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Abstract: In this paper, we analyze the effect of environment noise on the transmission dynamics
of a stochastic hepatitis B virus (HBV) infection model with intervention strategies. By using the
Markov semigroups theory, we define the stochastic basic reproduction number and find it can be used
to govern disease extinction or persistence. When it is less than one, under a mild extra condition, the
stochastic system has a disease-free equilibrium and the disease is predicted to die out with probability
one. When it is greater than one, under mild extra conditions, the model admits a stationary distribution
which means the persistence of the disease. Thus, we observe that larger intensity of noise (resulting
in a smaller stochastic basic reproduction number) can suppress the emergence of hepatitis B outbreak.
Numerical simulations are also carried out to investigate the influence of information intervention
strategies that may change individual behavior and protect the susceptible from infection. Our analysis
shows that the environmental noise can greatly affect the long-term behavior of the system, highlighting
the importance of the role of intervention strategies in the control of hepatitis B.

Keywords: stochastic hepatitis B model; Markov semigroups; stochastic basic reproduction number;
intervention strategies; extinction and persistence

1. Introduction

Outbreaks of infectious diseases have caused seriously endanger to human life and property safety,
which is also a major global health problem. According to the World Health Organization (WHO)
report [1]: an estimated 2 billion people worldwide carry hepatitis B virus, about 2 million people
suffer from chronic liver infections, more than 780,000 people die every year. How to prevent and
control the spread of hepatitis B is one of the hot issues that people care about.

When an infectious disease appears and spreads, one of the measures taken by the disease
management department is information intervention [2]. As an important non-drug control measure,
intervention strategies (e.g., media coverage, health education) has attracted more and more
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attention [3–5]. It plays an important role in helping the government to formulate intervention
measures to control diseases and reduce the infection rate of human [6, 7]. For example, during the
outbreak of H7N9 influenza in 2013 [8] and the outbreak of cholera virus in Tanzania [9], various
information intervention strategies were used. These strategies told people the correct knowledge of
disease prevention and greatly reduced the number of contacts per unit time, thus reduced the
infection rate. Cui et al. [10, 11] studied the impact of media coverage on the control of infectious
diseases and reached the conclusion that media coverage is essential to eradicate the diseases.
Therefore, it is of great significance to consider the influence of information intervention in
preventing hepatitis B virus (HBV) transmission.

Mathematical models have been showed to be an important tool that helps understand the spread and
control of infectious diseases. A large number of mathematical models have been developed to study
the dynamics of hepatitis B [12–14]. A mathematical model was developed by Zou et al. [12] to study
the transmission dynamics and prevalence of HBV infection in China. They investigated the existence
and stability of equilibrium points, sensitivity analysis of the model parameters are also performed.
Khan et al. [13] investigated the dynamics of acute and chronic hepatitis B epidemic problem by using
a HBV transmission model. They proposed an optimal control strategy to control the spread of hepatitis
B. These studies [12–14] used deterministic hepatitis B epidemic models.

For human diseases, due to the unpredictability of human-to-human contacts, the natural growth
and spread of epidemic are essentially random [15]. Environmental variations are also important for
the development of epidemic [16]. Stochastic epidemic model is more suitable for describing the
effect of environmental fluctuations on the dynamics of disease [17–23]. There are very few stochastic
hepatitis B epidemic models. Khan et al. [24] discussed the dynamics of disease by proposing a
stochastic hepatitis B model with a varying population environment. They investigated the influence of
noise intensity on the disease transmission and obtained the sufficient conditions for the extinction and
persistence. However, to the best of our knowledge, very few studies, if any, have been done to consider
the influence of information intervention into the above-mentioned hepatitis B models [12–14, 24].

In this paper, we studies the dynamics of the stochastic hepatitis B epidemic model incorporating
information intervention under environmental noise. By using the Markov semigroups theory, we
find that the stochastic basic reproduction number can be used to govern the hepatitis B extinction or
persistence. Our innovation points are as follows:

• The effect of information intervention is taken into account the stochastic hepatitis B model.
• By using the Markov semigroups theory, we show the stochastic hepatitis B model admits a

stationary distribution.

The hepatitis B model and preliminaries will be introduced in Section 2. In Section 3, we will give
our main results. The proofs of the main results in details will be provided in Section 4. In Section
5, some numerical simulations will be conducted to illustrate the influence of environmental noise and
information intervention on the hepatitis B dynamics. Finally, we finish the paper with conclusions
and future directions in the last section.

2. Model formulation and preliminaries

In this section, we will introduce the stochastic hepatitis B epidemic model incorporating
information intervention. It is followed by some preliminaries.
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2.1. Model formulation

In [24], Khan et al. proposed the following hepatitis B epidemic model:
dS (t) = [Λ − βS (t)I(t) − (µ0 + ν)S (t)]dt,

dI(t) = [βS (t)I(t) − (µ0 + µ1 + γ1)I(t)]dt,

dR(t) = [γ1I(t) + νS (t) − µ0R(t)]dt,

(2.1)

where S (t), I(t) and R(t) represent susceptible, infective and recovered population, respectively. All
parameters are assumed to be positive and the descriptions are listed in Table 1.

Table 1. Parameters used in hepatitis B model (2.1).

Parameter Parameter description

Λ The per capita constant birth rate
β The transmission rate
µ0 The natural death rate
µ1 The disease induced death rate
v The vaccination rate
γ1 The constant recovery rate

In this paper, we consider the effect of intervention strategies into the hepatitis B model (2.1).
In order to do this, using a function β = β1 − β2 f (I) and the function f (I) satisfies the following
assumption:

(A1) f (0) = 0, f ′(I) > 0 and lim
I→∞

f (I) = 1,

where β1 is the usual contact rate without considering the infectious individuals, and β2 is the maximum
reduced contact rate due to the presence of the infected individuals. Then we obtain the following
hepatitis B model with information intervention:

dS (t) = [Λ − (β1 − β2 f (I))S (t)I(t) − (µ0 + ν)S (t)]dt,

dI(t) = [(β1 − β2 f (I))S (t)I(t) − (µ0 + µ1 + γ1)I(t)]dt,

dR(t) = [γ1I(t) + νS (t) − µ0R(t)]dt.

(2.2)

To consider the effect of environment noise, we suppose that the contact transmission coefficient β1

is stochastically perturbed, β1 → β1 + σḂ(t). The hepatitis B model (2.2) becomes
dS (t) = [Λ − (β1 − β2 f (I))S (t)I(t) − (µ0 + ν)S (t)]dt − σS (t)I(t)dB(t),
dI(t) = [(β1 − β2 f (I))S (t)I(t) − (µ0 + µ1 + γ1)I(t)]dt + σS (t)I(t)dB(t),
dR(t) = [γ1I(t) + νS (t) − µ0R(t)]dt,

(2.3)

where B(t) is the standard Brownian motion and σ2 is the intensity of the noise.

2.2. Preliminaries

In this subsection, we introduce some definitions and results about the Markov semigroup and
asymptotic properties [25–31].
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2.2.1. Markov semigroup

Let (Ω,F , {Ft}t≥0,Prob) be a complete probability space with a filtration {Ft}t≥0 which meet the
general conditions (i.e., it is right continuous and increasing while F0 contains all P-null sets).

