =−1
τ

V (t−)dt +a+dN+(t)−a−dN−(t),

where a± denote the amplitudes of excitatory/inhibitory currents.
An excitatory model with an exponentially decaying membrane potential and a non-homogeneous

Poisson process driving the consecutive neuronal stimuli is studied by [7]. Methods for assessing how
well this model describes neural spikes are based on the time-rescaling technique, [8].

The detailed review of the existing models can be found in [9].
The model proposed in this paper suggests that neurons take one of two states, alternating at each

stimulus time. Similar ideas are widely used in neural modelling. For example, in the recent mono-
graph [10], the three-phase Stein model was presented: the standard Stein model is supplemented by
an additional 0-phase, which starts at the end of the refractory period and lasts until depolarisation
occurs. In [11], a two-phase model is studied, based on neuronal oscillations interrupted by stochastic
behaviour. The authors claim that this can be explained by a bistability in the ensemble dynamics of
coupled integrate and fire neurons. See also the paper [12], where some practical observations are
presented that can serve as the basis for such an approach.

To describe the model, consider the right-continuous process ε = ε(t), t ≥ 0, which has the state
space {0, 1}, with independent consecutive (random) holding times {Tn}n≥1. Let N = N(t) be the
process counting the switching of ε till time t,

N(t) = max

{
n : ∑

k≤n
Tk ≤ t

}
, t > 0.

To construct a model of neural activity, we will use a well-studied class of jump-telegraph stochastic
processes, see, for example, the review in [13] and [14]. Recent paper [15] intensively developed
methods for studying the distributions of first passage times for such processes.

The jump-telegraph process X = X(t), t ≥ 0, with additive jumps, is defined by the stochastic
equation

dX(t) = cε(t−)dt +YN(t−)dN(t), t > 0, X(0) = 0, (1.1)
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which by integration yields

X(t) =
∫ t

0
cε(τ)dτ +

N(t)

∑
n=1

Yn. (1.2)

Here velocities c0, c1 are two real constants, Yn, n≥ 1 are independent random variables independent
of ε , corresponding to jumps which accompany each velocity switching. By Xi(t), t ≥ 0, we denote
the solution of (1.1), provided with the additional initial condition: ε(0) = i, i ∈ {0,1}.

We propose a neural potential model that includes state-dependent decay rates of membrane poten-
tial, along with multiplicative state-dependent stimuli. The model suggests a change in state at the each
stimulus time.

This model presumes the nerve cell depolarisation V =V (t), t ≥ 0, to be determined by the stochas-
tic exponential of X , see (1.1)-(1.2). In other words, process V =V (t) is the solution of the stochastic
equation

dV (t) =V (t−)
(
cε(t−)dt +YN(t)dN(t)

)
, t > 0,

V |t↓0 =V0.
(1.3)

The counting process N = N(t) corresponds to the number of excitatory stimuli received by the neuron
till time t, Yn is the voltage level at the stimulus time, and the negative constants c0, c1 correspond to
the rates of exponential decay of the membrane potential being in the state 0 and 1 respectively.

The solution V =V (t) of (1.3) is given by stochastic exponential of X ,

V (t) =V0Et(X) =V0 exp
(∫ t

0
cε(s)ds

)N(t)

∏
n=1

(1+Yn)

=V0 exp

(∫ t

0
cε(s)ds+

N(t)

∑
n=1

log(1+Yn)

)
.

(1.4)

Let the holding times Tn, n ≥ 1, have alternating distributions π0 and π1, that is πi(dt) = P{T1 ∈
dt | ε(0) = i}, i ∈ {0,1}, and

π0(dt) :=P{Tn ∈ dt | ε(T1 + . . .+Tn−1) = 0},
π1(dt) :=P{Tn ∈ dt | ε(T1 + . . .+Tn−1) = 1},

n≥ 2.

Jumps Yn have the distributions g0 and g1, alternately, together with alternating distributions π0 and π1
of holding times.

For each t, t > 0, the distribution of V (t) can be expressed by means of the given distributions
π0,π1, g0,g1, see e. g. [15].

The main interest of the neural modelling lies in the properties of the first passage time of the
depolarisation process V =V (t) through the firing threshold H, H > 0. We are interested to study the
distribution of of the stopping time Tx, x = logH/V0, of the jump-telegraph process,

Tx = inf

{
t > 0 |

∫ t

0
cε(s)ds+

N(t)

∑
n=1

log(1+Yn)> x

}
= inf{t > 0 | V (t)> H} .
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For a continuous version of such processes, Yn = 0 ∀n, this mathematical problem is well known and
studied, see e.g. [16, 17, 18]. See also the recent paper [19], where arbitrary sequences of velocities
and jumps intensities were applied. The number of level-crossings for the telegraph process has been
analysed in [20].

Properties of Tx with nontrivial jumps are less known, see [7, 21, 22], where a single state model
with independent exponentially distributed jumps, log(1+Yn)∼ Exp(b), is being studied. Some solu-
tions for a jump-diffusion process are presented in [23, 24, 25], the martingale methods are developed
by [26] (see the review in [27]). For applications of jump-diffusion processes to models of neuronal
activity see [28].

In this paper, we generalise the results of [7] on a two-state model with positive independent random
jumps Zn = log(1+Yn), n≥ 1, having the alternating exponential distributions, Exp(b0) and Exp(b1),
b0,b1 > 0, which corresponds to the (alternating) Pareto distributions of the second kind (Lomax dis-
tributions) of Yn, used in economics and actuarial science, see [29, 30],

P{Yn ≥ y}= (1+ y)−bi, y > 0, i ∈ {0,1}.

In Section 2, we treat the problem in a general setting. For the case of exponentially distributed
jumps, explicit formulae for the moment generating function of Tx, x > 0, are obtained. The firing
probabilities and the mean values of the firing time are also studied.

Section 3 concerns the limit behaviour of Tx under small frequent stimuli. In Section 4 we give an
overview of the single-state case, including the limit behaviour under the parameters’ scaling similar
to that described in Section 3.

2. Firing probabilities and the first passage time of the jump-telegraph process

Let T
(i)

x be the the first passage time of Xi(t), (1.1)-(1.2), through the positive threshold x,

T
(i)

x = inf{t > 0 : Xi(t)> x}, i ∈ {0,1}.

