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Abstract: Secret sharing (SS) can be used as an important group key management technique for dis-
tributed cloud storage and cloud computing. In a traditional threshold SS scheme, a secret is shared
among a number of participants and each participant receives one share. In many real-world applica-
tions, some participants are involved in multiple SS schemes with group collaboration supports thus
have more privileges than the others. To address this issue, we could assign multiple shares to such
participants. However, this is not a bandwidth efficient solution. Therefore, a more sophisticated mech-
anism is required. In this paper, we propose an efficient collaborative secret sharing (CSS) scheme spe-
cially tailored for multi-privilege participants in group collaboration. The CSS scheme between two or
among more SS schemes is constructed by rearranging multi-privilege participants in each participant
set and then formulated into several independent SS schemes with multi-privilege shares that precludes
information leakage. Our scheme is based on the Chinese Remainder Theorem with lower recovery
complexity and it allows each multi-privilege participant to keep only one share. It can be formally
proved that our scheme achieves asymptotically perfect security. The experimental results demonstrate
that it is efficient to achieve group collaboration, and it has computational advantages, compared with
the existing works in the literature.

Keywords: group collaboration; collaborative secret sharing; Chinese Remainder Theorem; secret
sharing

1. Introduction

Online collaboration among multiple entities becomes a very popular application nowadays due
to automatic data backup and cross-regional group collaboration requirements in cloud computing.
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The collaborative and sharing nature of data storage in the cloud demands greater group collabora-
tions [1, 2]. However, each participating entity would like to protect its privileges before outsourcing
its data to the cloud servers. One feasible solution is to use secret sharing (SS) to enable group key
management in the distributed fashion, so that the distrusting entities with conflicting interest can coop-
erate honestly and securely. In a (k, n)-SS scheme, the secret is shared among a number of participants.
Due to the flexibility and convenience of cloud computing, the participants often need to participant in
different SS sharing systems in different applications. If we just use the traditional SS scheme to design
the management system, a participant joining in multiple management systems, called multi-privilege
participant, will need to store multiple shares in each application, which is inconvenient. Consider the
following scenario concerning data sharing.

With the development of big data and artificial intelligence (AI), data with multiple owners are
often needed to be aggregated to accomplish an important task by using AI techniques. For example,
the financial datas from cities A, B and C are running in a cooperated and distributed manner to analyze
an economic development index as illustrated in Figure 1. The financial data, traffic data, population
data of city A is used to analyze the urban construction planning. The financial data from city A is
used in different group collaborative tasks. A convenient and secure data management system is the
first consideration for such confidential data against untrusted cloud. This phenomenon has become
more common in cloud data collaboration among different data owners. The data owner of city A must
carry two shares to manage the data in different collaborative tasks. If a data owner is involved in a
large number of data collaborative tasks, he or she needs to keep many shares, which can be a burden.

Figure 1. Data sharing scenario.

Therefore, it is desirable to have a SS scheme such that each multi-privilege participant needs to
keep only one share in its related tasks. Not only it will be more convenient for the participants, but
also the multiple key management systems can be made more practical. In this paper, we just propose
such a scheme based on the Chinese Remainder Theorem (CRT).

The SS schemes were first introduced by Shamir [3] and Blakley [4] independently to share a
secret among a group of n participants. It allows the secret to be reconstructed when more than the
threshold k of these participants are working together, but less participants cannot recover the secret.
Thanks to its high level of security protection and low computatonal requirements, SS schemes have
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been used in various applications, such as human-verifiable authentication [5], group collaboration
[6, 7], and secure multiparty computation [8]. Nowadays, with the popularity of cloud computing, SS
schemes have emerged as an important technology for secure data storage in the cloud, secure group
management [9–11], and reputation adjustment in social network [12, 13].

In a (k, n) SS scheme, the regular participant can obtain only one share. The multi-privilege partic-
ipant who has more privileges will receive multiple shares, which is inconvenient. In cloud computing
environments, group collaboration between two or more management systems is widely used in the era
of shared economy [14]. Consider the following scenario regarding group collaboration: a participant
joins in multiple reputation systems in the social network and she will have multiple reputation values
using secret sharing schemes [12, 13, 15]. A collaborative reputation management system will allow
this multi-privilege participant to share her reputation in different platforms. In general, the above
scenarios can be described as a cryptographic model: a multiple secret sharing scheme is designed
to share multiple secrets independently, while the participants and the secrets have the many-to-many
relationships. Inspired by the practical problems arisen in the above scenarios, it is desirable to design
a scheme to facilitate the group collaboration among different threshold secret sharing schemes so that
each multi-privilege participant only needs to keep one share.

How to collaborate between threshold secret sharing schemes was first proposed by [16] to solve
bank managers with multiple privileges problem. In their scheme, if u participants are involved in both
schemes, each of these u multi-privilege participant keeps only one share by constructing polynomi-
als with common solutions. Here we call the participants who are involved in multiple SS schemes
as multi-privilege participants, and their shares are called multi-privilege shares. Each secret can be
uniquely reconstructed by Lagrange interpolation, but it requires O(k log2 k) operations. The collab-
orative visual cryptographic scheme was formulated as an integer linear programming problem that
minimizes pixel expansion under the corresponding security and contrast constraints in [11]. Each
multi-privilege participant takes one share and can reconstruct the secret together with the other partic-
ipants when they belong to the designated qualified subsets family. The secret can be visually recovered
without any computation but with lower quality. The scheme has strict constraints for the participant
intersection [16]. The collaborative visual scheme will suffer from severe pixel expansion problem.
Hence, it will become impractical when the participant intersections are complex [11]. Since a group
collaboration in the cloud may involve flexible and complex computations, participant intersections
are also complex. Therefore, it is desirable to construct a collaborative secret sharing (CSS) scheme
to allow complex participant intersections and to recover the secret perfectly with lower computational
complexity.

