Citation: Yan-Xia Dang, Zhi-Peng Qiu, Xue-Zhi Li, Maia Martcheva. Global dynamics of a vector-host epidemic model with age of infection[J]. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1159-1186. doi: 10.3934/mbe.2017060
[1] | [ http://www.who.int/mediacentre/factsheets/fs387/en/. |
[2] | [ http://www.shanghaidaily.com/national/Guangdong-sees-1074-new-dengue-cases/shdaily.shtml. |
[3] | [ R. M. Anderson and R. M. May, Infectious Disease of Humans: Dynamics and Control, Oxford University Press, Oxford, 1991. |
[4] | [ C. Bowman,A. B. Gumel,J. Wu,P. V. Driessche,H. Zhu, A mathematical model for assessing control strategies against West Nile virus, Bull. Math. Biol., 67 (2005): 1107-1133. |
[5] | [ F. Brauer, P. V. Driessche and J. Wu, eds., Mathematical Epidemiology, Lecture Notes in Math, Springer, Berlin, 2008. |
[6] | [ F. Brauer,Z. S. Shuai,P. V. Driessche, Dynamics of an age-of-infection cholera model, Math. Biosci. Eng., 10 (2013): 1335-1349. |
[7] | [ S. Busenberg,K. Cooke,M. Iannelli, Endemic threshold and stability in a class of age-structured epidemics, SIAM J. Appl. Math., 48 (1988): 1379-1395. |
[8] | [ S. N. Busenberg,M. Iannelli,H. R. Thieme, Global behavior of an age-structured epdiemic model, SIAM J. Math. Anal., 22 (1991): 1065-1080. |
[9] | [ S. Busenberg,M. Iannelli,H. Thieme, Dynamics of an age structured epidemic model, in: S.T. Liao, Y.Q. Ye, T.R. Ding (Eds.), Dynamical Systems, Nankai Series in Pure, Applied Mathematics and Theoretical Physics, 4 (1993): 1-19. |
[10] | [ C. Castillo-Chavez,Z. Feng, Global stability of an age-structure model for TB and its applications to optimal vaccination strategies, Math. Biosci., 151 (1998): 135-154. |
[11] | [ Y. Cha,M. Iannelli,F. A. Milner, Existence and uniqueness of endemic states for the age-structured SIR epidemic model, Math. Biosci., 150 (1998): 177-190. |
[12] | [ Z. L. Feng,J. X. Velasco-Hernandez, Competitive exclusion in a vector-host model for the dengue fever, J. Math. Biol., 35 (1997): 523-544. |
[13] | [ Z. Feng,W. Huang,C. Castillo-Chavez, Global behavior of a multi-group SIS epidemic model with age structure, J. Diff. Equs., 218 (2005): 292-324. |
[14] | [ H. Guo,M. Y. Li,Z. Shuai, Global stability of the endemic equilibrium of multigroup sir epidemic models, Can. Appl. Math. Q., 14 (2006): 259-284. |
[15] | [ H. Guo,M. Y. Li,Z. Shuai, A graph-theoretic approach to the method of global lyapunov functions, Proc. Amer. Math. Soc., 136 (2008): 2793-2802. |
[16] | [ H. Inaba,H. Sekine, A mathematical model for chagas disease with infection-age-dependent infectivity, Math, Biosci., 190 (2004): 39-69. |
[17] | [ H. Inaba, Mathematical analysis of an age-structured SIR epidemic model with vertical transmission, Dis. Con. Dyn. Sys. B, 6 (2006): 69-96. |
[18] | [ M. Y. Li,Z. Shuai, Global-stability problem for coupled systems of differential equations on networks, J. Diff. Equs., 248 (2010): 1-20. |
[19] | [ A. L. Lloyd, Destabilization of epidemic models with the inclusion of realistic distributions of infectious periods, Proc. Roy. Soc. Lond. B., 268 (2001): 985-993. |
[20] | [ A. L. Lloyd, Realistic distributions of infectious periods in epidemic models: Changing patterns of persistence and dynamics, Theor. Popul. Biol., 60 (2001): 59-71. |
[21] | [ P. Magal,C. C. McCluskey,G. Webb, Lyapunov functional and global asymptotic stability for an infection-age model, Appl. Anal., 89 (2010): 1109-1140. |
[22] | [ P. Magal,C. McCluskey, Two group infection age model: An application to nosocomial infection, SIAM J. Appl. Math., 73 (2013): 1058-1095. |
[23] | [ M. Martcheva,F. Hoppensteadt, India's approach to eliminating plasmodium falciparum malaria: A Modeling perspective, J. Biol. Systems, 18 (2010): 867-891. |
[24] | [ M. Martcheva,X. Z. Li, Competitive exclusion in an infection-age structured model with environmental transmission, Math. Anal. Appl., 408 (2013): 225-246. |
[25] | [ M. Martcheva,H. R. Thieme, Progression age enhanced backward bifurcation in an epidemic model with super-infection, J. Math. Biol., 46 (2003): 385-424. |
[26] | [ G. C. Pachecoa,L. Estevab,J. A. Montano-Hirosec,C. Vargasd, Modelling the dynamics of West Nile Virus, Bull. Math. Biol., 67 (2005): 1157-1172. |
[27] | [ Z. P. Qiu,Q. K. Kong,X. Z. Li,M. M. Martcheva, The vector-host epidemic model with multiple strains in a patchy environment, J. Math. Anal. Appl., 405 (2013): 12-36. |
[28] | [ Z. P. Qiu,Z. L. Feng, Transmission dynamics of an influenza model with age of infection and antiviral treatment, J. Dyn. Diff. Equat., 22 (2010): 823-851. |
[29] | [ H. R. Thieme,C. Castillo-Chavez, How may infection-age-dependent infectivity affect the dynamics if HIV/AIDs?, SIAM J. Appl. Math., 53 (1993): 1447-1479. |
[30] | [ J. Tumwiine,J. Y. Mugisha,L. S. Luboobi, A mathematical model for the dynamics of malaria in a human host and mosquito vector with temporary immunity, Appl. Math. Comput., 189 (2007): 1953-1965. |
[31] | [ J. X. Yang,Z. P. Qiu,X. Z. Li, Global stability of an age-structured cholera model, Math. Biol. Enger., 11 (2014): 641-665. |
[32] | [ P. Zhang,Z. Feng,F. Milner, A schistosomiasis model with an age-structure in human hosts and its application to treatment strategies, Math. Biosci., 205 (2007): 83-107. |