Let Σ = B(X) be the σ-algebra of Borel subsets of X and m the Lebesgue measure on (X,Σ).
D = D(X,Σ,m) denotes the subset of the space L1 = L1(X,Σ,m) which contains all densities, i.e.,

D = {g ∈ L1 : g ≥ 0, ‖g‖ = 1},

where ‖ · ‖ is the norm in L1. If P(D) ⊂ D, then a linear mapping P : L1 → L1 is called a Markov
operator.

If there exists a measurable function k : X × X→ [0,∞) such that∫
X

k(x, y)m(dx) = 1, (2.4)

for almost every y ∈ X, then

Pg(x) =

∫
X

k(x, y)g(y)m(dy)

is an integral Markov operator and the function k is called a kernel of the Markov operator P.
A family {P(t)}t≥0 of Markov operators which satisfies conditions:
(a) P(0) = Id;
(b) P(t + s) = P(t)P(s) for s, t ≥ 0;
(c) for every g ∈ L1 the function t 7→ P(t)g is continuous.

is called a Markov semigroup.
A Markov semigroup {P(t)}t≥0 is called integral, if for every t > 0, the operator P(t) is an integral

Markov operator, then there exists a measurable function k : (0,∞) × X × X→ [0,∞) such that

P(t)g(x) =

∫
X

k(t, x, y)g(y)m(dy)

for every density g.

Lemma 2.1. [25] Let {P(t)}t≥0 be an integral Markov semigroup with a continuous kernel k(t, x, y) for
t > 0 which satisfies (2.4) for all y ∈ X. If for every g ∈ D∫ ∞

0
P(t)g(x)dt > 0,

then this semigroup is asymptotically stable or is sweeping with respect to compact sets.

2.2.2. Fokker-Planck equation

For any A ∈ Σ, we denote the transition probability function by P(t, x, y, z, A) for the diffusion
process (S (t), I(t),R(t)), i.e.

P(t, x, y, z, A) = Prob{(S (t), I(t),R(t)) ∈ A}
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with the initial condition (S (0), I(0),R(0)) = (x, y, z). If (S (t), I(t),R(t)) is a solution of system (2.3)
such that the distribution of (S (0), I(0),R(0)) is absolutely continuous with the density v(x, y, z). Then
there also exists the density U(t, x, y, z) of (S (t), I(t),R(t)) which satisfies the Fokker-Planck equation
[30, 31]:

∂U
∂t

=
1
2
σ2

(
∂2(ϕU)
∂x2 − 2

∂2(ϕU)
∂x∂y

+
∂2(ϕU)
∂y2

)
−
∂( f1U)
∂x

−
∂( f2U)
∂y

−
∂( f3U)
∂z

, (2.5)

where ϕ(x, y, z) = x2y2 and

f1(x, y, z) = Λ − (β1 − β2 f (y))xy − (µ0 + ν)x,

f2(x, y, z) = (β1 − β2 f (y))xy − (µ0 + µ1 + γ1)y,
f3(x, y, z) = γ1y + νx − µ0z.

(2.6)

Let P(t)V(x, y, z) = U(x, y, z, t) for V ∈ D. Due to the operator P(t) is a contraction on D, it can be
extended to a contraction on L1. Then the operators {P(t)}t≥0 form a Markov semigroup. Denote A the
infinitesimal generator of semigroup {P(t)}t≥0, i.e.

A V =
1
2
σ2

(
∂2(ϕV)
∂x2 − 2

∂2(ϕV)
∂x∂y

+
∂2(ϕV)
∂y2

)
−
∂( f1V)
∂x

−
∂( f2V)
∂y

−
∂( f3V)
∂z

.

The adjoint operator of A is of the form

A ∗V =
1
2
σ2ϕ

(
∂2V
∂x2 − 2

∂2V
∂x∂y

+
∂2V)
∂y2

)
+
∂( f1V)
∂x

+
∂( f2V)
∂y

+
∂( f3V)
∂z

.

3. Main results

The basic reproduction number R0 is a threshold which represents how many secondary infections
result from the introduction of one infected individual into a population of susceptible [32]. We can
calculate the basic reproduction number R0 for the deterministic hepatitis B model (2.2), given by

R0 =
Λβ1

(µ0 + ν)(µ0 + µ1 + γ1)
,

which can be shown to be a threshold of extinction or persistence of disease for the model (2.2).
In addition, we easily know that there exist two equilibriums for model (2.2): the disease free

equilibrium E0 =
(

Λ
µ0+ν

, 0, νΛ
µ0(µ0+ν)

)
always exists and the unique endemic equilibrium E∗ = (S ∗, I∗,R∗)

exists whenever R0 > 1, which is a positive solution of the following system:
Λ − (β1 − β2 f (I∗))S ∗I∗ − (µ0 + ν)S ∗ = 0,
(β1 − β2 f (I∗))S ∗I∗ − (µ0 + µ1 + γ1)I∗ = 0,
γ1I∗ + νS ∗ − µ0R∗ = 0,

where S ∗, I∗,R∗ satisfy

S ∗ =
µ0 + µ1 + γ1

β1 − β2 f (I∗)
, R∗ =

γ1I∗(β1 − β2 f (I∗)) + ν(µ0 + µ1 + γ1)
µ0(β1 − β2 f (I∗))

,
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and

Λ − (µ0 + µ1 + γ1)I∗ −
(µ0 + ν)(µ0 + µ1 + γ1)

β1 − β2 f (I∗)
= 0.

Set

F(I) := Λ − (µ0 + µ1 + γ1)I −
(µ0 + ν)(µ0 + µ1 + γ1)

β1 − β2 f (I)
.

Since

F(0) = Λ −
(µ0 + ν)(µ0 + µ1 + γ1)

β1
=

(µ0 + ν)(µ0 + µ1 + γ1)(R0 − 1)
β1

,

if R0 > 1, then F(0) > 0. It follows from the assumption (A1) that F(I) is a decreasing function.
Therefore, F(I) = 0 has a unique positive solution I∗ and model (2.2) has a unique endemic equilibrium
E∗ = (S ∗, I∗,R∗) with

S ∗ =
µ0 + µ1 + γ1

β1 − β2 f (I∗)
, R∗ =

γ1I∗(β1 − β2 f (I∗)) + ν(µ0 + µ1 + γ1)
µ0(β1 − β2 f (I∗))

.

Now, we give the results concerning the existence of unique positive solution, extinction and
persistence of the disease for the hepatitis B model (2.3). For simplicity, define a bounded set Γ by

Γ =
{
(S (t), I(t),R(t)) ∈ X : S (t) > 0, I(t) > 0,R(t) > 0,

Λ

µ0 + µ1
≤ S (t) + I(t) + R(t) ≤

Λ

µ0

}
⊂ X,

and denote the stochastic basic reproduction number Rs for the hepatitis B model (2.3) by

Rs =
Λβ1

(µ0 + ν)
(
µ0 + µ1 + γ1 + σ2Λ2

2(µ0+ν)2

) .
The main results of this paper are given by the following three theorems.