Another important mathematical model to address the threshold SS scheme is the Chinese Remain-
der Theorem (CRT), which requires only O(k) operations in the secret reconstruction phase [17, 18].
The scheme in [18] is proved by [19–21, 24] having asymptotically perfect security and is practical
due to its high efficiency and simple construction. The CRT has been extensively used in various SS
schemes and has produced abundant research results. Shares in the (k, n) SS scheme based on the CRT
form a redundant representation of the secret, which provides a number-theoretic construction of an
“error-correcting code” in [21]. The threshold changeable secret sharing scheme in [22] is a lattice-
based “error-correction” algorithm that can be seen as an application of the algorithm in ‘Noisy Chinese
Remaindering in the Lee Norm’ [23]. It is accomplished based on CRT by adding noise to the shares.
Intensive analysis of the security was presented in [24], and the prime sequence generation algorithm
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for the Asmuth-Bloom scheme was proposed for the first time. A multi-level threshold scheme [25]
was constructed by using the CRT. Harn et al. devised the general secret sharing scheme [26] based
on the CRT with Boolean logic and integer linear/non-integer programming. Drǎgan and Ţiplea pro-
posed the distributive weighted threshold SS scheme [27], which has perfect zero-knowledge. In order
to decrease the recovery complexity, we consider to use the CRT to construct the collaborative secret
sharing scheme in this paper.

Inspired by the previous works in [16] and [18], we present a novel scheme to solve the collaboration
problem based on CRT, which can reconstruct the secret with the same security as in scheme [18].
The computational complexity is only O(k) in the secret reconstruction phase. Our method avoids high
complexity, and restrictive participant intersections of [16], and the low recovery quality and extremely
large pixel expansion of [11]. The compromise is that our scheme needs to publish n moduli as the
public parameters comparable with one parameter in [11, 16]. The advantage of its single share and
lower computation complexity make our approach ideal for high-through processing applications. It
will provide an efficient outsourced computation platform which will facilitate the group collaboration
among different secret-data owners. The proposed scheme can be used as a building block to handle
different types of group collaborations.

In summary, the contributions of this paper are summarized as follows. A collaborative secret
sharing scheme framework is proposed, in which the Chinese Remainder Theorem is used to lower
the computational complexity. It can fully achieve the group collaboration functionality and security
requirements. This contributes to a better performance than comparative state-of-the-art polynomial
methods. Complex participant intersections are designed so that each multi-privilege participant just
keeps one share even if multiple secrets are shared. Our approach to building CSS scheme may have
some independent interests, and it may find applications in related cryptographic protocols.

The remainder of this paper is organized as follows. Section 2 gives the definition of SS scheme us-
ing entropy terms, the preliminaries of the CRT, the SS scheme based on the CRT [18]. Section 3 gives
the definition of collaboration between two schemes and presents the algorithm design. Collaboration
among three or more schemes is different from the collaboration between two schemes in terms of
participant intersection and the presentation format, which is addressed in the same section. The cor-
rectness and security are analysed in Section 4, followed by the comparison of performance between
the proposed scheme and the schemes in [16] and [11]. One example is presented to demonstrate the
construction process. Finally, conclusions are drawn in Section 5.

2. Preliminaries

In this section, we review the key building blocks, including the definition of SS scheme, the Chi-
nese Remainder Theorem and Asmuth-Bloom’s scheme used in our scheme.

2.1. Definition of the SS scheme

SS scheme is an important key management technique by decomposing a secret into input shares.
The (k, n) secret sharing scheme is the common used SS schemes, where n is the number of participants
and k(≤ n) is called threshold, which is pre-determined according to the security policy or the adversary
model. The scheme has perfect security if participants not belonging to the access structure obtain no
information about the secret. The access structure refers to the qualified subset holding at least k shares
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which can recover the secret.
Let P = {P1, · · · , Pn} be a set of n participants, S ⊆ {0, 1}x be a finite set of secrets, called the secret-

domain, and R be a set of random strings. H(·) stands for the Shannon entropy and H(·|·) denotes the
conditional entropy. A secret sharing scheme over P is a mapping Π : S × R → S 1 × · · · × S n, where
S i is called the share-domain of Pi. Dealer shares a secret s ∈ S among the participants according
to Π by first sampling a random string r ∈ R, computing the shares (S 1, · · · , S n), and then privately
communicating each share S i to Pi. For any subset A ∈ P, S A denotes the set of shares held by all
participants in A. There are multiple forms of definitions for (k, n) SS scheme. From the information
theory point of view, its definition is widely used to demonstrate its performance. In present study, we
adopt the definition from [28].

Definition 2.1. (Secret Sharing Scheme [28]). A (k, n) threshold secret sharing scheme over a par-
ticipant set P is a secret sharing scheme Π : S × R → S 1 × · · · × S n satisfying the following two
conditions:

1. for all A ⊆ P and |A| ≥ k, H(S |S A) = 0;
2. for all A ⊆ P and |A| < k, 0 < H(S |S A) ≤ H(S ).

A scheme is called perfect if H(S |S A) = H(S ) holds for all A ⊆ P and |A| < k. A scheme is called
asymptotically perfect if for all ε > 0, there exists x0 ≥ 0 such that for all A ⊆ P with x ≥ x0, we have
that

4H = |H(S ) − H(S |S A)| ≤ ε

holds for all |A| < k (see the definition 4 in section 2 [20]).

2.2. Chinese Remainder Theorem

Theorem 1. (Chinese Remainder Theorem [30]). If p1, p2, . . . , pk are pairewise coprime positive inte-
gers, then the following equations of congruence

S ≡ S 1 mod p1,

S ≡ S 2 mod p2,

· · · ,

S ≡ S k mod pk,

(2.1)

have a unique solution

S ≡
k∑

i=1

P
pi

S iyi mod P, (2.2)

where P =
k∏

i=1
pi, P

pi
yi ≡ 1 mod pi, and ”≡” denotes the relation of congruence.

The CRT states that a positive integer S is uniquely specified by its remainder modulo k relatively

prime integers p1, p2, · · · , pk, provided S <
k∏

i=1
pi. The CRT has been used in RSA decryption to

accelerate the decryption process [30]. It is also well known in communication applications as error-
correction codes [30] and image encryption [31]. The CRT can also be used to design various SS
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schemes [17, 18, 22, 25–27, 29]. The SS scheme based on CRT uses a special sequence of integers to
guarantee the security and recovery of the secret. In our scheme, we use the CRT to design a CSS
scheme, which can be seen as an extended application of CRT. In the next subsections, we will review
the well-known SS scheme [18] based on the CRT.

