Citation: Kangbo Bao, Qimin Zhang, Xining Li. A model of HBV infection with intervention strategies: dynamics analysis and numerical simulations[J]. Mathematical Biosciences and Engineering, 2019, 16(4): 2562-2586. doi: 10.3934/mbe.2019129
[1] | WHO, Hepatitis B, 2014 (revised Agust 2014). Available from: http://www.who.int/meadiacenter /factsheet/fs204/en/index.html. |
[2] | J.Wu, U.Wang, S. Chang, et al., Impacts of a mass vaccination campaign against pandemic H1N1 2009 influenza in Taiwan: a time-series regression analysis, Int. J. Infect. Dis., 23 (2014), 82–89. |
[3] | Y. Liu and J. Cui, The impact of media coverage on the dynamics of infectious disease, Int. J. Biomath., 1 (2008), 65–74. |
[4] | Y. Cai, Y. Kang, M. Banerjee, et al., A stochastic SIRS epidemic model with infectious force under intervention strategies, J. Differ. Equations, 259 (2015), 7463–7502. |
[5] | Q. Wang, L. Zhao, R. Huang, et al., Interaction of media and disease dynamics and its impact on emerging infection management, Discrete Cont. Dyn.-B, 20 (2014), 215–230. |
[6] | Y. Xiao, T. Zhao and S. Tang, Dynamics of an infectious diseases with media/psychology induced non-smooth incidence, Math. Biosci. Eng., 10 (2013), 445–461. |
[7] | M. Brinn, K. Carson, A. Esterman, et al., Mass media interventions for preventing smoking in young people, Cochrane DB Syst. Rev., 11 (2010), CD001006. |
[8] | Q. Li, L. Zhou, M. Zhou, et al, Epidemiology of human infections with avian influenza A(H7N9) virus in China, New Engl. J. Med., 370 (2014), 520–532. |
[9] | WHO, Cholera-United Republic of Tanzania, 2018. Available from: http://www.who.int/csr/don/ 12-january-2018-cholera-tanzania/en/. |
[10] | J. Cui, Y. Sun and H. Zhu, The impact of media on the control of infectious diseases, J. Dyn. Differ. Equ., 20 (2018), 31–53. |
[11] | J. Cui, X. Tao and H. Zhu, An SIS infection model incorporating media coverage, Rocky MT J. Math., 38 (2008), 1323–1334. |
[12] | L. Zou, W. Zhang and S. Ruan, Modeling the transmission dynamics and control of hepatitis b virus in China, J. Theor. Biol., 262 (2010), 330–338. |
[13] | T. Khan, G. Zaman and M. I. Chohan, The transmission dynamic and optimal control of acute and chronic hepatitis b, J. Biol. Dyn., 11 (2017), 172–189. |
[14] | T. Zhang, K. Wang and X. Zhang, Modeling and analyzing the transmission dynamics of HBV epidemic in Xinjiang, China, PloS One, 10 (2015), e0138765. |
[15] | S. Spencer, Stochastic epidemic models for emerging diseases, PhD thesis, University of Nottingham, 2008. |
[16] | B. Øksendal, Stochastic Differential Equations: An Introduction with Applications, Springer, 2010. |
[17] | Q. Yang and X. Mao, Extinction and recurrence of multi-group SEIR epidemic models with stochastic perturbations, Nonlinear Anal.-Real, 14 (2013), 1434–1456. |
[18] | Q. Liu, D. Jiang, N. Shi, et al., Stationarity and periodicity of positive solutions to stochastic SEIR epidemic models with distributed delay, Discrete Cont. Dyn. - B, 22 (2017), 2479–2500. |
[19] | Y. Cai and W. Wang, Fish-hook bifurcation branch in a spatial heterogeneous epidemic model with cross-diffusion, Nonlinear Anal.- Real, 30 (2016), 99–125. |
[20] | X. Mao, G. Marion and E. Renshaw, Environmental noise suppresses explosion in population dynamics, Stoch. Proc. Appl., 97 (2002), 95–110. |
[21] | Y. Cai, Y. Kang, M. Banerjee, et al., Complex Dynamics of a host-parasite model with both horizontal and vertical transmissions in a spatial heterogeneous environment, Nonlinear Anal.- Real, 40 (2018), 444–465. |
[22] | L. Allen, An introduction to stochastic epidemic models, Mathematical Epidemiology, Lect. Notes Math., 1945 (2008), 81–130. |
[23] | K. Bao and Q. Zhang, Stationary distribution and extinction of a stochastic SIRS epidemic model with information intervention, Adv. Differ. Equ., 352 (2017), doi:10.1186/s13662-017-1406-9. |
[24] | T. Khan, A. Khan and G. Zaman, The extinction and persistence of the stochastic hepatitis B epidemic model, Chaos, Solitons Fract., 108 (2018), 123–128. |
[25] | R. Rudnicki, Long-time behaviour of a stochastic prey-predator model, Stoch. Proc. Appl., 108 (2003), 93–107. |
[26] | R. Rudnicki, K. Pichr and M. Tyrankamiska, Markov semigroups and their applications, Lect. Notes Phys., 597 (2002), 215–238. |
[27] | K. Pichr and R. Rudnicki, Continuous Markov semigroups and stability of transport equations, J. Math. Anal. Appl., 249 (2000), 668–685. |
[28] | R. Rudnicki, On asymptotic stability and sweeping for Markov operators, B. Pol. Acad. Sci. Math., 43 (1995), 245–262. |
[29] | K. Pichr and R. Rudnicki, Stability of Markov semigroups and applications to parabolic systems, J. Math. Anal. Appl., 215 (1997), 56–74. |
[30] | R. Rudnicki, Asymptotic properties of the Fokker-Planck equation, Springer Berlin Heidelberg, (1995), 517–521. |
[31] | P. Martin, Statistical physics: Statics, dynamics, and renormalization, World Scientific, 2000. |
[32] | O. Diekmann and J. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation, Wiley, New York, 2000. |
[33] | R. Lipster, A strong law of large numbers for local martingales, Stochastics, 3 (1980), 217–228. |
[34] | F. Baudoin and M. Hairer, A version of Hörmanders theorem for the fractional Brownian motion, Probab. Theory Rel., 139 (2007), 373–395. |
[35] | G. Arous and R. Léandre, Décroissance exponentielle du noyau de la chaleur sur la diagonale (II), Probab. Theory Rel., 90 (1991), 377–402. |
[36] | D. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 43 (2001), 525–546. |