Theorem 3.1. There exists a unique positive solution (S (t), I(t),R(t)) to model (2.3) on t ≥ 0 for any
initial value (S (0), I(0),R(0)) ∈ X, and the solution will remain in X with probability one.

Theorem 3.2. Let (S (t), I(t),R(t)) be the solution of the hepatitis B model (2.3) with initial value
(S (0), I(0),R(0)) ∈ Γ. If

Rs < 1, and σ2 ≤
β1(µ0 + ν)

Λ
, (3.1)

then

lim sup
t→∞

log I(t)
t

< 0, a.s.

namely, I(t) converges to 0 exponentially a.s., and the disease in model (2.3) will die out with
probability one. In addition,

lim
t→∞

S (t) =
Λ

µ0 + ν
= S 0, lim

t→∞
R(t) =

νΛ

µ0(µ0 + ν)
= R0. (3.2)
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Theorem 3.3. For every t > 0, the distribution of (S (t), I(t),R(t)) has a density U(t, x, y, z). If Rs > 1
and

θ2 <
2µ0

ν
, σ2 <

2(µ0 + ν + 1
2θ2ν)

θ1I∗
min{1, A1, A2},

A1 =
2µ0 + 2µ1 + γ1

(µ0 + ν + 1
2θ2ν)S ∗2 + 2µ0 + 2µ1 + γ1

,

A2 =
θ2(µ0 + 1

2ν)

(µ0 + ν + 1
2θ2ν)S ∗2 + θ2(µ0 + 1

2ν)
,

(3.3)

hold, where θ1 =
4µ0+2µ1+γ1+ν

β1−β2 f (I∗) , θ2 =
2µ0+µ1
γ1

, then there exists a unique density U∗(x, y, z) which is a
stationary solution of model (2.3) and

lim
t→∞

$
X

|U(t, x, y, z) − U∗(x, y, z)|dxdydz = 0.

In addition, we have

Π ≡ supp U∗ =

{
(x, y, z) ∈ X :

Λ

µ0 + µ1
< x + y + z <

Λ

µ0

}
. (3.4)

Remark 3.4. It follows from Theorem 3.2 that if Rs < 1, the disease in hepatitis B model (2.3) will
die out. The results of Theorem 3.3 mean that the disease is prevalent if Rs > 1. Therefore, together
with Theorem 3.2 and 3.3, we can clearly see that Rs can be a threshold of disease persistence and
extinction. We also conclude that the large random noise can suppress the outbreak of disease.

4. Proofs of main results

In this section, we analyze the dynamical behavior of the system (2.3) and give the detailed proofs
of our main results.

4.1. Proof of Theorem 3.1

The aim of this subsection is to show the existence of unique positive global solution of stochastic
model (2.3), namely to prove Theorem 3.1.

Proof. The proof of Theorem 3.1 is similar to that in [4, 24]. Here we omit it.

The following result shows that the solutions of system (2.3) are bounded.

Lemma 4.1. The unique solution of stochastic hepatitis B epidemic model (2.3) on t ≥ 0 for any initial
value (S (0), I(0),R(0)) ∈ X will enter Γ and will remain in Γ with probability one.

Proof. Let the total size of population be N(t) = S (t) + I(t) + R(t). From model (2.3), we have

dN(t)
dt

= Λ − µ0N(t) − µ1I(t).
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This implies that

Λ − (µ0 + µ1)N(t) ≤
dN(t)

dt
≤ Λ − µ0N(t).

Letting t → ∞, we get
Λ

µ0 + µ1
≤ lim inf

t→∞
N(t) ≤ lim sup

t→∞
N(t) ≤

Λ

µ0
.

Then the region

Γ =
{
(S (t), I(t),R(t)) : S (t) > 0, I(t) > 0,R(t) > 0,

Λ

µ0 + µ1
≤ N(t) ≤

Λ

µ0

}
.

Therefore, all solution S (t), I(t) and R(t) of model (2.3) are bounded by Λ
µ0

. Thus, we get that Γ is the
positively invariant bounded set. In conclusion, the trajectories of all solution initiating anywhere of X
will enter Γ and then remain in Γ with probability one.

4.2. Proof of Theorem 3.2

In this subsection, for simplicity, we begin with introducing the following notation and lemma:

〈x(t)〉 =
1
t

∫ t

0
x(s)ds.

Lemma 4.2. [33] Let M = {M(t)}t≥0 be a real-valued continuous local martingale vanishing at t = 0.
Then

lim
t→∞
〈M,M〉t = ∞ a.s.⇒ lim

t→∞

M(t)
〈M,M〉t

= 0 a.s.

and
lim sup

t→∞

〈M,M〉t
t

< ∞ a.s.⇒ lim
t→∞

M(t)
t

= 0 a.s.,

where 〈M,M〉t denotes the quadratic variation of M.

Next, we investigate the extinction of disease for the stochastic hepatitis B model (2.3), which
means to prove Theorem 3.2.

Proof. An integration of system (2.3) yields
S (t)−S (0)

t = Λ − (β1 − β2 f (I))〈S (t)I(t)〉 − (µ0 + ν)〈S (t)〉 − σ
t

∫ t

0
S (s)I(s)dB(s),

I(t)−I(0)
t = (β1 − β2 f (I))〈S (t)I(t)〉 − (µ0 + µ1 + γ1)〈I(t)〉 + σ

t

∫ t

0
S (s)I(s)dB(s),

R(t)−R(0)
t = γ1〈I(t)〉 + ν〈S (t)〉 − µ0〈R(t)〉.

(4.1)

According to (4.1), we have

S (t) − S (0)
t

+
I(t) − I(0)

t
= Λ − (µ0 + ν)〈S (t)〉 − (µ0 + µ1 + γ1)〈I(t)〉. (4.2)

We compute that

〈S (t)〉 =
Λ

µ0 + ν
−
µ0 + µ1 + γ1

µ0 + ν
〈I(t)〉 + ϕ(t), (4.3)
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where ϕ(t) is defined by

ϕ(t) = −
1

µ0 + ν

[
S (t) − S (0)

t
+

I(t) − I(0)
t

]
.

Obviously,
lim
t→∞

ϕ(t) = 0. a.s.

Applying the Itô’s formula [16] to system (2.3) leads to

d log I(t) =

[
(β1 − β2 f (I))S (t) − (µ0 + µ1 + γ1) −

1
2
σ2S 2(t)

]
dt + σS (t)dB(t).