2.3. Asmuth-Bloom’s SS scheme based on the CRT

The SS schemes based on the CRT were designed by Mignotte [17] and Asmuth, Bloom [18],
respectively. The SS scheme uses a special increasing sequence of pairwise coprime integers satisfying
formula (2.3) to achieve asymptotically perfect security [18] and is widely used as the fundamental
scheme to construct related SS schemes [22, 25–27]. The Asmuth-Bloom SS scheme is given in the
following.
Distribution phase

1. Select relatively prime integers p0 < p1 < · · · < pn, where p0 is a large secure prime, and the n+1
primes satisfy the following relationship

k∏
i=1

pi > p0

k−1∏
i=1

pn−i+1. (2.3)

2. The dealer selects a secret s ∈ Zp0 and computes S = s + α · p0, where α is a random positive

integer satisfying the condition
k−1∏
i=1

pn−i+1 < S <
k∏

i=1
pi (This formula is enhanced in security by

Harn and Fu in [25] from 0 < S <
k∏

i=1
pi in [18]).

3. The share for participant i is S i ≡ S mod pi, i ∈ {1, 2, . . . , n}.

Reconstruction phase

1. Let A be the participant set that reconstructs the sharing secret with k or more participants. The
participants send their shares to the combiner secretly.

2. The combiner computes
S ≡

∑
i∈A

S iP′A\{i}PA\{i} mod PA

and obtains secret s by s ≡ S mod p0. Set PA =
∏
i∈A

pi and PA\{i} =
∏
j∈A,
j,i

p j. P′A\{i} is the multiplica-

tive inverse of PA\{i} in Zpi , which means that we have P′A\{i}PA\{i} ≡ 1 mod pi.

3. Construction of the CSS scheme based on CRT

This section first presents the collaboration between two SS schemes in which each multi-privilege
participant holds only one share. Then, the collaboration among more SS schemes is constructed. We
assume each scheme is constructed by the trusted third party. We call it the dealer. Different dealers are
honest to transfer the necessary information and will not collude with any participants. In this paper,
we emphasize on the basic model construction.
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3.1. Definition of the collaborative secret sharing scheme between two SS schemes

Assume two secrets s1 and s2 are concealed in a (k1, n1) scheme among participants in the set
P1 =

{
P1

1, . . . , P
1
n1

}
and a (k2, n2) scheme among participant set P2 =

{
P2

1, . . . , P
2
n2

}
separately, where

k1, n1, k2, n2 ∈ Z
+. The multi-privilege participant set is denoted as U = P2

⋂
P1 =

{
P2,1

1 , . . . , P2,1
u

}
with |U| = u, the three values u, k1 and k2 are not equal. The collaborative scheme between two SS
schemes is denoted as a ((k1, n1); (k2, n2))-CSS scheme with U. In order to protect each shared secret
against colluding attacks, we generally require u < min{k1, k2}. It means that the recovery of each
secret requires at least one internal participant who doesn’t participant in any other SS scheme. A
formal definition of the ((k1, n1); (k2, n2))-CSS scheme with U is given below.
Definition 2 A (k1, n1)-SS scheme with participant set P1 =

{
P1

1, . . . , P
1
n1

}
to share a secret s1

and a (k2, n2)-SS scheme with participant set P2 =
{
P2

1, . . . , P
2
n2

}
to share a secret s2 constitute a

((k1, n1); (k2, n2))-CSS scheme with U, where U = P2
⋂
P1 =

{
P2,1

1 , . . . , P2,1
u

}
and |U| = u if the fol-

lowing two conditions are satisfied:

1. for all A ⊆ P1 and |A| ≥ k1, H(s1|S A) = 0; for all A ⊆ P2 and |A| ≥ k2, H(s2|S A) = 0;
2. for all A ⊆ P1

⋃
P2 and |A

⋂
P1| < k1, 0 < H(s1|S A) ≤ H(s1); for all A ⊆ P1

⋃
P2 and |A

⋂
P2| <

k2, 0 < H(s2|S A) ≤ H(s2).

The first condition ensures that each secret can be revealed correctly by its authorized subsets.
The second condition prevents unauthorized subsets from collusively revealing the secret. When the
equality holds in the second condition, the ((k1, n1); (k2, n2))-CSS scheme with U has perfect security.
It is called asymptotically perfect if for all ε > 0, there exists x0 ≥ 0 such that for all A ⊆ P1

⋃
P2 with

x ≥ x0, we have that
4H = |H(si) − H(si|S A)| ≤ ε

holds for all |A
⋂
Pi| < ki, i ∈ {1, 2}.

3.2. Construction method for a ((k1, n1); (k2, n2))-CSS scheme with U

Since a ((k1, n1); (k2, n2))-CSS scheme with U is a collaborative scheme, we assume that the (k1, n1)
scheme is constructed first and then the multi-privilege shares are passed on to the dealer of the
(k2, n2) scheme. Each (ki, ni) is an independent Asmuth-Bloom scheme, in addition to satisfying the
collaborative conditions. The proposed ((k1, n1); (k2, n2))-CSS scheme with U is presented in Scheme 1.

Scheme 1 The proposed ((k1, n1); (k2, n2))-CSS scheme with U
Distribution phase

1. Dealer 1 chooses a large prime number p0 and a sequence of pairwise coprime positive integers

p0 < p1 < p2 < · · · < pn1

such that
k1∏

i=1
pi > p0

k1−1∏
i=1

pn−i+1, where gcd(pi, p j) = 1, i , j for i, j ∈ {1, 2, . . . , n1}.

2. The dealer selects a secret s1 and a random integer α1, and computes the secret related value

S 1 = s1 + α1 p0 such that
k1−1∏
i=1

pn−i+1 < S 1 <
k1∏

i=1
pi.
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3. Shares for the participants in P1 are generated by

S i,1 ≡ S 1 mod pi

for i ∈ {1, 2, . . . , n1} and are sent to them secretly. Dealer 1 chooses the u multi-privilege shares
from the n1 shares, assuming s1,1, s2,1, . . ., su,1 are chosen, and passes them to Dealer 2.

4. Dealer 2 selects a secure large prime number q0 and a sequence of pairwise coprime positive
integers

q0 < q1 < q2 < · · · < qn2

such that
k2∏

i=1
qi > q0

k2−1∏
i=1

qn−i+1 and S i,1 < qi for i ∈ {1, 2, . . . , u}, where gcd(qi, q j) = 1, i , j for

i, j ∈ {1, 2, . . . , n2}. Such process will maintain the validity of the multi-privilege shares.
5. Dealer 2 chooses the secret s2 ∈ Zq0 . Here, we assume that the u multi-privilege shares are also

the first u shares of the (k2, n2) SS scheme. The dealer selects a suitable random integer α2 and

computes the secret related value S 2 = s2 + α2q0 such that
k2−1∏
i=1

qn−i+1 < S 2 <
k2∏

i=1
qi. By combining

the conditions of the multi-privilege shares, we can determine α2 by:
s2 ≡ S 2 mod q0,

S 1,2(= S 1,1) ≡ S 2 mod q1,

· · · ,

S u,2(= S u,1) ≡ S 2 mod qu.