By definition, we set T
(i)

x |x<0 ≡ 0, i ∈ {0,1}.
Since c0,c1 ≤ 0, the process X exceeds the threshold xx, x > 0, just by jumping. Conditioning on

the first switching we have the following identities in law:

T
(0)

x
D
= T (0)+T

(1)
x−c0T (0)−Y (0), T

(1)
x

D
= T (1)+T

(0)
x−c1T (1)−Y (1), (2.1)

see the definition of X(t), (1.2). Here T (0)/ Y (0) and T (1)/ Y (1) are the first holding time / the first
stimulus amplitude at the states ε(0) = 0 and ε(0) = 1 respectively.

Denote by φi(x) = φi(x;q) the Laplace transform of T
(i)

x ,

φi(x) := E
[
exp(−qT

(i)
x )
]
, q > 0. (2.2)

By definition, 0 ≤ φi(x) ≤ 1 ∀x, and φ0(x) ≡ 1, φ1(x) ≡ 1, if x < 0. Integrating by parts in (2.2), we
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have

φi(x) =E
[
exp
(
−qT

(i)
x

)]
=
∫

∞

0
e−qtdP{T (i)

x < t}

=
∫

∞

0
qe−qtP{T (i)

x < t}dt

=P{T (i)
x < eq}= P{ sup

0<t<eq

Xi(t)> x},

where eq is an exponentially distributed random variable, Exp(q), independent of ε and {Yn}n≥1.

Assuming that the sequential jumps Yn have the distributions g0 and g1, alternating together with
the alternating distributions π0 and π1 of holding times, identity (2.1) can be written as

φ0(x) =E
[
exp(−qT

(0)
x )

]
= E

[
e−qT × exp(−qT

(1)
x−c0T−Y ) | T ∼ π0, Y ∼ g0

]
,

φ1(x) =E
[
exp(−qT

(1)
x )

]
= E

[
e−qT × exp(−qT

(0)
x−c1T−Y ) | T ∼ π1, Y ∼ g1

]
.

(2.3)

Equations (2.3) are equivalent to
φ0(x) =

∫
∞

0
π0(τ)e−qτ

[
G0(x− c0τ)+

∫ x−c0τ

−∞

φ1(x− c0τ− y)g0(dy)
]
dτ,

φ1(x) =
∫

∞

0
π1(τ)e−qτ

[
G1(x− c1τ)+

∫ x−c1τ

−∞

φ0(x− c1τ− y)g1(dy)
]
dτ.

(2.4)

Here

Gi(y) = P{Y ≥ y | ε = i}=
∫

∞

y
gi(dy)

denotes the conditional survivor function of the stimulus amplitude under the state ε = i, i ∈ {0,1}.
In what follows, assume excitatory inputs to be positive and exponentially distributed, that is

G0(y) = e−b0y∧1, G1(y) = e−b1y∧1, (2.5)

with the corresponding density functions

g0(y) = b0 exp(−b0y)1y>0, g1(y) = b1 exp(−b1y)1y>0, (2.6)

b0,b1 > 0.

We try to find the solution ~φ = (φ0, φ1)
′ of (2.4) in the form

~φ(x) =
N

∑
k=1

e−ξkxAk, x > 0, (2.7)

with the indefinite coefficients Ak = (A0k, A1k)
′, Ak , 0, and ξk, ξk , b0,b1, k = 1, . . . ,N. Substituting
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(2.7) and (2.5)-(2.6) into (2.4), we obtain the following algebraic system:

N

∑
k=1

A0ke−ξkx = e−b0x
π̂0(q− c0b0)

+b0

N

∑
k=1

A1k

b0−ξk

[
e−ξkx

π̂0(q− c0ξk)− e−b0x
π̂0(q− c0b0)

]
,

N

∑
k=1

A1ke−ξkx = e−b1x
π̂1(q− c1b1)

+b1

N

∑
k=1

A0k

b1−ξk

[
e−ξkx

π̂1(q− c1ξk)− e−b1x
π̂1(q− c1b1)

]
,

(2.8)

where
π̂i(p) =

∫
∞

0
e−pt

πi(t)dt, i ∈ {0,1},

is the Laplace transform of the distribution of the holding time.
From (2.8), we get the following linear equations for the indefinite coefficients ξk and Aik, i ∈

{0,1}, k = 1, . . . ,N:

b0

N

∑
k=1

A1k

b0−ξk
= 1, b1

N

∑
k=1

A0k

b1−ξk
= 1 (2.9)

and

A1k =
b0−ξk

b0
· A0k

π̂0(q− c0ξk)
, A0k =

b1−ξk

b1
· A1k

π̂1(q− c1ξk)
, (2.10)

k = 1, . . . ,N.

The k-th system of (2.10) has a nontrivial (Aik , 0) solution, if and only if ξk = ξk(q) is the root of
the equation

π̂0(q− c0ξ ) · π̂1(q− c1ξ ) =

(
1− ξ

b0

)
·
(

1− ξ

b1

)
. (2.11)q

Since the mappings ξ → π̂0(q− c0ξ ) and ξ → π̂1(q− c1ξ ), ξ > 0, (with negative c0 and c1) are pos-
itive decreasing functions and π̂0(q) · π̂1(q)< 1 ∀q > 0, equation (2.11)q has exactly two real positive
roots ξ1 = ξ1(q), ξ1 < b0∧b1, and ξ2 = ξ2(q), ξ2 > b0∨b1, see Fig. 1.

1

0 ξ

(1− ξ

b0
)(1− ξ

b1
)

π̂0(q− c0ξ ) ·π1(q− c1ξ )

ξ1 ξ2

Figure 1. Positive roots ξ1 and ξ2 of equation (2.11)q.
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Hence, the moment generating function ~φ(x;q) is defined by (2.7) with N = 2,

~φ(x;q) = e−ξ1(q)xA1 + e−ξ2(q)xA2. (2.12)

The corresponding coefficients A1 = (A01, A11)
′ and A2 = (A02, A12)

′ are determined by system (2.9)-
(2.10), which splits onto two dual linear systems

b1 ·
(

A01

b1−ξ1
+

A02

b1−ξ2

)
=1,

A01

π̂0(q− c0ξ1)
+

A02

π̂0(q− c0ξ2)
=1,

and 
b0 ·
(

A11

b0−ξ1
+

A12

b0−ξ2

)
=1,

A11

π̂1(q− c1ξ1)
+

A12

π̂1(q− c1ξ2)
=1.