Integrating it from 0 to t and dividing t on both sides, we obtain

log I(t) − log I(0)
t

=(β1 − β2 f (I))〈S (t)〉 − (µ0 + µ1 + γ1) −
1
2
σ2〈S 2(t)〉

+
σ

t

∫ t

0
S (s)dB(s)

≤β1〈S (t)〉 − (µ0 + µ1 + γ1) −
1
2
σ2〈S (t)〉2

+
σ

t

∫ t

0
S (s)dB(s).

(4.4)

Substituting (4.3) into (4.4) yields

log I(t) − log I(0)
t

≤β1

(
Λ

µ0 + ν
−
µ0 + µ1 + γ1

µ0 + ν
〈I(t)〉 + ϕ(t)

)
− (µ0 + µ1 + γ1)

−
1
2
σ2

(
Λ

µ0 + ν
−
µ0 + µ1 + γ1

µ0 + ν
〈I(t)〉 + ϕ(t)

)2

+
σ

t

∫ t

0
S (s)dB(s)

≤
β1Λ

µ0 + ν
−
β1(µ0 + µ1 + γ1)

µ0 + ν
〈I(t)〉 − (µ0 + µ1 + γ1)

−
1
2

σ2Λ2

(µ0 + ν)2 +
σ2Λ(µ0 + µ1 + γ1)

(µ0 + ν)2 〈I(t)〉 +
M(t)

t
+ ψ(t)

≤ −

(
µ0 + µ1 + γ1 +

1
2

σ2Λ2

(µ0 + ν)2

)
(1 −Rs)

−

(
µ0 + µ1 + γ1

µ0 + ν

) (
β1 −

σ2Λ

µ0 + ν

)
〈I(t)〉 +

M(t)
t

+ ψ(t).

(4.5)

where

ψ(t) = βϕ(t) −
1
2
σ2ϕ2(t) +

σ2(µ0 + µ1 + γ1)
µ0 + ν

〈I(t)〉ϕ(t) −
σ2Λϕ(t)
µ0 + ν

and M(t) = σ
∫ t

0
S (s)dB(s), which is a local continuous martingale with M(0) = 0. Moreover,

lim sup
t→∞

〈M,M〉t
t

≤
σ2Λ2

µ2
0

< ∞ a.s.

By Lemma 4.2 and limt→∞ ϕ(t) = 0, we obtain

lim
t→∞

M(t)
t

= 0 and lim
t→∞

ψ(t) = 0 a.s.
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If the condition (3.1) is satisfied, it follows from (4.5) that

lim sup
t→∞

log I(t)
t

≤ −

(
µ0 + µ1 + γ1 +

1
2

σ2Λ2

(µ0 + ν)2

)
(1 −Rs)

−

(
µ0 + µ1 + γ1

µ0 + ν

) (
β1 −

σ2Λ

µ0 + ν

)
〈I(t)〉 < 0 a.s.

which implies

lim
t→∞

I(t) = 0 a.s. (4.6)

Next, we prove the assertion (3.2). According to model (2.3), we have

d(S (t) + I(t) + R(t)) = [Λ − µ0(S (t) + I(t) + R(t)) − µ1I(t)]dt.

We also have

S (t) + I(t) + R(t) = e−µ0t

(
S (0) + I(0) + R(0) +

∫ t

0
[Λ − µ1I(s)]eµ0 sds

)
.

Applying L’Hospital’s rule and (4.6), we get

lim
t→∞

(S (t) + R(t)) = lim
t→∞

S (0) + I(0) + R(0) +
∫ t

0
[Λ − µ1I(s)]eµ0 sds

eµ0t − I(t)


= lim

t→∞

Λ − µ1I(t)
µ0

=
Λ

µ0
.

(4.7)

Thus, we obtain

lim
t→∞

(S (t) + R(t)) =
Λ

µ0
a.s.

According to model (2.3), the first equation with limiting system yields

dS (t) = (Λ − (µ0 + ν)S (t))dt.

Then we obtain

lim
t→∞

S (t) =
Λ

µ0 + ν
= S 0 a.s.

Therefore, by (4.7), we have

lim
t→∞

R(t) =
νΛ

µ0(µ0 + ν)
= R0 a.s.

This finishes the proof.
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4.3. Proof of Theorem 3.3

The aim of this subsection is to investigate that the solutions of model (2.3) are converging to
the endemic dynamics when Rs > 1 under mild extra conditions. We prove Theorem 3.3 about the
existence of stationary distribution for the solution of model (2.3), which implies that the disease is
persistent.

In order to prove main result, we give the following lemmas and study the asymptotic stability of
the Markov semigroups. First, we check that the semigroup has an invariant density.

Lemma 4.3. For each point (x0, y0, z0) ∈ X and t > 0, the transition probability function
P(t, x0, y0, z0, A) has a continuous density k(t, x, y, z; x0, y0, z0) with respect to the Lebesgue measure.

Proof. Let

a0(S , I,R) =


Λ − (β1 − β2 f (I))S I − (µ0 + ν)S
(β1 − β2 f (I))S I − (µ0 + µ1 + γ1)I

γ1I + νS − µ0R

 and a1(S , I,R) =


−σS I
σS I

0

 .
Then Lie bracket [a0, a1] is given by

a2 = [a0, a1] =


−σI(Λ − (µ0 + µ1 + γ1)S + β2 f ′(I)S 2I)

σI(Λ − (µ0 + ν)S + β2 f ′(I)S 2I)
σ(ν − γ1)S I


and

a3 = [a1, a2] =


−σ2I(ΛI + (ν − µ1 − γ1)S 2 + (β2 f ′′(I)S − β2 f ′(I))S 2I2 + β2 f ′(I)S 3I)
σ2I2(Λ + (ν − µ1 − γ1)S + (β2 f ′′(I)S − β2 f ′(I))S 2I + β2 f ′(I)S 3)

σ2(ν − γ1)(S − I)S I

 .
Thus, a1, a2, a3 are linearly independent on X. Then for each (S , I,R) ∈ X, the vector a1(S , I,R),
a2(S , I,R), a3(S , I,R) span the space X. According to the Hörmander theorem on the existence of
smooth densities for degenerate diffusion process (see [34], Theorem 4.3), the transition probability
function P(t, x0, y0, z0, A) has a continuous density k(t, x, y, z; x0, y0, z0) and k ∈ C∞((0,∞) × X × X).

Using the similar method mentioned in [35], we check the positivity of k.
Fix a point (x0, y0, z0) ∈ X and a function φ ∈ L2([0,T ];R), then consider the following system:

xφ(t) = x0 +
∫ t

0
[ f1(xφ(s), yφ(s), zφ(s)) − σφxφ(s)yφ(s)]ds,

yφ(t) = y0 +
∫ t

0
[ f2(xφ(s), yφ(s), zφ(s)) + σφxφ(s)yφ(s)]ds,

zφ(t) = z0 +
∫ t

0
f3(xφ(s), yφ(s), zφ(s))ds,

(4.8)

where f1(x, y, z), f2(x, y, z), f3(x, y, z) are defined as (2.6).
Denote X = (x, y, z)T , X0 = (x0, y0, z0)T , let DX0;φ be the Fréchet derivative of the function

h7→Xφ+h(T ) from L2([0,T ];R) to X. Then k(T, x, y, z; x0, y0, z0) > 0 for X = Xφ(T ) holds, if the
derivative DX0;φ has rank 3 for some φ ∈ L2([0,T ];R). Let

Ψ(t) = f′(Xφ(t)) + φg′(Xφ(t)),
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where f′, g′ are the Jacobians of

f =


f1(x, y, z)
f2(x, y, z)
f3(x, y, z)

 and g =


−σxy
σxy

0

 ,
respectively. Let Q(t, t0)(0 ≤ t0 ≤ t ≤ T ) be a matrix function, and Q(t0, t0) = Id, ∂Q(t,t0)

∂t = Ψ(t)Q(t, t0),
then

DX0;φh =

∫ T

0
Q(T, s)g(s)h(s)ds.

Lemma 4.4. There exists T > 0 such that k(T, x, y, z; x0, y0, z0) > 0 for every (x0, y0, z0) ∈ Π and
(x, y, z) ∈ Π.