(3.1)

The secret related value S 2 is derived by using (2.2) and then α2 can be derived, which is specified
in Remark 1.

6. The shares for the participants in P2 are generated as

S i,2 ≡ S 2 mod qi

for i = u + 1, 2, . . . , n2, and are delivered secretly to them.

Reconstruction phase

1. Given any k1 shares of P1, such as S i1,1, . . ., S ik1 ,1
, we can find the secret related value S 1 according

to the CRT by using (2.2) and compute the secret s1 ≡ S 1 mod p0.
2. Similarly, given any k2 shares of P2, for example S i1,2, . . ., S ik2 ,2

, the secret related value S 2 can
be computed according to the CRT by using (2.2), and the secret is obtained by s2 ≡ S 2 mod q0.

Remark 1. Step 5 of Scheme 1 is important for the CSS construction. It allows each multi-privilege
participant to take only one share to participant multiple SS schemes. Here we show how to determine

the secret related value S 2. A unique integer w ∈
(

u−1∏
i=0

qn−i+1,
u∏

i=0
qi

]
can be determined from (3.1)

according to the CRT by using (2.2). We rewrite it in the form w = s2 + yq0 ∈

(
u−1∏
i=0

qn−i+1,
u∏

i=0
qi

]
and calculate the unique integer y. Then we randomly choose x such that S 2 = w + xq0q1 . . . qu ∈
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(a) (b)

(c) (d)
Figure 2. The multi-privilege participants appear.

(
k2−1∏
i=1

qn−i+1,
k2∏

i=1
qi

]
, this leads to α2 = y + xq1 . . . qu since S 2 = s2 + α2q0. Because y is uniquely

determined and x has multiple random candidates by the above conditions, α2 has the same random
choices as x.

In reality, Scheme 1 cannot be used when u = k1 = k2. In reality, u = k1 = k2 is not desirable from
a security point of view since the u multi-privilege participants are not pure internal participants that
they may collude to recover the secret without the authorization of the pure internal participants. It is
safer if no more than u participants working together with at least one internal participant should be
required to reconstruct the secret, i.e., u < k1 and u < k2.

3.3. Collaboration among multiple SS schemes: a ((k1, n1); . . . ; (kl, nl))-CSS scheme with U

This subsection discusses cases where three or more threshold schemes collaborate with each other.
Each dealer is in charge of one secret and distributes shares to related participants. The participant
sets may overlap because the possibility of participants involving in multiple group collaboration is
high. Under such circumstance, there may be common participants in any two schemes. The common
participants means the multi-privilege participants. We now give an example for the collaboration
among three SS schemes.

Example 1. Consider three schemes, a (3, 5) scheme to share s1, a (4, 6) scheme to protect s2 and a
(5, 7) scheme for s3. Their participants are denoted as A = {A1, A2, A3, A4, A5}, B = {B1, B2, B3, B4,
B5, B6} and C={C1, C2, C3, C4, C5, C6, C7}, respectively. The common participants may appear in
different subsets of intersection of A and B and C. The basic intersections are shown in Figure 1 and
depicted as four cases.

Case 1: The common participants occur in A
⋂

B
⋂

C. A1 and A2 are the common participants
involved in all three schemes, i.e., A1 = B1 = C1, A2 = B2 = C2. It is secure from the point of view
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of si, i = 1, 2, 3, since none of the other schemes or dealers can reveal the secret of si, i = 1, 2, 3.
A diagram is given in Figure 2.(a).

Case 2: The common participants occur in A
⋂

B. When A1 and A2 are in A
⋂

B, it is secure in
terms of s1 and s2 (Figure 2.(b)).

Case 3: The common participants occur in B
⋂

C. When B1 and B2 are in B
⋂

C, it is secure in
terms of s2 and s3 (Figure 2.(c)).

Case 4: The common participants occur in C
⋂

A. When A1 and A2 are in C
⋂

A, it is secure in
terms of s1 and s3 (Figure 2.(d)).

In fact, the common participants may occur in any combination of the above four cases. In different
intersection cases, we need to consider different share intersections. This inspires us to propose a new
method to define the participant set that the intersections can be seen clearly. For collaboration among
l SS schemes, we define the participant set for each (ki, ni) scheme as Pi =

{
pi

1, . . . , pi
ni

}
, and its access

structure is Γi = {U ⊆ Pi, |U | ≥ ki} for i ∈ {1, 2, . . . , l}. The shares are generated in order without
repetition. We define the intersection in the following manner.

For the first scheme, (k1, n1)-SS scheme, the participants in P1 are defined as

P1 =
{
P1

1, . . . , P
1
n1

}
. (3.2)

Then, we define the second participant set P2. If it has common participants with the first participant
set, their intersection is defined as U2,1 = P1

⋂
P2 =

{
P2,1

1 , . . . , P2,1
u2,1

}
with |U2,1| = u2,1. Then, the second

participants set is expressed as

P2 =
{
P2,1

1 , . . . , P2,1
u2,1
, P2

u2,1+1, . . . , P
2
n2

}
. (3.3)

For the third participant set P3, if they have common participants with the first and the second par-
ticipant sets, we denote them as U3,1 = P3

⋂
P1 =

{
P3,1

1 , . . . , P3,1
u3,1

}
with |U3,1| = u3,1, and U3,2 =

(P3
⋂
P2) \ U3,1 =

{
P3,2

1 , . . . , P3,2
u3,2

}
with |U3,2| = u3,2, meeting the requirement that U3,1

⋂
U3,2 = ∅.

