Citation: Xingxing Jia, Yixuan Song, Daoshun Wang, Daxin Nie, Jinzhao Wu. A collaborative secret sharing scheme based on the Chinese Remainder Theorem[J]. Mathematical Biosciences and Engineering, 2019, 16(3): 1280-1299. doi: 10.3934/mbe.2019062
[1] | Y. Liu, Y. Wang, X. Wang, Z. Xia and J. Xu, Privacy-preserving raw data collection without a trusted authority for IoT, Comput. Netw., 1 (2018), 1–1. |
[2] | Y. Liu, W. Guo, C. Fan, L. Chang and C. Cheng, A practical privacy-preserving data aggregation (3PDA) Scheme for Smart Grid, IEEE T. Ind. Inform., 1 (2018), 1–1. |
[3] | A. Shamir, How to share a secret, Commun. ACM, 22 (1979), 612–613. |
[4] | G. R. Blakley, Safeguarding cryptographic keys, in Proceedings of the 1979 AFIPS National Computer Conference, AFIPS Press, (1979), 313–317. |
[5] | C. N. Yang, L. Z. Sun, X. Yan, and C. Kim, Design a new visual cryptography for human-verifiable authentication in accessing a database, J. Real-Time Image Process., 12 (2016), 483–494. |
[6] | L. Harn, Group authentication, IEEE Trans. Comput., 62 (2013), 1893–1898. |
[7] | L. Harn and C. Lin, Authenticated group key transfer protocol based on secret sharing, IEEE Trans. Comput., 59 (2010), 842–846. |
[8] | S. Wüller, D. Mayer, F. Förg, S. Schüppen, B. Assadsolimani, U. Meyer and S. Wetzel, Designing privacy-preserving interval operations based on homomorphic encryption and secret sharing techniques, J. Comput. Secur., 25 (2017), 1–23. |
[9] | D. Agrawal, A. E. Abbadi, F. Emekci, A. Metwally and S.Wang, Secure data management service on cloud computing infrastructures, Springer Berlin Heidelberg, (2011), 57–80. |
[10] | Y. Wang, Privacy-preserving data storage in cloud using array BP-XOR codes, IEEE T. Cloud Comput., 3 (2015), 425–435. |
[11] | X. Jia, D. Wang, D. Nie and C. Zhang, Collaborative visual cryptographic schemes, IEEE Trans. Circuits Syst. Video Technol., 28 (2018), 1056–1070. |
[12] | M. Nojoumian, D. R. Stinson and M. Grainger, Unconditionally secure social secret sharing scheme, IET Inf. Secur., 4 (2010), 202–211. |
[13] | S. Song and K. Hwang and R. Zhou and Y. K. Kwok, Trusted P2P transactions with fuzzy reputation aggregation, IEEE Internet Comput., 9 (2005), 24–34. |
[14] | J. S. Lin, Cloud data storage with group collaboration supports, in International Conference on Networked Digital Technologies, Springer Berlin Heidelberg, (2011), 423–431. |
[15] | F. M´armol and G. M. Pérez, TRIP, A trust and reputation infrastructure-based proposal for vehicular ad hoc networks, J. Netw. Comput. Appl., 35 (2012), 934–941. |
[16] | D. Wang, Z. Ye and X. Li, How to collaborate between threshold schemes, preprint, (2013), arXiv:1305.1146. |
[17] | M. Mignotte, How to share a secret, in Proceedings of the Workshop on Cryptography Burg Feuerstein, Springer Berlin Heidelberg, (1983), 371–375. |
[18] | C. Asmuth and J. Bloom, A modular approach to key safeguarding, IEEE Trans. Inf. Theory, 29 (1983), 208–210. |
[19] | C. C. Drăgan and F. L. Tiplea, On the asymptotic idealness of the Asmuth-Bloom threshold secret sharing scheme, Inf. Sci., 463-464 (2018), 75–85. |
[20] | B. Preneel and J. Vandewalle, On the security of the threshold scheme based on the Chinese Remainder Theorem, in International Workshop on Public Key Cryptography 2002, Springer- Verlag, (2002), 199–210. |
[21] | O. Goldreich, D. Ron and M. Sudan, Chinese remaindering with errors, IEEE Trans. Inf. Theory, 46 (2000), 1330–1338. |
[22] | R. Steinfeld, J. Pieprzyk and H. Wang, Lattice-based threshold-changeability for standard CRT secret-sharing schemes, Finite Fields their Appl., 12 (2006), 653–680. |
[23] | I. E. Shparlinski and R. Steinfeld, Noisy Chinese Remaindering in the Lee norm, J. Complex., 20 (2004), 423–437. |
[24] | Y. H. Liu and R. J. Chen, An asymptotically perfect secret sharing scheme based on the Chinese Remainder Theorem, Int. J. Comput. Math., 94 (2017), 1890–1915. |
[25] | L. Harn and F. Miao, Multilevel threshold secret sharing based on the Chinese Remainder Theorem, Inf. Process Lett., 114 (2014), 504–509. |
[26] | L. Harn, C. Hsu, M. Zhang, T. He and M. Zhang, Realizing secret sharing with general access structure, Inf. Sci., 367 (2016), 209–220. |
[27] | C. C. Drăgan and L. F. T¸ iplea, Distributive weighted threshold secret sharing schemes, Inf. Sci., 339 (2016), 85–97. |
[28] | K. M. Martin, J. Pieprzyk, S. N. Rei and H. Wang, Changing thresholds in the absence of secure channels, in Proceedings of the 4th Australasian Conference on Information Security and Privacy, Springer Berlin Heidelberg, (1999), 177–191. |
[29] | X. Jia, D.Wang, D. Nie, X. Luo and J. Z. Sun, A new threshold changeable secret sharing scheme based on the Chinese Remainder Theorem, Inf. Sci., 473 (2019), 13–30. |
[30] | C. Ding, D. Pei and A. Salomaa, Chinese Remainder Theorem: Applications in Computing, Coding, Cryptography, World Scientific Press, 1996. |
[31] | C. Li, Y. Liu, L. Y. Zhang and K.-W. Wong, On the asymptotic idealness of the Asmuth-Bloom threshold secret sharing scheme, Signal Process Image, 29 (2014), 914–920. |
[32] | P. Ribenboim, The Book of Prime Number Records, 2nd edition, Springer-Verlag, New York, 1994. |
[33] | J. Shao and Z. Cao, A new efficient (t ,n)verifiable multi-secret sharing (VMSS) based on YCH scheme, Appl. Math. Comput., 168 (2005), 135–140. |
[34] | C. W. Chan and C. C. Chang, A scheme for threshold multi-secret sharing, Appl. Math. Comput., 166 (2009), 1–14. |