Proof. We consider a continuous control function φ and rewrite the system (4.8) as follows:
x′φ(t) = f1(xφ(t), yφ(t), zφ(t)) − σφxφ(t)yφ(t),
y′φ(t) = f2(xφ(t), yφ(t), zφ(t)) + σφxφ(t)yφ(t),
z′φ(t) = f3(xφ(t), yφ(t), zφ(t)).

(4.9)

Step 1: Let ε ∈ (0,T ) and h(t) =
χ[T−ε,T ](t)
xφ(t)yφ(t) , t ∈ [0,T ], where χ is the characteristic function. Since

Q(T, s) = Id + Ψ(T )(s − T ) +
1
2

Ψ2(T )(s − T )2 + o((s − T )2).

Then

DX0;φh = εv −
1
2
ε2Ψ(T )v +

1
6
ε3Ψ2(T )v + o(ε3),

where

v =


−σ

σ

0

 .
Compute

Ψ(T )v = σ


µ0 + ν + (σφ + β1 − β2 f (y))(y − x) + β2 f ′(y)xy

−(µ0 + µ1 + γ1) − (σφ + β1 − β2 f (y))(y − x) − β2 f ′(y)xy
γ1 − ν


and

Ψ2(T )v = σ


a11

a22

a33

 ,
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where

a11 = − β2
2 f ′2(y)x2y2 + (2(β1 − β2 f (y) + σφ)(x − y) − (2µ0 + µ1 + γ1 + ν))β2 f ′(y)xy

+ (β1 − β2 f (y) + σφ)((2µ0 + µ1 + γ1 + ν)x − 2(µ0 + ν)y)
− (β1 − β2 f (y) + σφ)2(x − y)2,

a22 =β2
2 f ′2(y)x2y2 − 2((β1 − β2 f (y) + σφ)(x − y) − (µ0 + µ1 + γ1))β2 f ′(y)xy

− (β1 − β2 f (y) + σφ)(2(µ0 + µ1 + γ1)x − (2µ0 + µ1 + γ1 + ν)y)
+ (β1 − β2 f (y) + σφ)2(x − y)2 + (µ0 + µ1 + γ1)2,

a33 = − γ1(2µ0 + µ1 + γ1) + ν(2µ0 + ν) + (ν − γ1)(β2 f ′(y)xy + (β1 − β2 f (y) + σφ)(y − x)).

It is easy to see that v, Ψ(T )v, and Ψ2(T )v are linearly independent. Therefore, the rank of DX0;φ is 3.
Step 2: We check that there exist a control function φ and T > 0 such that Xφ(0) = X0, Xφ(T ) = X

for any two points X0 ∈ Π and X ∈ Π holds. Let wφ = xφ + yφ + zφ, then system (4.9) can be replaced
by 

x′φ(t) = g1(xφ(t),wφ(t), zφ(t)) − σφxφ(t)(wφ(t) − xφ(t) − zφ(t)),
y′φ(t) = g2(xφ(t),wφ(t), zφ(t)),
z′φ(t) = g3(xφ(t),wφ(t), zφ(t)),

(4.10)

where

g1(x,w, z) = Λ − (β1 − β2 f (w − x − z))x(w − x − z) − (µ0 + ν)x,

g2(x,w, z) = Λ + µ1(x + z) − (µ0 + µ1)w,
g3(x,w, z) = γ1w − (γ1 − ν)x − (γ1 + µ0)z.

(4.11)

Let

Π0 =

{
(x,w, z) ∈ X : 0 < x, z <

Λ

µ0
,

Λ

µ0 + µ1
< w <

Λ

µ0
and x, z < w

}
.

Now we claim that there exist a control function φ and T > 0, for any (x0,w0, z0) ∈ Π0 and (x1,w1, z1) ∈
Π0, we have (xφ(0),wφ(0), zφ(0)) = (x0,w0, z0) and (xφ(T ),wφ(T ), zφ(T )) = (x1,w1, z1).

To construct the function φ, first, we find a positive constant T and a differentiable function

wφ : [0,T ]→
(

Λ

µ0 + µ1
,

Λ

µ0

)
,

such that wφ(0) = w0, wφ(T ) = w1, w′φ(0) = g2(x0,w0, z0) = wd
0, w′φ(T ) = g2(x1,w1, z1) = wd

T and

Λ − (µ0 + µ1)wφ(t) < w′φ(t) < Λ − µ0wφ(t), t ∈ [0,T ]. (4.12)

Next we separate the construction of the function wφ on three subintervals [0, ε], [ε,T−ε] and [T−ε,T ],
where 0 < ε < T

2 . Let

η =
1
2

min
{

w0 −
Λ

µ0 + µ1
,w1 −

Λ

µ0 + µ1
,

Λ

µ0
− w0,

Λ

µ0
− w1

}
.

If wφ ∈ ( Λ
µ0+µ1

+ η, Λ
µ0
− η), then

Λ − (µ0 + µ1)wφ(t) < −(µ0 + µ1)η < 0, and Λ − µ0wφ(t) > µ0η > 0 for t ∈ [0,T ]. (4.13)
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Therefore, from (4.13) it follows that we can find a C2-function wφ: [0, ε] → ( Λ
µ0+µ1

+ η, Λ
µ0
− η) such

that
wφ(0) = w0, w′φ(0) = wd

0, w′φ(ε) = 0,

and for all t ∈ [0, ε], the differentiable function wφ satisfies (4.12). The same proof works for t ∈
[T − ε,T ], we also find a C2-function wφ: [T − ε,T ]→ ( Λ

µ0+µ1
+ η, Λ

µ0
− η) such that

wφ(T ) = w1, w′φ(T ) = wd
T , w′φ(T − ε) = 0,

and for all t ∈ [T − ε,T ], the differentiable function wφ satisfies (4.12). We choose T sufficiently large
such that

wφ : [0, ε] ∪ [T − ε,T ]→
(

Λ

µ0 + µ1
+ η,

Λ

µ0
− η

)
can be extend to a C2-function wφ which defined on the whole interval [0,T ], then we have

Λ − (µ0 + µ1)wφ(t) < −(µ0 + µ1)η < w′φ(t) < µ0η < Λ − µ0wφ(t), for t ∈ [ε,T − ε],

and the differentiable function wφ satisfies (4.12) on [0,T ].
Thus, two C2-function xφ and zφ can be found to satisfy the second and third equation of (4.10).

Finally, there exists a continuous control function φ which can be determined from the first equation of
(4.10). This completes the proof.