Then, the third participant set can be defined as

P3 =
{
P3,1

1 , . . . , P3,1
u3,1
, P3,2

u3,1+1, . . . , P
3,2
u3,1+u3,2

, P3
u3,1+u3,2+1, . . . , P

3
n3

}
. (3.4)

The i-th participant set Pi is assumed to have Ui,1 = Pi
⋂
P1 =

{
Pi,1

1 , . . . , P
i,1
ui,1

}
with |Ui,1| = ui,1,

Ui,2 = (Pi
⋂
P2) \Ui,1 =

{
Pi,2

1 , . . . , P
i,2
ui,2

}
with |Ui,2| = ui,2 and Ui, j = (Pi

⋂
P j) \

( j−1⋃
s=1

Ui,s

)
=

{
Pi, j

1 , . . . , P
i, j
ui, j

}
with |Ui, j| = ui, j for j ∈ {3, . . . , i − 1}, meeting the requirement that Ui, j

⋂
Ui,k = ∅ for j , k and

j, k ∈ {3, . . . , i − 1}. Therefore,

Pi =
{
Pi,1

1 , . . . , P
i,1
ui,1
, Pi,2

ui,1+1, . . . , P
i,2
ui,1+ui,2

, . . . , Pi,i−1
ui,1+ui,2+···+ui,i−2+1, . . . , P

i,i−1
ui,1+ui,2+···+ui,i−1

,

Pi
ui,1+ui,2+···+ui,i−1+1, . . . , P

i
n3

}
.

The remaining n − 3 participant sets are defined in the same manner as participant set Pi. Let

U =
l⋃

i=1

i−1⋃
j=1

Ui, j. To maintain the security of each secret, the number of multi-privilege participants for
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each (ki, ni) SS scheme in Pi should be less than ki. Therefore,∣∣∣∣∣( l⋃
j=1,
j,i

P j

)⋂
Pi

∣∣∣∣∣ < ki (3.5)

holds, so the leakage of secret information through the collusion of the multi-privilege participants can
be precluded.

With the above notations, we now give a formal definition of the ((k1, n1); . . . ; (kl, nl))-CSS scheme
with U.
Definition 3 A l tuples of the (ki, ni) SS scheme with participant set Pi sharing a secret si, i = 1, 2, . . . , l
with intersection U constitute a ((k1, n1); . . . ; (kl, nl))-CSS scheme with U depicted as above if the
following two conditions hold:

1. for all A ⊆ Pi and |A| ≥ ki, H(si|A) = 0 for i = 1, . . . , l;

2. for all A ⊆
l⋃

i=1
Pi and

∣∣∣∣A ⋂
(

l⋃
j=1
Pi)

∣∣∣∣ < ki, 0 < H(si|S A) ≤ H(si) for i = 1, . . . , l.

The first condition ensures that each secret can be revealed correctly by its authorized subsets. The
second condition prevents the unauthorized subsets from collusively revealing the secret. When the
“=” relation holds in the second condition, the ((k1, n1); . . . ; (kl, nl))-CSS scheme has a perfect security.

It is called asymptotically perfect if for all ε > 0, there exists x0 ≥ 0 such that for all A ⊆
l⋃

i=1
Pi with

x ≥ x0, we have that 4H = |H(si) − H(si|S A)| ≤ ε holds for all
∣∣∣∣A ⋂

(
l⋃

j=1
Pi)

∣∣∣∣ < ki where i = 1, . . . , l. We

now present the construction scheme of a ((k1, n1); . . . ; (kl, nl))-CSS with U.

Scheme 2 The proposed ((k1, n1); . . . ; (kl, nl))-CSS with U
Distribution phase

1. Dealer 1 chooses a large prime number p0,1 and a sequences of pairwise coprime positive integers,

p0,1 < p1,1 < p2,1 < · · · < pn1,1,

satisfying
k1∏

i=1
pi,1 > p0,1

k1−1∏
i=1

pn1−i+1,1, gcd(p j,1, pk,1) = 1, j , k for j, k ∈ {1, 2, . . . , n1}. Dealer

1 selects a secret s1 ∈ Zp0,1 and a random integer α1, and computes the secret related value

S 1 = s1 + α1 p0,1 such that S 1 ∈ (φ1
k1−1, φ

1
k1

]. Here, we set
ki∏

j=1
p j,i = φi

ki
and

ki−1∏
j=1

pni− j+1,i = φi
ki−1 for

1 ≤ i ≤ l. Shares for the participants in P1 are generated as

S j,1 ≡ s1 + α1 p0,1 mod p j,1,

where j ∈ {1, 2, . . . , n1}. Dealer 1 picks the ui,1 multi-privilege shares
{
S i,1

1 , . . . , S
i,1
ui,1

}
and passes

them to Dealer i.
2. Dealer 2 receives the u2,1 multi-privilege shares

{
S 2,1

1 , . . . , S 2,1
u2,1

}
from U2,1. Then, he/she chooses

a large prime number p0,2 and a sequence of pairwise coprime positive integers,

p0,2 < p1,2 < p2,2 < · · · < pn2,2,
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satisfying
k2∏

i=1
pi,2 > p0,2

k2−1∏
i=1

pn2−i+1 and S 2,1
j < p j,2 for 1 ≤ j ≤ u2,1, where gcd(p j,2, pk,2) = 1, j , k

for j, k ∈ {1, 2, . . . , n2}.
Dealer 2 selects a secret s2 ∈ Zp0,2 and a random integer α2 and computes the secret related value
S 2 = s2 + α2 p0,2 satisfying the condition S 2 ∈

(
φ2

k2−1, φ
2
k2

]
and the following congruent equations:

s2 ≡ S 2 mod p0,2,

S 1,2
(

= S 2,1
1

)
≡ S 2 mod p1,2,

· · · ,

S u2,1,2
(

= S 2,1
u2,1

)
≡ S 2 mod pu2,1,2.

(3.6)

Here, we assume that the multi-privilege participants in U2,1 are the first u2,1 participants in P2.
The integer α2 can be determined according to Remark 1. The remaining n2 − u2,1 shares S j,2 can
be determined by using

S i,2 = S 2 mod pi,2.

Dealer 2 distributes shares S 1,2, S 2,2, . . ., S n2,2 to participants in P2 privately. Dealer 2 also sends
multi-privilege shares

{
S i,2

1 , S i,2
2 , . . ., S i,2

ui,2

}
to Dealer i for i ∈ {3, . . . , l}.