After easy algebra, one can obtain the following explicit formulae

A01 =
b1−ξ1

b1
· f0(ξ2)−b1

f0(ξ2)− f0(ξ1)
=

b1−ξ1

b1
·
(

1− b1− f0(ξ1)

f0(ξ2)− f0(ξ1)

)
, (2.13)

A02 =
b1−ξ2

b1
· b1− f0(ξ1)

f0(ξ2)− f0(ξ1)
=

b1−ξ2

b1
·
(

1− f0(ξ2)−b1

f0(ξ2)− f0(ξ1)

)
, (2.14)

A11 =
b0−ξ1

b0
· f1(ξ2)−b0

f1(ξ2)− f1(ξ1)
=

b0−ξ1

b0
·
(

1− b0− f1(ξ1)

f1(ξ2)− f1(ξ1)

)
, (2.15)

A12 =
b0−ξ2

b0
· b0− f1(ξ1)

f1(ξ2)− f1(ξ1)
=

b0−ξ2

b0
·
(

1− f1(ξ2)−b0

f1(ξ2)− f1(ξ1)

)
, (2.16)

where the following notations

f0(ξ ) = f0(ξ ;q) =
b1−ξ

π̂0(q− c0ξ )
, f1(ξ ) = f1(ξ ;q) =

b0−ξ

π̂1(q− c1ξ )
, ξ ≥ 0, (2.17)

are used.
To study the firing probabilities, P

{
T

(0)
x < ∞

}
, P
{

T
(1)

x < ∞

}
, and the mean value of firing time,

E
[
T

(0)
x

]
, E
[
T

(1)
x

]
, we are interested to analyse the limits of the moment generating function and its

derivative under q ↓ 0,

lim
q↓0

~φ(x;q), lim
q↓0

d~φ(x;q)
dq

.

To do this, keeping in mind (2.12), we need ξk(q)|q↓0 and
dξk(q)

dq
|q↓0, k = 1,2, where ξ1 = ξ1(q),

ξ1(q) < b0 ∧ b1 and ξ2 = ξ2(q), ξ2(q) > b1 ∨ b1, q > 0, are the two branches of (positive) roots of
(2.11)q.

The firing probabilities P
{

T
(i)

x < ∞

}
= limq↓0 φi(x;q), i ∈ {0,1}, are presented by the following

proposition.
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Proposition 2.1. Let the mean value of the holding time intervals Tn, n≥ 1, exists, that is

E0[T ] := E [T | ε = 0] =−dπ̂0(q)
dq
|q=0 < ∞,

E1[T ] := E [T | ε = 1] =−dπ̂1(q)
dq
|q=0 < ∞.

(2.18)

• If
c0E0[T ]+ c1E1[T ]+b−1

0 +b−1
1 < 0, (2.19)

then the limits ξ∗ = limq↓0 ξ1(q) and ξ ∗ = limq↓0 ξ2(q) exist and are positive.
The firing probabilities are given by

P
{

T
(0)

x < ∞

}
=A∗01e−ξ∗x +A∗02e−ξ ∗x,

P
{

T
(1)

x < ∞

}
=A∗11e−ξ∗x +A∗12e−ξ ∗x,

(2.20)

where A∗ik = Aik(ξ∗,ξ
∗), i ∈ {0,1},k = 1,2, are defined by (2.13)-(2.16) with ξ1 = ξ∗, ξ2 = ξ ∗.

• Otherwise, if
c0E0[T ]+ c1E1[T ]+b−1

0 +b−1
1 ≥ 0, (2.21)

then the firing occurs a. s.

P
{

T
(0)

x < ∞

}
= P

{
T

(1)
x < ∞

}
= 1. (2.22)

Proof. Note that π̂0(q−c0ξ ), π̂1(q−c1ξ ), c0,c1 < 0, are positive decreasing convex functions of q> 0
and of ξ > 0.

Since π̂0(0) = π̂1(0) = 1, then ξ = 0 is the root of equation (2.11)0. The other roots of equation
(2.11)0 depend on the relation between the values of the derivative on ξ at point ξ = 0 of the sides of
this equation. The derivatives of the RHS and of the LHS of (2.11)q are given by

d
dξ

[(
1− ξ

b0

)
·
(

1− ξ

b1

)]
|ξ↓0 =−

(
1
b0

+
1
b1

)
, (2.23)

and
d

dξ
[π̂0(q− c0ξ )π̂1(q− c1ξ )] |ξ↓0, q↓0 =c0E0[T ]+ c1E1[T ], (2.24)

respectively, see (2.18).
We have two distinct situations.

• Let (2.19) holds, that is −
(

1
b0

+
1
b1

)
> c0E0[T ]+ c1E1[T ].

Since π̂0(−c0ξ ) · π̂1(−c1ξ ), ξ > 0, is the positive decreasing convex function, ξ → (1−ξ/b0) ·
(1−ξ/b1) is convex, and

d
dξ

[π̂0(−c0ξ )π̂1(−c1ξ )] |ξ↓0 <
d

dξ

[(
1− ξ

b0

)
·
(

1− ξ

b1

)]
|ξ↓0

Mathematical Biosciences and Engineering Volume 16, Issue 5, 3411–3434
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equation (2.11)0 has explicitly two positive roots: ξ∗ < b0∧b1, ξ ∗ > b0∨b1, see Fig. 2 (left).
Functions q→ π̂0(q− c0ξ ) and q→ π̂1(q− c1ξ ) are monotone decreasing. Hence, the roots
ξ1(q), ξ2(q) of (2.11)q, q > 0, are monotone functions. Further, for any positive q we have

ξ∗ < ξ1(q)< b0∧b1 < b0∨b1 < ξ2(q)< ξ
∗,

and
lim
q↓0

ξ1(q) = ξ∗, lim
q↓0

ξ2(q) = ξ
∗.

Equalities (2.20) follow by passing to limit in (2.12)-(2.17).

1

0 ξ
ξ∗ ξ ∗

1

0 ξ ∗ ξ

Figure 2. Two positive roots ξ∗ and ξ ∗ of equation (2.11)0 in the case (2.19), (left); one
positive root ξ ∗ of (2.11)0 in the case (2.21), (right).