Lemma 4.5. If Rs > 1, then for every density g and semigroup {P(t)}t≥0,

lim
t→∞

$
Π

P(t)g(x, y, z)dxdydz = 1.

Proof. Let Z(t) = S (t) + I(t) + R(t), then system (2.3) becomes
dS (t) = g1(S (t),Z(t),R(t))dt − σS (t)(Z(t) − S (t) − R(t))dB(t),
dZ(t) = g2(S (t),Z(t),R(t))dt,

dR(t) = g3(S (t),Z(t),R(t))dt,

(4.14)

and the functions g1, g2 and g3 are defined in (4.11). For the positive solution (S (t), I(t),R(t)) of model
(2.3), we have

Λ − (µ0 + µ1)Z(t) <
dZ(t)

dt
< Λ − µ0Z(t), t ∈ (0,+∞), a.s. (4.15)

Next, we check that for almost each ω ∈ Ω, there exists t0 = t0(ω) such that

Λ

µ0 + µ1
< Z(ω, t) <

Λ

µ0
, for t > t0.

Here we have the following three possible situations.
(a) The case Z(0) ∈

(
Λ

µ0+µ1
, Λ
µ0

)
is simple to see from (4.15).

(b) Consider the case Z(0) ∈
(
0, Λ

µ0+µ1

)
. Assume our assertion is false, then for ω ∈ Ω′, there exists

Ω′ ⊂ Ω with Prob(Ω′) > 0 such that Z(ω, t) ∈
(
0, Λ

µ0+µ1

)
. Obviously, from (4.15) we see Z(ω, t) is

strictly increasing on [0,∞] for any ω ∈ Ω′. Thus, we have

lim
t→∞

Z(ω, t) =
Λ

µ0 + µ1
, ω ∈ Ω′.
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By the second equation of (4.14), we obtain for any ω ∈ Ω′

Z(t) = e−(µ0+µ1)t ·

(
Z(0) +

∫ t

0
e(µ0+µ1)s[Λ + µ1(S (s) + R(s))]ds

)
.

Then for ω ∈ Ω′, we have
lim
t→∞

S (ω, t) = lim
t→∞

R(ω, t) = 0.

Therefore, limt→∞ I(ω, t) = Λ
µ0+µ1

, ω ∈ Ω′, which implies that

lim
t→∞

log I(t) − log I(0)
t

= 0, ω ∈ Ω′.

Application of the Itô’s formula yields

d log I(t) =

[
(β1 − β2 f (I))S (t) − (µ0 + µ1 + γ1) −

1
2
σ2S 2(t)

]
dt + σS (t)dB(t),

and

log I(t) − log I(0)
t

= (β1 − β2 f (I))〈S (t)〉 − (µ0 + µ1 + γ1) −
1
2
σ2〈S 2(t)〉 +

σ

t

∫ t

0
S (s)dB(s).

According to Lemma 4.2, we have

lim
t→∞

σ

t

∫ t

0
S (s)dB(s) = 0.

Hence,

lim
t→∞

log I(t) − log I(0)
t

= lim
t→∞

(
(β1 − β2 f (I))〈S (t)〉 − (µ0 + µ1 + γ1) −

1
2
σ2〈S 2(t)〉 +

σ

t

∫ t

0
S (s)dB(s)

)
= − (µ0 + µ1 + γ1).

This leads to the contradiction that limt→∞
log I(t)−log I(0)

t = 0, then the assertion holds.
(c) Consider the case Z(0) ∈

(
Λ
µ0
,+∞

)
. The same proof works to the case (b), by contradiction,

suppose that there exists ω ∈ Ω′ with Prob(Ω′) > 0 such that

lim
t→∞

Z(ω, t) =
Λ

µ0
, ω ∈ Ω′.

The second and third equation of (4.14) implies that for any ω ∈ Ω′

Z(t) = e−(µ0+µ1)t ·

(
Z(0) +

∫ t

0
e(µ0+µ1)s[Λ + µ1(S (s) + R(s))]ds

)
,

R(t) = e−(µ0+γ1)t ·

(
R(0) +

∫ t

0
e(µ0+γ1)s[γ1Z(s) − (γ1 − ν)S (s)]ds

)
.

Mathematical Biosciences and Engineering Volume 16, Issue 4, 2562–2586.



2577

It follows that

lim
t→∞

S (ω, t) =
Λ

µ0 + ν
, lim

t→∞
I(ω, t) = 0, lim

t→∞
R(ω, t) =

νΛ

µ0(µ0 + ν)
for ω ∈ Ω′.

Thus,

lim
t→∞

log I(t) − log I(0)
t

= lim
t→∞

(
(β1 − β2 f (I))〈S (t)〉 − (µ0 + µ1 + γ1) −

1
2
σ2〈S 2(t)〉 +

σ

t

∫ t

0
S (s)dB(s)

)
=
β1Λ

µ0 + ν
−

σ2Λ2

2(µ0 + ν)2 − (µ0 + µ1 + γ1)

=

(
µ0 + µ1 + γ1 +

σ2Λ2

2(µ0 + ν)2

)
(Rs − 1)

> 0 a.s. on Ω′.

This leads to the contradiction that limt→∞ I(ω, t) = 0 a.s. and the assertion holds.

Remark 4.1. The results of Lemma 4.4 and Lemma 4.5 mean that if there exists a stationary solution
U∗ for Fokker-Planck equation (2.5), then supp U∗ = Π.

Lemma 4.6. If Rs > 1, then the semigroup {P(t)}t≥0 is asymptotically stable or is sweeping with respect
to compact sets.

Proof. The result of Lemma 4.3 shows that {P(t)}t≥0 is an integral Markov semigroup, which has a
continuous kernel k(t, x, y, z; x0, y0, z0) for t > 0. Thus, the distribution of (S (t), I(t),R(t)) has a density
U(x, y, z, t) and it satisfies the Fokker-Planck equation (2.5). The Lemma 4.5 implies that certify the
restriction of the semigroup {P(t)}t≥0 to the space L1(Π) is sufficient. By Lemma 4.4, we know for
every g ∈ D ∫ ∞

0
P(t)gdt > 0, a.s. on Π.

Therefore, in view of Lemma 2.1 that the semigroup {P(t)}t≥0 is asymptotically stable or is sweeping
with respect to compact sets. This finishes the proof.

Lemma 4.7. If Rs > 1 then the semigroup {P(t)}t≥0 is asymptotically stable provided following
conditions are satisfied:

θ2 <
2µ0

ν
, σ2 <

2(µ0 + ν + 1
2θ2ν)

θ1I∗
min{1, A1, A2}, (4.16)

where θ1 =
4µ0+2µ1+γ1+ν

β1−β2 f (I∗) , θ2 =
2µ0+µ1
γ1

and A1, A2 are defined in (3.3).

Proof. The Lemma 4.6 implies that the semigroup {P(t)}t≥0 satisfies the Foguel alternative. We
construct a nonnegative C2-function V and a closed set O ∈ Σ such that

sup
(S ,I,R)∈X\O

A ∗V < 0,
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where the function V is called Khasminskiĭ function [29]. Since there exists an endemic equilibrium
E∗ of system (2.2) when R0 > 1, then we have

Λ = (µ0 + ν)S ∗ + (β1 − β2 f (I∗))S ∗I∗,

(β1 − β2 f (I∗))S ∗I∗ = (µ0 + µ1 + γ1)I∗,

γ1I∗ = µ0R∗ − νS ∗.