3. Dealer i receives shares
{
S i, j

1 , S i, j
2 , . . ., S i, j

ui, j

}
from dealer j, j ∈ {1, . . . , i− 1}, i ∈ {3, 4, . . . , l}. Then,

he/she chooses a large prime number p0,i and a sequence of pairwise coprime positive integers,

p0,i < p1,i < p2,i < · · · < pni,i,

satisfying
ki∏

j=1
p j,i > p0,i

ki−1∏
j=1

pni− j+1 and with S i, j
k < pk,i for 1 ≤ k ≤ ui, j, where gcd(p j,i, pk,i) = 1,

j , k for j, k ∈ {1, 2, . . . , ni}. Dealer i selects a secret si ∈ Zp0,i and a random integer αi, and
computes the secret related value S i = si + αi p0,i satisfying S i ∈

(
φi

ki−1, φ
i
ki

]
and the following

congruent equations:

si = S i mod p0,i,

S i,1
(

= S i,1
1
)
≡ S i mod p1,i,

· · · ,

S i,ui,1

(
= S i,1

ui,1

)
≡ S i mod pui,1,i,

→ Ui,1,

S i,ui,1+1
(

= S i,2
1
)
≡ S i mod pui,1+1,i,

· · · ,

S i,ui,1+ui,2

(
= S i,2

ui,2

)
≡ S i mod pui,1+ui,2,i,

→ Ui,2,

S ui,1+ui,2+···+ui, j−1+1,i
(

= S j,i
1
)
≡ S i

mod pui,1+ui,2+···+ui, j−1+1,i,

· · · ,

S ui,1+ui,2+···+ui, j,i
(

= S i, j
ui, j

)
≡ S i

mod pui,1+ui,2+···+ui, j,i,


→ Ui, j, 3 ≤ j ≤ i − 1.

(3.7)

Here, we assume that the common participants in Ui, j appear in Pi in increasing order of i, j. The
integer αi can be determined according to Remark 2 below. Then, Dealer i computes the shares
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for the remaining participants in set Pi by

S j,i ≡ S i mod p j,i,

for ui + 1 ≤ j ≤ ni. Let ui = ui,1 + ui,2 + · · · + ui,i−1. Dealer i sends shares S j,i to participants in Pi

and the multi-privilege shares
{
S j,i

1 , S j,i
2 , . . ., S j,i

u j,i

}
to Dealer j for j = i + 1, . . . , l.

Reconstruction phase
Given any ki shares of Pi, such as S j1,i, . . ., S jki ,i

, we can find the secret related value S i according
to the CRT by using (2.2) and compute the secret si ≡ S i mod p0,i, i ∈ {1, 2, . . . , l}.

Remark 2. Step 3 in Scheme 2 is the key point to construct the CSS scheme. It allows each multi-
privilege participant to take one share to manage multiple secrets. The secret can be randomly chosen
by each dealer. Here we show how to determine the secret related value S i. The unique integer
wi can be evaluated from (3.7) according to the CRT by using (2.2). Then, we can determine αi =

yi + xi p1,i . . . pu,i according to

S i = wi + xi p0,i p1,i . . . pui,i ∈

( ki−1∏
j=1

pn− j+1,i,

ki∏
j=1

p j,i

]
,

wi = si + yi p0,i ∈

( ui−1∏
j=0

pn− j+1,i,

ui∏
j=0

p j,i

]
.

Because yi and wi are uniquely determined from (3.7), and x has multiple random candidates under
the above condition, the variable αi has the same random choices as the variable xi.

4. Performance analysis

In this section, we analyse the performance of the proposed scheme in terms of security and correct-
ness. The performance comparison with previous collaborative schemes is shown. The experiments
demonstrate the construction process of CSS proposed scheme and verify the two characteristics.

4.1. Security and correctness

It is clear that the security of the proposed scheme is the same as that of the scheme in [18] because
each single scheme in the CSS scheme satisfies the security condition (2.3). The shares of multi-
privilege participants who are involved in multiple secrets have more tendency to be attacked. The
regular participants have the same role and security as that they have in a single SS scheme. Therefore,
we consider three possible attacks with respect to multi-privilege participants and illustrate them in the
following.

• The multi-privilege participants cannot recover any secret independently because of (3.5).
• The multi-privilege participants’ unity with the participants in Γi cannot recover the corresponding

secret si if their number is less than its threshold ki.
• The multi-privilege participants’ unity with the participants in Pi cannot recover the secret s j( j ,

i) if their number is less than the related threshold. Furthermore, even if their number is not less
than the related threshold, no knowledge about s j will be leaked, because |(U

⋃
Pi)

⋂
P j)| ≤ k j−1.
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It is easy to verify that the three styles of attack will not succeed in obtaining any useful knowledge
because they all satisfy condition (3.5). The multi-privilege participants are unlikely to obtain secret
information. The proposed CSS scheme is secure against k − 1 colluding participants.

The key point of the construction of CSS scheme is that each secret is still chosen randomly by
its dealer and is not affected by the generated multi-privilege shares. Conditions (3.1) and (3.7) can
guarantee that the secret s can be chosen randomly and the secret related value S can be calculated
to satisfy the security requirement of CSS. The reasons are illustrated in the Remark 1 and Remark 2.
When the threshold of any single scheme is reached, the secret can be evaluated by solving congruent
equations using the CRT. The correctness of the proposed scheme is clear. The correctness and security
proofs are presented in Theorem 2.

Theorem 2. The proposed CSS scheme based on the CRT is a asymptotically perfect
((k1, n1); . . . ; (kl, nl))-CSS scheme with U.

Proof. We need to prove its correctness and asymptotically perfect security.
Before we prove the asymptotically perfect security, the proposed scheme needs to be validated.

We show that for all A ⊆ Pi and |A| ≥ ki, where i ∈ {1, 2, . . . , l}, the secret can be recovered correctly
from the shares in A. Assuming that A = {i1, i2, · · · , i|A|}, we collect their shares S i1,i, S i2,i, · · · , S i|A|,i and
have the following equations of congruence:

S i ≡ S i1,i mod pi1,i,

S i ≡ S i2,i mod pi2,i,

· · · ,

S i ≡ S i|A|,i mod pi|A|,i.

(4.1)

The moduli of the above congruent equations satisfy
∏

j∈A,
|A|≥ti

p j,i ≥ φi
ki

. Because we know the secret

related value S i ∈ (φi
ki−1, φ

i
ki

], it can be uniquely determined from the above equations of congruence
by using the CRT. Then, we compute si = S i mod p0 to obtain the secret si.