• On the contrary, let (2.21) holds, that is −
(

1
b0

+
1
b1

)
≤ c0E0[T ]+ c1E1[T ].

In the case of the strict inequality,

d
dξ

[π̂0(−c0ξ )π̂1(−c1ξ )] |ξ↓0

>
d

dξ

[(
1− ξ

b0

)
·
(

1− ξ

b1

)]
|ξ↓0,

equation (2.11)0 has only one positive root
ξ ∗, ξ ∗ > b0∨b1, see Fig. 2 (right), and

lim
q↓0

ξ1(q) = 0, lim
q↓0

ξ2(q) = ξ
∗. (2.25)

In this case, see (2.17),

lim
q↓0

f0(ξ1(q);q) = b1, lim
q↓0

f1(ξ1(q);q) = b0.

Hence, by (2.13)-(2.16) we have

lim
q↓0

A01 = lim
q↓0

A11 = 1, lim
q↓0

A02 = lim
q↓0

A12 = 0. (2.26)
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Therefore,
lim
q↓0

φ0(x;q) = lim
q↓0

φ1(x;q) = 1

and
P
{

T
(0)

x < ∞

}
= P

{
T

(1)
x < ∞

}
= 1.

If the equality holds, −
(

1
b0

+
1
b1

)
= c0E0[T ]+ c1E1[T ], then we have

2c0c1E0[T ]E1[T ] =
(
b−1

0 +b−1
1
)2− c2

0(E0[T ])2− c2
1(E1[T ])2,

and
d2

dξ 2 [π̂0(−c0ξ )π̂1(−c1ξ )] |ξ↓0

=c2
0E0T 2 + c2

1E1T 2 +2c0c1E0[T ]E1[T ]

=
(
b−1

0 +b−1
1
)2

+ c2
0Var0[T ]+ c2

1Var1[T ]

>
2

b0b1
=

d2

dξ 2

[(
1− ξ

b0

)
·
(

1− ξ

b1

)]
|ξ↓0,

Therefore, since π̂0(−c0ξ )π̂1(−c1ξ ) and
(

1− ξ

b0

)(
1− ξ

b1

)
are decreasing convex functions, the

same result occurs: (2.25)-(2.26), and then (2.22).

�

The mean value of the firing time can be obtained in a similar way. We need some auxiliary results.
Let ξ1(q), ξ2(q) be the two branches of positive roots of (2.11)q, q > 0, and condition (2.21) holds.

By proposition 2.1, 0 < ξ1(q)< b0∨b1 < ξ2(q) and

lim
q↓0

ξ1(q) = 0, lim
q↓0

ξ2(q) = ξ
∗.

Let coefficients Aik = Aik(ξ1,ξ2; q) be defined by (2.13)-(2.17).

Lemma 2.2. Let (2.21) be satisfied. The following limit relations hold:

dξ1(q)
dq
|q↓0 =

E0[T ]+E1[T ]
b−1

0 +b−1
1 + c0E0[T ]+ c1E1[T ]

=: σ > 0 (2.27)

and

d
dq

[
A01(ξ1(q), ξ2(q); q)

]
|q↓0 = B0(ξ

∗)− σ

b1
, (2.28)

d
dq

[
A02(ξ1(q), ξ2(q); q)

]
|q↓0 =

(
ξ ∗

b1
−1
)

B0(ξ
∗), (2.29)

d
dq

[
A11(ξ1(q), ξ2(q); q)

]
|q↓0 = B1(ξ

∗)− σ

b0
, (2.30)
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d
dq

[
A12(ξ1(q), ξ2(q); q)

]
|q↓0 =

(
ξ ∗

b0
−1
)

B1(ξ
∗), (2.31)

where

B0(ξ
∗) =

b1E0[T ]−σ(1+b1c0E0[T ])
f0(ξ ∗;0)−b1

,

B1(ξ
∗) =

b0E1[T ]−σ(1+b0c1E1[T ])
f1(ξ ∗;0)−b0

.

(2.32)

Proof. Substitute ξ1 = ξ1(q) into (2.11)q. Formula (2.27) follows from (2.23)-(2.24) by differentiating
in (2.11)q. The derivative in q at q ↓ 0 gives

−(E0[T ]+E1[T ])+
dξ1(q)

dq
|q↓0 ·

(
c0E0[T ]+ c1E1[T ]

)
=− dξ1(q)

dq
|q↓0 ·

( 1
b0

+
1
b1

)
.

Under condition (2.21), limq↓0 ξ1(q) = 0. By definition (2.17), it follows that

lim
q↓0

f0(ξ1(q), q) = b1, lim
q↓0

f1(ξ1(q), q) = b0,

and

lim
q↓0

[
∂ f0(ξ ;q)

∂q
|ξ=ξ1(q)

]
=b1E0[T ],

lim
q↓0

[
∂ f1(ξ ;q)

∂q
|ξ=ξ1(q)

]
=b0E1[T ],

lim
q↓0

[
∂ f0(ξ ;q)

∂ξ
|ξ=ξ1(q)

]
=−1−b1c0E0[T ],

lim
q↓0

[
∂ f1(ξ ;q)

∂ξ
|ξ=ξ1(q)

]
=−1−b0c1E1[T ].

With this in mind, by (2.13)-(2.14) you can get

lim
q↓0

[
∂A01(ξ1,ξ2; q)

∂ξ1
|ξ1=ξ1(q), ξ2=ξ2(q)

]

=− 1
b1

+

limq↓0

[
∂ f0(ξ ; q)

∂ξ
|ξ=ξ1(q)

]
f0(ξ ∗;0)−b1

=− 1
b1
− 1+b1c0E0[T ]

f0(ξ ∗;0)−b1
, (2.33)

lim
q↓0

[
∂A02(ξ1,ξ2; q)

∂ξ1
|ξ1=ξ1(q), ξ2=ξ2(q)

]

=
b1−ξ ∗

b1
·
− limq↓0

[
∂ f0(ξ )

∂ξ
|ξ=ξ1(q)

]
f0(ξ ∗;0)−b1

,=
b1−ξ ∗

b1
· 1+b1c0E0[T ]

f0(ξ ∗;0)−b1
, (2.34)
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lim
q↓0