Define a nonnegative C2-function V by

V(S , I,R) =
1
2

(S − S ∗ + I − I∗ + R − R∗)2 +
1
2

(S − S ∗ + I − I∗)2

+ θ1

(
I − I∗ − I∗ log

I
I∗

)
+
θ2

2
(R − R∗)2

:=V1 + V2 + θ1V3 + θ2V4,

where θ1 and θ2 are defined in Lemma 4.7. First, we compute

A ∗V1 =(S − S ∗ + I − I∗ + R − R∗)(Λ − µ0S − (µ0 + µ1)I − µ0R)
=(S − S ∗ + I − I∗ + R − R∗)(−µ0(S − S ∗) − (µ0 + µ1)(I − I∗) − µ0(R − R∗))
= − µ0(S − S ∗)2 − (µ0 + µ1)(I − I∗)2 − µ0(R − R∗)2 − (2µ0 + µ1)(S − S ∗)(I − I∗)
− 2µ0(S − S ∗)(R − R∗) − (2µ0 + µ1)(I − I∗)(R − R∗).

(4.17)

Next, we have

A ∗V2 =(S − S ∗ + I − I∗)(Λ − (µ0 + ν)S − (µ0 + µ1 + γ1)I)
=(S − S ∗ + I − I∗)(−(µ0 + ν)(S − S ∗) − (µ0 + µ1 + γ1)(I − I∗))
= − (µ0 + ν)(S − S ∗)2 − (µ0 + µ1 + γ1)(I − I∗)2

− (2µ0 + µ1 + γ1 + ν)(S − S ∗)(I − I∗).

(4.18)

We calculate

A ∗V3 =(I − I∗)((β1 − β2 f (I))S − (µ0 + µ1 + γ1)) +
1
2

I∗σ2S 2

=(I − I∗)((β1 − β2 f (I))S − (β1 − β2 f (I∗))S ∗) +
1
2

I∗σ2S 2

= − β2S ( f (I) − f (I∗))(I − I∗) + (β1 − β2 f (I∗))(S − S ∗)(I − I∗) +
1
2

I∗σ2S 2

≤ (β1 − β2 f (I∗))(S − S ∗)(I − I∗) +
1
2

I∗σ2S 2.

(4.19)

At last, for V4, we have

A ∗V4 =(R − R∗)(γ1I + νS − µ0R)
=(R − R∗)(ν(S − S ∗) + γ1(I − I∗) − µ0(R − R∗))
= − µ0(R − R∗)2 + ν(S − S ∗)(R − R∗) + γ1(I − I∗)(R − R∗).

(4.20)
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Combining (4.17)–(4.20), we obtain

A ∗V =A ∗V1 + A ∗V2 + θ1A
∗V3 + θ2A

∗V4

≤ −
(
µ0 + ν +

1
2
θ2ν

)
(S − S ∗)2 − (2µ0 + 2µ1 + γ1)(I − I∗)2

− θ2

(
µ0 +

1
2
ν
)
(R − R∗)2 +

1
2
θ1I∗σ2S 2

= −
(
µ0 + ν +

1
2
θ2ν −

1
2
θ1I∗σ2

)(
S −

2µ0 + 2ν + θ2ν

2µ0 + 2ν + θ2ν − θ1I∗σ2 S ∗
)2

− (2µ0 + 2µ1 + γ1)(I − I∗)2 − θ2

(
µ0 +

1
2
ν
)
(R − R∗)2

+
θ1I∗

(
µ0 + ν + 1

2θ2ν
)
σ2

2µ0 + 2ν + θ2ν − θ1I∗σ2 S ∗2

:= − b1(S − c1S ∗)2 − b2(I − I∗)2 − b3(R − R∗)2 + b4.

It follows from the condition (4.16) of Lemma 4.7 that

θ1I∗
(
µ0 + ν + 1

2θ2ν
)
σ2

2µ0 + 2ν + θ2ν − θ1I∗σ2 S ∗2

<min
{ 2

(
µ0 + ν + 1

2θ2ν
)2

S ∗2

2µ0 + 2ν + θ2ν − θ1I∗σ2 , 2µ0 + 2µ1 + γ1, θ2

(
µ0 +

1
2
ν
)}
.

Then the ellipsoid

−b1(S − c1S ∗)2 − b2(I − I∗)2 − b3(R − R∗)2 + b4 = 0

lies entirely in X. Thus, there exist a closed set O ∈ Σ which contains this ellipsoid and constant c > 0
such that

sup
(S ,I,R)∈X\O

A ∗V ≤ −c < 0.

Remark 4.2. Together with Lemma 4.6 and Lemma 4.7, we get Theorem 3.3.

5. Numerical simulations

In this section, we give some numerical simulations to illustrate the effectiveness of our analytical
results. Choosing the function f (I) = I

H+I (as in [3, 11]), which satisfy the assumption (A1) clearly.
Using the Milstein method for stochastic differential equations [36], we consider the following
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discretization for system (2.3):



S (k + 1) =S (k) +
(
Λ −

(
β1 −

β2I(k)
H + I(k)

)
S (k)I(k) − (µ0 + ν)S (k)

)
∆t

− σS (k)I(k)
√

∆tξ(k) −
σ2

2
S (k)I(k)(ξ2(k) − 1)∆t,

I(k + 1) =I(k) +
((
β1 −

β2I(k)
H + I(k)

)
S (k)I(k) − (µ0 + µ1 + γ1)I(k)

)
∆t

+ σS (k)I(k)
√

∆tξ(k) +
σ2

2
S (k)I(k)(ξ2(k) − 1)∆t,

R(k + 1) =R(k) + (γ1I(k) + νS (k) − µ0R(k))∆t,

where ξ(k), k = (1, 2, ..., n) are independent Gaussian random variables N(0, 1). We take the parameter
values in system (2.3) as in Table 2. The initial value of population size is
S (0) = 0.9, I(0) = 0.8,R(0) = 0.6 [24]. For system (2.2), with parameter values of Table 2, easy to
calculate that the basic reproduction number R0 =

Λβ1
(µ0+ν)(µ0+µ1+γ1) = 3.7500 > 1. Thus, for any initial

values (S (0), I(0),R(0)), there exist a unique endemic equilibrium E∗ = (0.9273, 0.2347, 3.7207)
which is globally stable and a disease-free equilibrium E0 = (1.2500, 0, 3.7500). For a clear
comparison with the path of stochastic hepatitis B model (2.3), we show the path of S (t), I(t), R(t) for
deterministic model (2.1) in Figure 1.

Table 2. Parameters values of numerical experiments for system (2.3).

Parameter Parameter description Value The source of data

Λ Birth rate 0.5 [24]
β1 Transmission rate 0.6 [24]
β2 Maximum reduced contact rate 0.3 Assumed
µ0 Natural death rate 0.1 [24]
µ1 Disease induced death rate 0.05 Assumed
v Vaccination rate 0.3 [24]
γ1 Recovery rate 0.4 [24]
H 10 [11].