We prove its the asymptotically perfect security in the following. We show the security for the
proposed scheme. The first two types of attack satisfy the condition of (3.5) and belong to the unau-
thorized subset of S i. No useful information will be leaked. The third type attack fulfills the condition
|(U

⋃
Pi)

⋂
P j| < k j and belongs to the unauthorized subset of S j. Now we prove that the entropy loss

of the secret derived from the the unauthorized share subset of S j is negligible for j ∈ {1, 2, . . . , l}.
Firstly, we derive the candidates of the secret related value by the shares of the unauthorized subset

of S j. Let A ⊆ P j be the unauthorized subset of S j. Its shares S ir , j, ir ∈ A with |A| < t j, for the threshold
t j are collected and constitute the following congruent equations:

S j ≡ S i1, j mod pi1, j,

S j ≡ S i2, j mod pi2, j,

· · · ,

S j ≡ S i|A|, j mod pi|A|, j.

(4.2)

There is a unique solution X ∈
(
0,

∏
i∈A

pi, j
)

for (4.2) according to Theorem 1. The candidates of the

secret related value are S j = X + y ·
∏
i∈A

pi, j according to the CRT, where y ∈ {1, . . . ,C(A)} with
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C(A) ,
⌊ ∏

1≤i≤t j

pi, j/
∏
i∈A

pi, j

⌋
. Since S j ∈

(
φ

j
k j−1, φ

j
k j

]
and p0, jφ

j
k j−1 < φ

j
k j

, we can derive that

C(A) > p0, j − 1, (4.3)

from
∏
i∈A

pi, j ≤ φ
j
k j−1.

Secondly, we compute the conditional entropy of the secret by the known shares S A from the unau-
thorized subset of S j. The secret candidates can be derived by s = S j(mod p0, j). The number of secret
candidates is not reduced according to (4.3). Let C(A) = p0, jN + r with 0 ≤ r < p0, j. The C(A)
candidates of secret related value S j are mapped to p0, j secret candidates. The secret candidates which
will appear N + 1 times and N times are denoted by s1 =

{
s j

1, s
j
2, . . . , s

j
r
}

and s0 =
{
sr+1, sr+2, . . . , sp0, j

}
,

respectively. The two sets satisfy both s0 ⋂
s1 = ∅ and s0 ⋂

s1 = Zp0, j . Given shares S A, we compute
the conditional entropy of the secret,

H(s|S A) = −

r∑
i=1

pi log pi −

p0, j∑
i=r+1

pi log pi = −r
N + 1
C(A)

log
N + 1
C(A)

− (p0, j − r)
N

C(A)
log

N
C(A)

.

H(s|S A) can be lower bounded as

H(s|S A) > r
N + 1
C(A)

log
C(A)
N + 1

+ (p0, j − r)
N

C(A)
log

C(A)
N + 1

= log
N + 1
C(A)

,

and upper bounded as

H(s|S A) < −r
N + 1
C(A)

log
N

C(A)
− (p0, j − r)

N
C(A)

log
N

C(A)
= log

C(A)
N

.

We obtain that log C(A)
N+1 < H(s|S A) < log C(A)

N .
Thirdly, we compute the loss of entropy of the secret 4H. The entropy of the secret satisfies H(s) =

log p0, j since s ∈R Zp0, j .

4 H = |H(s) − H(s|S A)| =
∣∣∣∣ log(1 ±

r
C(A)

)
∣∣∣∣ < log

p0, j

C(A)
. (4.4)

By hypothesis, the prime pi, js are consecutive for 1 ≤ i ≤ n j. It follows that pi+1, j < pi + p
1
2 + 1

21
i for

pi sufficiently large (See [32], p. 193). Because the primes pi, j’s are consecutive, it holds that, for all
sufficiently large p0, j

C(A) + 1 ≥ pt
0, j

/(
pt−1

0, j +
∑

i

ai p
bi
0

)
,

where ai ∈ R
+ and 0 < bi < t − 1, for all i. For all sufficiently large prime p0, j, it holds

p0, j

C(A)
≤ p0, j

(
pt−1

0, j +
∑

i

ai p
bi
0

)/(
pt

0, j − pt−1
0, j −

∑
i

ai p
bi
0

)
.

Applying the logarithm operator and using (4.4), we get

4H = |H(s) − H(s|S A)| ≤ log p0, j

(
pt−1

0, j +
∑

i

ai p
bi
0

)/(
pt

0, j − pt−1
0, j −

∑
i

ai p
bi
0

)
.

The upper bound converges to 0 when p0, j converges to infinity. Thus, the asymptotically perfect
security is proved. �
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Table 1. The performance comparison with other CSS schemes.

Scheme Share size Security Computation complexity Recovery quality

CSS( [16]) H(S ) perfect O(k log2 k) exact
CVS( [11]) mH(S ) perfect 0(visual) lower
ours H(S ) perfect O(k) exact
Remark. m(> 1) is the pixel expansion which is determined by the detailed scheme.

4.2. Comparison with related schemes

The efficiency of the proposed scheme is compared with that of the previous CSS scheme in terms of
share size, broadcast message size, security, recovery complexity and recovery quality in Table 1. From
Table 1, we can see that scheme [16] requires high recovery complexity with the exact reconstructed
secret. The scheme in [11] has zero computational complexity in the recovery phase, but it decreases
the visual effect of the secret and expands the share size. The proposed CSS scheme can reconstruct
the secret exactly with lower recovery complexity. Furthermore, it can process complex participant
intersections. It provides broad applications for group collaborations.

The proposed CSS scheme is different from the multi-secret sharing scheme [33, 34]. But it can be
used to construct such schemes when u = 0 or ui, j = 0. Under such application, it has the same structure
with the multi-secret sharing scheme which allows a single secret to be shared per threshold value
[33,34]. But such multi-secret sharing schemes cannot be used to construct the proposed CSS scheme.
The CSS scheme has special collaborative properties that general multi-secret sharing schemes don’t
have.

4.3. Experimental results

To demonstrate the construction strategy of the collaborative schemes, two numerical examples are
used to illustrate our proposed scheme. A ((3, 5); (4, 6))-CSS with its U is shown in Example 2 by
combining step 1 and step 2. A ((3, 5); (4, 6); (5, 7))-CSS with its U is obtained by combining step
1, step 2 and step 3. The experimental results also demonstrate the correctness and security of the
proposed CSS scheme.