[
∂A01(ξ1,ξ2; q)

∂q
|ξ1=ξ1(q), ξ2=ξ2(q)

]

=

limq↓0
∂ f0(ξ1(q))

∂q
|ξ1=ξ1(q)

f0(ξ ∗;0)−b1
=

b1E0[T ]
f0(ξ ∗;0)−b1

, (2.35)

lim
q↓0

[
∂A02(ξ1,ξ2; q)

∂q
|ξ1=ξ1(q), ξ2=ξ2(q)

]

=
b1−ξ ∗

b1
·
− limq↓0

∂ f0(ξ1(q))
∂q

|ξ1=ξ1(q)

f0(ξ ∗;0)−b1
=

b1−ξ ∗

b1
· b1E0[T ]

f0(ξ ∗;0)−b1
. (2.36)

and

lim
q↓0

[
∂A01(ξ1,ξ2; q)

∂ξ2
|ξ1=ξ1(q), ξ2=ξ2(q)

]
= 0,

lim
q↓0

[
∂A02(ξ1,ξ2; q)

∂ξ2
|ξ1=ξ1(q), ξ2=ξ2(q)

]
= 0.

(2.37)

Substituting (2.33)-(2.37) into

dA01

dq
|q↓0 =

∂A01

∂ξ1
|q↓0 ·ξ ′1(0)+

∂A01

∂ξ2
|q↓0 ·ξ ′2(0)+

∂A01

∂q
|q↓0,

dA02

dq
|q↓0 =

∂A02

∂ξ1
|q↓0 ·ξ ′1(0)+

∂A02

∂ξ2
|q↓0 ·ξ ′2(0)+

∂A02

∂q
|q↓0,

where ξ ′k(0) := dξk(q)/dq|q↓0, k = 1,2, one can get Eqns (2.28)-(2.29). Eqns (2.30)-(2.31) follow
similarly. �

Proposition 2.3. If (2.21) holds, then the mean firing time M(x) =
(
E
[
T

(0)
x

]
, E
[
T

(1)
x

])
is finite and

is given by the entries

E
[
T

(0)
x

]
=σ

(
x+

1
b1

)
−B0(ξ

∗)

[
1+
(

ξ ∗

b1
−1
)

exp(−ξ
∗x)
]
, (2.38)

E
[
T

(1)
x

]
=σ

(
x+

1
b0

)
−B1(ξ

∗)

[
1+
(

ξ ∗

b0
−1
)

exp(−ξ
∗x)
]
, (2.39)

where σ , B0(ξ
∗), B1(ξ

∗) and ξ ∗ = limq↓0 ξ2(q) are defined in Lemma 2.2.

A numerical example with various values of jump amplitudes is depicted in Fig.3: the average firing
time increases when up jumps vary from large to small.
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Figure 3. Mean values of firing times ET (0)
x , x = 1, c0 = −1,c1 = −2, (2.38), with expo-

nentially distributed holding times, Exp(λ ), depending on λ = λ0 = λ1. From left to right:
b0 = 0.1,b1 = 0.5; b0 = 1,b1 = 5; b0 = 2,b1 = 10; b0 = 4,b1 = 20.

Proof. Since M(x) =− limq↓0
d~φ(x;q)

dq
, by (2.12)

M(x) =−exp
(
−xξ1|q↓0

)dA1

dq
|q↓0− exp

(
−xξ2|q↓0

) dA2

dq
|q↓0

+xexp
(
−xξ1|q↓0

)(
ξ
′
1A1
)
|q↓0 + xexp

(
−xξ2|q↓0

)(
ξ
′
2A2
)
|q↓0.

By (2.25) and (2.26) we have A1|q↓0 = 1, A2|q↓0 = 0, ξ1|q↓0 = 0, ξ2|q↓0 = ξ ∗ and ξ ′1|q↓0 =σ . Therefore,

M(x) =−dA1

dq
|q↓0− exp(−ξ

∗x)
dA2

dq
|q↓0 + xσ1,

which by Lemma 2.2 gives (2.38)-(2.39). �

Remark 2.1. Firing time distribution in the markovian case. Let the holding times be exponentially
distributed with alternating mean values λ

−1
0 , λ

−1
1 . In this case, the pair 〈X(t),ε(t)〉, t ≥ 0, is the

Markov process.
Since,

π̂0(p) =
λ0

λ0 + p
, π̂1(p) =

λ1

λ1 + p
,

functions f0 and f1, see (2.17), are defined by

f0(ξ ) =λ
−1
0 (b1−ξ )(λ0 +q− c0ξ ),

f1(ξ ) =λ
−1
1 (b0−ξ )(λ1 +q− c1ξ ),
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and equation (2.11)q becomes

λ0λ1

(λ0 +q− c0ξ )(λ1 +q− c1ξ )
=

(
1− ξ

b0

)
·
(

1− ξ

b1

)
.

In this case formulae (2.38)-(2.39) for mean firing times hold with

B0(ξ
∗) =

b1−σ(λ0 +b1c0)

ξ ∗(c0ξ ∗−λ0−b1c0)
,

B1(ξ
∗) =

b0−σ(λ1 +b0c1)

ξ ∗(c1ξ ∗−λ1−b0c1)
,

where ξ ∗ = limq↓0 ξ2(q).

Formulae (2.38)-(2.39) for mean firing times can be simplified to an explicit form also in the case
an alternating compound Poisson process, that is if c0 = c1 = 0, which gives a nice additional result.

Proposition 2.4. Let the telegraph component vanish, c0 = c1 = 0.
In this case, condition (2.21) always holds. The mean firing times of Tx are given by

E
[
T

(0)
x

]
= σ

(
x+

1
b1

)
+

b1E0[T ]−σ

2b

[
1+

b0

b1
exp(−2bx)

]
, (2.40)

and

E
[
T

(1)
x

]
= σ

(
x+

1
b0

)
+

b0E1[T ]−σ

2b

[
1+

b1

b0
exp(−2bx)

]
, (2.41)

where σ , see (2.27), is simplified to

σ =
b0b1

2b
(E0[T ]+E1[T ]) , 2b = b0 +b1.