5.1. Stochastic endemic dynamics

Choosing the intensity of noise σ = 0.1, then Rs = 1.3445 > 1, σ2 = 0.0100 < 0.5595 and the
condition θ2 = 0.6250 < 0.6667 hold. It follows from Theorem 3.3 that the disease will persistent and
we give the simulation result in Figure 2(a). Compared with Figure 1, the solution of system (2.3) in
Figure 2(a) shows small fluctuations. We increase the intensity of noise σ to 0.3 (Rs = 1.2091 > 1,
σ2 = 0.0900 < 0.5595) and 0.5 (Rs = 1.0063 > 1, σ2 = 0.2500 < 0.5595), respectively. We find that
the fluctuations become stronger with the increase of the noise intensity and the simulation results are
showed in Figure 2(b)–(c).
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Figure 1. The paths of S (t), I(t) and R(t) for deterministic model (2.2) with initial
(S (0), I(0),R(0)) = (0.9, 0.8, 0.6).
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Figure 2. The path of S (t), I(t) and R(t) for model (2.3) and the histogram of the probability
density function of I(100) with initial (S (0), I(0),R(0)) = (0.9, 0.8, 0.6) under different noise
intensities σ = 0.1, σ = 0.3 and σ = 0.5, respectively.

Moreover, the histograms of the probability density function for I(t) are obtained from 10,000
simulation runs for three different noise intensities at t = 100, which is displayed in Figure 2(d)–(f).
From Figure 2(d)–(f), we can see that the skewness of the distribution for I(100) is changing with the
increase of the noise intensity σ. More precisely, the distribution is close to a standard distribution
when σ = 0.1 (see Figure 2(d)). But if increase σ to 0.3 and 0.5, respectively, the distributions are
positively skewed (see Figure 2(e)–(f)).
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5.2. Stochastic disease-free dynamics.

We note that in this paper, the model (2.3) is a continuous time and continuous state space model,
the values of I(t) are non-zero quantities increase to 16th decimal during the numerical experiments.
Therefore, we assume that 10,000 individuals are deemed to be 1 unit populations approximately, and
assume that the disease is regarded as extinction when the value of I(t) less than 0.0001 [4].

To learn the stochastic disease-free dynamics of model (2.3), we choose σ = 0.52, then Rs =

0.9852 < 1 and σ2 = 0.2704 < β1(µ0+ν)
Λ

= 0.4800. According to Theorem 3.2, the disease goes extinct
exponentially almost surely, which is illustrated by Figure 3(a). We increase σ to 0.54 (Rs = 0.9642 <
1, σ2 = 0.2916 < 0.4800) and to 0.56 (Rs = 0.9434 < 1, σ2 = 0.3136 < 0.4800), respectively. We
find that the disease goes to extinction with probability one, as shown in Figure 3(b)-(c).

Furthermore, we conduct 10,000 numerical simulation runs and calculate the mean extinction time
of I(t). We obtain that the mean extinction time for the three different noise intensities σ (i.e., 0.52,
0.54, 0.56) is 82.5642, 76.9118, 69.5481, respectively. Then we conclude that the mean extinction
time of disease decreases with the increase of noise intensity σ.
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Figure 3. The path of S (t), I(t) and R(t) for model (2.3) with initial (S (0), I(0),R(0)) =

(0.9, 0.8, 0.6) under different noise intensities σ = 0.52, σ = 0.54 and σ = 0.56, respectively.

5.3. Effect of information intervention

In the following, we show the influence of information intervention. Therefore, we mainly discuss
the effect of different values of β2 on infected population. First, we show the I(t) for deterministic
model (2.2) under different values of β2 (β2 = 0, 0.2, 0.4, 0.6) in Figure 4(a). It can be seen from Figure
4(a) that β2 has great influence on I(t). The number of the infected population decreases with the
increase of the β2.

We next choose noise intensity σ = 0.25, then make 10,000 numerical simulation runs and calculate
mean value. From Figure 4(b), it can be seen that the increase β2 can reduce the value of I(t). Further,
we fix β2 and compare Figure 4(a) with 4(b), we find that noise intensity σ can also reduce the number
of the infected population. If we increaseσ to 0.5, then we have a similar conclusion and the simulation
result is shown in Figure 4(c). This simulation shows that the information intervention can help reduce
the number of the disease outbreak.
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Figure 4. The path of I(t) for model (2.3) with initial (S (0), I(0),R(0)) = (0.9, 0.8, 0.6) under
different noise intensities σ = 0.00, σ = 0.25 and σ = 0.50, respectively. Each sub-figure is
obtained by the averaging of 10,000 simulation runs.

6. Concluding remarks

Outbreaks of infectious diseases have caused substantial deaths, social and economic losses in the
whole world. As a result, a large number of prevention strategies, including information policies,
such as media coverage, health education, psychological suggestion, etc. have been used to help to
understand the transmission and control of infectious diseases. Environmental noise, an important
component in real world, also has greatly affect on the development of infectious diseases. In this
paper, we investigated the long term behavior of the stochastic model for the transmission dynamic of
hepatitis B with varying population environment. Our major results are as follows:

(i) Using the Markov semigroups theory, we investigated the dynamics of the stochastic hepatitis
B model with information intervention perturbed by environment noises. Our results showed
that the dynamics of the stochastic hepatitis B model can be governed by the stochastic basic
reproduction number Rs. There exists a disease-free equilibrium and the disease is predicted to
die out with probability one when Rs < 1 under mild extra condition. If Rs > 1 under mild extra
conditions, the stochastic model has an endemic equilibrium and the disease would persist.

(ii) We showed that environmental noises can play an important role in the long-term dynamics. If
the intensity of noises is small enough to imply that Rs > 1, which means the disease will prevail
and there exists a stationary distribution for the stochastic model. If the intensity of noises is large
(leading to Rs < 1), then the disease would be eradicated. Thus, large environmental noises are
able to suppress the emergence of the disease outbreak. We further evaluated the influence of
information intervention. It leads to the changes in human behavior, which reduces the effective
contact rates of susceptible people and provide (temporary) protection from infection. We found
that large intensity of information intervention (β2) can lead to the decrease of I(t) (see Figure
4). Therefore, information intervention can also reduce the number of infected population and
suppress the outbreak of hepatitis B.

The environmental white noise considered in this paper is a continuous random process. However,
population systems may have sudden impact of various factors, such as volcanoes, toxic pollutants,
earthquakes, abrupt climate change, etc. Stochastic models with Brownian motion cannot describe
these phenomena. It is worth studying epidemic model with a discontinuous random process (Lévy
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noise, Markov noise) by using Markov semigroups theory. On the other hand, we considered the role
of information intervention in the control of hepatitis B. We found that information intervention can
actually mitigate the spread of hepatitis B and reduce the number of infected population. But we
note that these information intervention policies and vaccination often require more costs. How to
minimize the infected populations and the costs of these control strategies by considering the optimal
control problem? We will study this issue later.
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