Example 2. Suppose there are three secrets (s1, s2 and s3) that can be protected by three dealers
with three traditional threshold schemes as a (3, 5) scheme, a (4, 6) scheme and a (5, 7) scheme, re-
spectively. The participant intersections are shown in Figure 3. Five participants with the first se-
cret form the group P1 = {A1, A2, A3, A4, A5}, and six participants with the second secret form the
group P2 = {B1(A1), B2(A2), B3, B4, B5, B6}, and seven participants with the third secret form the group
P3 = {C1(A2),C2(B3),C3,C4,C5,C6,C7}. The share generation process is conducted in three steps as
follows. The main parameters are shown in Table 2. The multi-privilege shares are labelled with the
asterisks.

Step 1: Share construction for a (3, 5) scheme.

The secret s1 = 112 and p0,1 = 113, and the pairwise coprime numbers and shares are shown
in Table 2. Because Z

(
Φ1

k1−1,Φ
1
k1

]
= Z(51983, 9363547], we have α1 ∈ [461, 82863] such that

S 1 = s1 + α1 p0,1 ∈ Z
(
Φ1

k1−1,Φ
1
k1

]
. We take α1 = 1000, S 1 = 113112. Shares for the participants
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Figure 3. The participant intersections occur in a ((3, 5); (4, 6); (5, 7))-CSS scheme.

Table 2. The moduli and shares for a ((3, 5); (4, 6); (5, 7))-CSS scheme with U.

Scheme i p0,i si (pi,1, S i,1) (pi,2, S i,2) (pi,3, S i,2) (pi,4, S i,4) (pi,5, S i,5) (pi,6, S i,6) (pi,7, S i,7)

(3,5) 1 113 112 (119,80∗) (211,16∗∗) (223,51) (227, 66) (229,115) −− −−

(4,6) 2 151 150 (263,80∗) (269,16∗∗) (271,260∗∗∗) (277,249) (281,46) (283,72) −−

(5,7) 3 191 178 (397,16∗∗) (401,260∗∗∗) (409,155) (419,215) (421,120) (431,363) (433,313)

Remark. 80∗ denotes the multi-privilege share for for A1(B1); 16∗∗ denotes the multi-privilege for A2(B2, C1); 260∗∗∗

denotes the multi-privilege for B3(C2).

in P1 can be computed by S j,1 ≡ 113112 mod p j,1. The multi-privilege participant sets are U2,1 =

{p1,1, p2,1}, U3,1 = {p2,1}. Share 80 for participant A1(B1) and share 16 for participant A2(B2,C1)
are picked and handed over to Dealer 2. Share 16 for participant A2(C1) is handed over to Dealer
3.

Step 2: Share construction for the (4, 6) scheme.

Dealer 2 chooses a secret s2 = 150, p0,2 = 151, and a sequences of pairwise coprime posi-
tive integers shown in Table 2. Dealer 2 already has two shares: 80 and 16 and the secret 150.
By using (3.1) and Remark 2, the unique solution w2 = 9317907 ∈ (39713, 10682797] is ob-
tained. We can take a random variable x2 such that S 2 = w + x2 p0,2 p1,2 p2,2 ∈ Z

(
Φ2

k2−1,Φ
2
k2

]
=

Z(22027871, 5310765049]. Assuming x2 = 300, then S 2 = 9317907 + 300 · 10682797 =

3214157007 ∈ Z
(
Φ2

k2−1,Φ
2
k2

]
. Thus, α2 = 21285807. The remaining shares can be generated

as s j,2 = S 2 mod p j,2 for 3 ≤ j ≤ 6. The generated shares are shown in Table 2.

Step 3: Share construction for the (5, 7) scheme.

Dealer 3 already receives shares S 3,1
1 = 16 for C1 and S 3,2

1 = 260 for C2. He or she
chooses randomly s3 = 178, p0,3 = 191 and the sequences of pairwise coprime positive inte-
gers to constructs a (5, 7) threshold scheme shown in Table 2. The shares (191, 178), (397,
16), and (401, 260) are used to generate the secret related value S 3. By using formula (3.7)
and Remark 2, the unique solution w3 = 7298861 ∈ (75827, 30406627] is obtained. Since

S 3 = w3 + x3

2∏
j=0

p j,3 ∈ Z
(
Φ3

k3−1,Φ
3
k3

]
= Z(32920110577, 11485616365627], it is derived that

x3 ∈ Z(1082, 377733]. We choose x3 = 99999 and obtain S 3 = 7298861 + 99999 · 30406627 =

3040639592234 ∈ Z(Φ3
k3−1,Φ

3
k3

]. The remaining shares can be generated using S j,3 = S 3 mod p j,3

for 3 ≤ j ≤ 7.
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The ((3,5); (4,6))-CSS scheme with its U can be verified correct. When any three participants of
the first (3,5) scheme present their shares, for example, (211,16), (223,51), and (227,66), then the first
secret is obtained as

S 1 ≡ 16 × 50621 × 111 + 51 × 47897 × 144 + 66 × 47053 × 188 mod 211223227 = 113112,
s1 ≡ 113112 mod 113 = 112.

The correctness and security for the ((3,5);(4,6);(5,7))-CSS with its U can be verified in the same
manner. It is clear that the collaborative scheme can reveal each secret correctly when the participant
sets are in the corresponding qualified subsets family. The participant set which includes all multi-
privilege participants belongs to the unqualified subsets family of any secret and cannot obtain any
information about that secret. The multi-privilege shares uniting the participants in Pi cannot obtain
any secret information about s j when i , j. The conclusions can be verified by using the data in
Example 2. The CSS scheme has the same asymptotically perfect security as that of the Asmuth-
Bloom scheme.

5. Conclusion

In this paper, we proposed a collaborative SS scheme which provides a secure and efficient strategy
to ease the share management in group collaborative environment. Each participant just needs to
keep only one share to participate in multiple key management systems. It can solve the contradiction
between privacy protection and collaborative sharing of confidential data. It can be used for secure data
management across systems or joint computing platforms. Its efficiency and convenience in operation
are attractive in distributed networks. The comparative study of the proposed scheme with the state of
the art approaches validates its efficiency.

The collaborative scheme raises a number of related open problems, such as security concerns
involving dishonest multi-privilege participants, dishonest dealers in different schemes, and the situa-
tion where other dealers become participants of a scheme. Various combinations of risks exist in this
“open” environment. For example, some dishonest multi-privilege participants could work with other
illegal participants or dealers to steal secrets. Tracing traitors could become more difficult than in the
traditional single scheme situation.
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