Proof. The moment generating function φ is given by (2.12), where ξ1(q), ξ2(q) are the two (positive)
roots of the equation (2.11)q with c0 = c1 = 0 :

(b0−ξ )(b1−ξ ) =Cq, Cq = b0b1π̂0(q)π̂1(q), q≥ 0.

Explicitly,

ξ1 = b− 1
2

D, ξ2 = b+
1
2

D, where D =
√

(b0−b1)2 +4Cq. (2.42)

Formulae for the coefficients Aik, i ∈ {0,1},k = 1,2, can be simplified. First, by (2.17) we have

f0(ξ1) =
b1−b0 +D

2π̂0(q)
, f0(ξ2) =

b1−b0−D
2π̂0(q)

. (2.43)

Further, by (2.13) and (2.14)

A01 =
b1−b0 +D

2b1
· (b1−b0−D)−2b1π̂0(q)

−2D
=

2Cq +b1π̂0(q)(b1−b0 +D)

2b1D
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=
π̂0(q)(1+∆0)

2
and

A02 =
b1−b0−D

2b1
· 2b1π̂0(q)− (b1−b0 +D)

−2D
=

(b1−b0−D)b1π̂0(q)+2Cq

−2b1D

=
π̂0(q)(1−∆0)

2
,

where ∆0 =
b1−b0 +2b0π̂1(q)

D
.

Similarly, by (2.15) and (2.16)

A11 =
π̂1(q)(1+∆1)

2
, A12 =

π̂1(q)(1−∆1)

2
,

where ∆1 =
b0−b1 +2b1π̂0(q)

D
.

After easy algebra one can obtain the explicit formulae for the moment generating functions of Tx:

φ0(x;q) =π̂0(q)exp(−bx) [cosh(Dx/2)+∆0 · sinh(Dx/2)] ,
φ1(x;q) =π̂1(q)exp(−bx) [cosh(Dx/2)+∆1 · sinh(Dx/2)] .

Further, by (2.42) ξ ∗ = limq↓0 ξ2(q) = 2b; by (2.43) f0(ξ
∗;0) = −b0. Similarly, f1(ξ

∗;0) = −b1 and
by (2.32)

B0(ξ
∗) =

b1E0[T ]−σ

−2b
, B1(ξ

∗) =
b0E1[T ]−σ

−2b
.

Under these simplifications, formulae (2.38)-(2.39), Proposition 2.3, become (2.40)-(2.41). �

3. Firing time under small frequent stimuli

Consider the case of small frequent stimuli. We assume that the mean values of jumps, b−1
0 , b−1

1 ,

and the holding times, Tn, consistently tend to zero. We are interested to study the asymptotical be-
haviour of the firing time under these circumstances. Let’s set the exact assertion.

Let the parameters of stochastic stimulation of a neuron be scaled as follows: first, the mean stimuli
amplitudes consistently tend to zero,

E0[Y ] = b−1
0 → 0, E1[Y ] = b−1

1 → 0; (3.1)

second, the holding time intervals tend to zero. More precisely, assume that for any fixed positive q

π̂0(q)→ 1, π̂1(q)→ 1, (3.2)

such that the derivatives of the moment generating functions π̂0 and π̂1 exist and vanish:

m0(q) :=−π̂
′
0(q) = E0

[
T e−qT ]→ 0, m1(q) :=−π̂

′
1(q) = E1

[
T e−qT ]→ 0, (3.3)

π̂
′′
0 (q) = E0

[
T 2e−qT ]→ 0, π̂

′′
1 (q) = E1

[
T 2e−qT ]→ 0. (3.4)
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Assume the convergence rates at (3.1) to be comparable,

b0

b1
=
E1[T ]
E0[T ]

→ β ; (3.5)

convergence rates at (3.1), (3.3)-(3.4) to be consistent as follows:

E0[Y ]
−π̂ ′0(q)

=
1

b0m0(q)
→ v0,

E1[Y ]
−π̂ ′1(q)

=
1

b1m1(q)
→ v1, v0, v1 ≥ 0, (3.6)

and
b0E0

[
T 2e−qT ]→ 0, b1E1

[
T 2e−qT ]→ 0. (3.7)

Coefficients v0, v1 describe an additional positive trend arising in the jump-telegraph process due to
small frequent positive jumps.

Let
κ := 1+ c0v−1

0 +β (1+ c1v−1
1 ). (3.8)

To analyse the comportment of the roots ξ1 and ξ2 of (2.11)q we will use the following decompo-
sition of the moment generating functions of the holding times distributions:

π̂0(q− c0ξ ) =π̂0(q)+ c0ξ m0(q)+R0(ξ ;q),

π̂1(q− c1ξ ) =π̂1(q)+ c1ξ m1(q)+R1(ξ ;q),
(3.9)

where by (3.4)

R0(ξ ;q) =c2
0ξ

2E0

[
T 2e−qT

∞

∑
n≥0

(c0ξ T )n

(n+2)!

]
≤ c2

0ξ
2E0
[
T 2e−qT ]→ 0,

R1(ξ ;q) =c2
1ξ

2E1

[
T 2e−qT

∞

∑
n≥0

(c1ξ T )n

(n+2)!

]
≤ c2

1ξ
2E1
[
T 2e−qT ]→ 0.

Condition (3.7) provides the uniform in ξ convergence:

b0R0(ξ ;q)
ξ 2 = b0

π̂0(q− c0ξ )− π̂0(q)− c0ξ m0(q)
ξ 2 → 0,

b1R1(ξ ;q)
ξ 2 = b1

π̂1(q− c1ξ )− π̂1(q)− c1ξ m1(q)
ξ 2 → 0.

(3.10)

Theorem 3.1. Let b0, b1 → ∞, and the holding times be asymptotically zero, such that conditions
(3.1)-(3.6) and (3.7) met.

If κ ∈ (0, +∞], then for any x, x > 0,

Tx→ γx, a.s.,

where

γ =
v−1

0 +βv−1
1

κ
=

v−1
0 +βv−1

1

1+ c0v−1
0 +β (1+ c1v−1

1 )
, γ > 0.

If κ ≤ 0, then
Tx→+∞ a.s.
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Proof. To analyse the asymptotical behaviour of Tx we need to evaluate the comportment of the posi-
tive roots ξ1(q),ξ2(q), ξ1(q)< ξ2(q), of equation (2.11)q.

It turns out, the behaviour of the smaller root ξ1, ξ1 < b0∧b1, depends on the sign of κ, (3.8).
Due to (3.9) equation (2.11)q takes the form

(π̂0(q)+ c0ξ m0(q)+R0(ξ ;q))(π̂1(q)+ c1ξ m1(q)+R1(ξ ;q)) =
(

1− ξ

b0

)(
1− ξ

b1

)
,

which can be rewritten as
A0−A1ξ +A2ξ

2 = 0. (3.11)

Here A0 and A1 are constants (depending only on q),

A0 = 1− π̂0(q)π̂1(q),

A1 =
1
b0

+
1
b1

+ c0m0(q)π̂1(q)+ c1m1(q)π̂0(q),

and A2 = A2(ξ ) is given by

A2 = A2(ξ ) =
1

b0b1
− c0c1m0(q)m1(q)

−ξ
−2 [R0 · (π̂1(q)+ c1ξ m1(q))+R1 · (π̂0(q)+ c0ξ m0(q))+R0R1] .

By (3.10) and (3.6)

lim(b0A0) = limb0 · (1− π̂0(q)π̂1(q)) = q limb0 · (E0[T ]+E1[T ])

=q limb0 · (m0(0)+m1(0)) = q
(
v−1

0 +βv−1
1
)
≥ 0.

(3.12)

By (3.6) and (3.1)-(3.2), b0A1 converges to κ, (3.8),

lim[b0A1] = lim
[

1+
b0

b1
+ c0b0m0(q)π̂1(q)+ c1b0m1(q)π̂0(q)

]
=1+β + c0v−1

0 +βc1v−1
1 = κ.

(3.13)

Next,
b0A2 =b−1

1 − c0c1m1(q) ·b0m0(q)

−b0R0

ξ 2 (π̂1(q)+ c1ξ m1(q))−
b0R1

ξ 2 (π̂0(q)+ c0ξ m0(q))−
b0R0

ξ 2 R1.

Since ξ = ξ1 < b0∧b1, the terms ξ m0(q) and ξ m1(q) by (3.6) are uniformly bounded. Therefore, by
(3.10),

lim[b0A2(ξ1)] = 0. (3.14)

If κ > 0, the smaller root ξ1 of (3.11) has the following limit:

limξ1(q) = lim
2A0

A1 +
√

A2
1−4A0A2

. (3.15)
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By (3.12), (3.13) and (3.14) this limit is positive and finite:

limξ1(q) = lim
A0

A1
=

q(v−1
0 +βv−1

1 )

κ
= qγ ≥ 0.

Further, under this scaling

lim
f0(ξ1)

b1
= lim

1−ξ1/b1

π̂0(q− c0ξ1)
= 1, lim

f1(ξ1)

b0
= lim

1−ξ1/b0

π̂1(q− c1ξ1)
= 1

Under the scaling (3.1), the greater root ξ2, ξ2 > b0∨b1, always goes to infinity, ξ2→∞; moreover,
f0(ξ2)/b1 and f1(ξ2)/b0 are finite.

As a consequence, A01 and A11, which are defined by (2.13) and (2.15), converge to 1 and A02 and
A12 are bounded.

Summarising, we obtain
limφ(x) = exp(−qγx),

which means

Tx→
v0 +βv1

κ
x = γx a.s.

If the limit lim[b0A1] = κ in (3.13) is not positive, κ ≤ 0, then (see (3.15))

limξ1(q) = +∞,

which corresponds to
lim~φ(x) = 0

and
Tx→+∞ a.s.

�

Remark 3.1. The result of Theorem 3.1 can be interpreted as the behaviour of two types of neurons:
if κ > 0, then the scaled model corresponds to the so called a tonically discharging cell, a phasic cell
appears when κ ≤ 0, that is Tx→ ∞, the firing rate drops to zero, see [31].

Remark 3.2. In the markovian case, that is if π̂0(q) = λ0/(q+λ0), π̂1(q) = λ1/(q+λ1), conditions
(3.2)-(3.7) hold when

λ0, λ1→+∞,

λ0/b0→ v0, λ1/b1→ v1.

The crucial parameter κ becomes

κ = 1+ c0v−1
0 +β

(
1+ c1v−1

1
)
= 1+ lim

[
b0 ·
(
b−1

1 + c0λ
−1
0 + c1λ

−1
1
)]
.
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4. Single-state homogeneous model

The model of neural activity based on a jump-telegraph process, see (1.1), (1.4), which is studied in
Sections 2 and 3 can be simplified, restricting to the case with one state. Consider the particular case
of the neural model (1.4) based on the single-state symmetric process

X(t) = ct +
N(t)

∑
n=1

Yn, c≤ 0, (4.1)

with independent positive exponentially distributed stimuli amplitudes Yn, Yn ∼ Exp(b), b > 0; the in-
dependent inter-arrival times {Tn}n≥1, are identically distributed with the density function π(t). When
Tn are exponentially distributed, such a model has been studied in detail by [7] and [21].

The moment generating function φ(x) = E [exp(−qTx)] of the first passage time Tx is given by
(2.12),

φ(x) = e−ξ1xA1 + e−ξ2xA2,

where A1 = A01 = A11, A2 = A02 = A12 are defined by (2.13)-(2.17), ξ1 = ξ1(q) and ξ2 = ξ2(q) are the
two branches of positive roots of (2.11)q.

For the single-state process X(t), defined by (4.1), equation (2.11)q is simplified to

π̂(q− cξ ) =

∣∣∣∣1− ξ

b

∣∣∣∣ .
More precisely, ξ1, ξ1 < b, is the positive root of π̂(q− cξ ) = 1−ξ/b, and ξ2, ξ2 > b, is the root of
π̂(q− cξ ) = ξ/b−1. In this case, functions f0 and f1, which are defined by (2.17), coincide,

f0(ξ )≡ f1(ξ ) =
b−ξ

π̂(q− cξ )
=: f (ξ ),

that is,

f (ξ1) =
b−ξ1

1−ξ1/b
= b, f (ξ2) =

b−ξ2

ξ2/b−1
=−b. (4.2)

By (4.2) and (2.13)-(2.16)

A1 = A01 = A11 =
b−ξ1

b
= π̂(q− cξ1), A2 = A02 = A12 = 0,

and the moment generating function φ (depending only on ξ1) is given by

φ(x;q) =
b−ξ

b
e−ξ x, (4.3)

where ξ = ξ1(q), 0 < ξ1(q)< b, q > 0, is the root of

π̂(q− cξ ) = 1−ξ/b. (4.4)

Function π̂ = π̂(q), q≥ 0, is positive, convex and decreasing, hence the root of (4.4) exists and function
ξ1(q), q≥ 0, increases,

0 < q1 < q2⇒ 0 < ξ1(q1)< ξ1(q2)< b.
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Therefore, limq↓0 ξ1(q) exists and, by Proposition 2.1,

lim
q↓0

ξ1(q) =


ξ∗ > 0, if cE[T ]+b−1 < 0,

0, if cE[T ]+b−1 ≥ 0.

Further, the firing probability P{Tx < ∞}= limq↓0 φ(x;q) is given by

P{Tx < ∞}=


b−ξ∗

b
exp(−ξ∗x), if cE[T ]+b−1 < 0,

1, if cE[T ]+b−1 ≥ 0,

In the case cE[T ]+b−1 > 0, by differentiating in (4.4) (see also (2.27)) one can obtain

lim
q↓0

dξ1(q)
dq

=
E[T ]

b−1 + cE[T ]
> 0. (4.5)

The mean firing time is finite: by (4.3) and (4.5) one can obtain

E[Tx] =−
dφ(q)

dq
|q↓0 =

(
x+b−1) · lim

q↓0

dξ1(q)
dq

=
(1+bx)E[T ]
1+bcE[T ]

. (4.6)

This result is in concordance with Proposition 2.3 . In this case, by (2.27),

σ =
E[T ]

b−1 + cE[T ]
,

and by (2.32),

B0(ξ
∗) = B1(ξ

∗) =
bE[T ]−σ(1+bcE[T ])

f (ξ ∗)−b
= 0,

which by (2.38)-(2.39) gives (4.6).
In particular, consider the model (4.1) defined by the compound Poisson process with the (neg-

ative) drift c, that is, let the inter-switching times of model (4.1) be exponentially distributed,
π(t) = λ exp(−λ t). Now, formula (4.3) holds with ξ , 0 < ξ < b, which is the unique positive root
of the equation (4.4):

λ

λ +q− cξ
= 1−ξ/b.

We have

0 < ξ = ξ (q) =
λ +q+bc−

√
(λ +q+bc)2−4bcq

2c
= b+

q̃−
√

q̃2 +4bcλ

2c
< b, (4.7)

where q̃ := q+λ −bc. Due to (4.3), the moment generating function φ is given by

φ(x;q) =Ee−qTx = e−ξ x +b−1 d
dx

e−ξ x (4.8)
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=
2λ

λ +q−bc+
√

q2 +(λ +bc)2 +2q(λ −bc)

×exp

(
−λ +q+bc−

√
q2 +(λ +bc)2 +2q(λ −bc)

2c
x

)
,

which coincide with [7, (39)]. By applying the inverse Laplace transform L −1
q→t to (4.8) one can obtain

the firing density fTx(t). Formula [32, 2.2.5-18] applied to exp(−ξ (q)x) with ξ (q) defined by (4.7)
shows

L −1
q→t [exp(−ξ (q)x)] =

az√
t2 +2at

I1

(
z
√

t2 +2at
)

exp(−bx− (λ −bc)t) ,

where a = x/(−2c), z = 2
√
−bcλ . After easy algebra, from (4.8) we obtain

fTx(t) =
λx

x− ct

[
I0(w)−2ct

I1(w)
w

]
exp(−bx− (λ −bc)t) (4.9)

with w := 2
√

λbt(x− ct). Formula (4.9) was derived in [7, Theorem 3.1] using another technique.
Firing probability, P{Tx < ∞}, and moments of Tx can be also obtained: if λ +bc > 0, then (2.21)

holds and
E [Tx] =

1+bx
λ +bc

.

If λ +bc≤ 0, then E [Tx] = +∞. This coincides with the known result, see [7, Proposition 4.2].
The limit behaviour under small frequent stimuli, Section 3, in the case of the single-state model,

also looks simple.
In this case, condition (3.1) corresponds to b→ ∞ and β = 1, see (3.5); (3.6)-(3.7) follows, if

λ →+∞ and
λ

b
→ v.

By (4.3)

Eexp(−qTx) = φ(x) =
b−ξ1

b
exp(−ξ1x),

where ξ1 = ξ1(q) is the positive root, 0 < ξ1(q)< b, of

λ

λ +q− cξ
= 1− ξ

b
.

One can see that for any q > 0 under this scaling

ξ1(q) =
2q

v+ c+q/b+
√

(v+ c+q/b)2−4cq/b
→


q

v+ c
, if v+ c > 0,

+∞, if v+ c≤ 0,

and for any x > 0

φ(x)→


exp(−qx/(v+ c)), if v+ c > 0,

0, if h+ c≤ 0.
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Therefore,

Tx→


x

v+ c
, if v+ c > 0 ,

+∞, if v+ c≤ 0.

5. Concluding remarks

The main goal of this paper is to study the stochastic model based on two states/phases of the nerve
cell, alternating at random times of exponential excitatory inputs. The corresponding single-phase
Stein’s model is well known and presented in detail, see [3, 5, 10]. Our model generalises and modifies
the two-phase cell cycle model, presented by [10, 11]. In this paper, we have obtained the explicit
formulae for firing probability and the mean firing time, under the certain necessary condition. The
asymptotical behaviour of the firing time under small frequent stimuli has been also presented. The
known results of the single-state homogeneous model, [7], follow as a special case.

Since the real activity of neurons depends on the current state/phase of the organism, the pro-
posed model, based on two alternating patterns, fits well with a naive understanding of this issue. The
structure of this model can serve as a guide for practitioners: it would be interesting to discover this
two-phase phenomenon of the behaviour of neurons in an experiment.

Acknowledgments

The author thanks two anonymous referees for their helpful comments that improved the paper.

Conflict of interest

The author declares no conflicts of interest in this paper.

References

1. A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its applica-
tion to conduction and excitation in nerve, J. Physiol., 117 (1952), 500–544.

2. M. L. Lapicque, Recherches quantitatives sur l’excitation électrique des nerfs traitée comme
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