Citation: Qianqian Cui, Zhipeng Qiu, Ling Ding. An SIR epidemic model with vaccination in a patchy environment[J]. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1141-1157. doi: 10.3934/mbe.2017059
[1] | [ M. E. Alexander,C. S. Bowman,S. M. Moghadas,R. Summers,A. B. Gumel,B. M. Sahai, A vaccination model for transmission dynamics of influenza, SIAM J. Appl. Dyn. Syst., 3 (2004): 503-524. |
[2] | [ J. Arino,C. C. Mccluskey,P. van den Driessche, Global results for an epidemic model with vaccination that exhibits backward bifurcation, SIAM J. Appl. Math., 64 (2003): 260-276. |
[3] | [ J. Arino,R. Jordan,P. van den Driessche, Quarantine in a multi-species epidemics model with spatial dynamics, Math. Biosci., 206 (2007): 46-60. |
[4] | [ P. Auger,E. Kouokam,G. Sallet,M. Tchuente,B. Tsanou, The Ross-Macdonald model in a patchy environment, Math. Biosci., 216 (2008): 123-131. |
[5] | [ A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Philadelphia, 1994. |
[6] | [ World Health Organization, Ebola response roadmap -Situation report update 3 December 2014, website: http://apps.who.int/iris/bitstream/10665/144806/1/roadmapsitrep_3Dec2014_eng.pdf |
[7] | [ F. Brauer,P. van den Driessche,L. Wang, Oscillations in a patchy environment disease model, Math. Biosci., 215 (2008): 1-10. |
[8] | [ C. Castillo-Chavez and H. Thieme, Asymptotically autonomous epidemic models, in O. Arino, D. Axelrod, M. Kimmel, M. Langlais (Eds.), Mathematical Population Dynamics: Analysis of Heterogeneity, Springer, Berlin, 1995, 33–35. |
[9] | [ O. Diekmann,J. A. P. Heesterbeek,M. G. Roberts, The construction of next-generation matrices for compartmental epidemic models, J. R. Soc. Interface, 7 (2010): 873-885. |
[10] | [ P. van den Driessche,J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002): 29-48. |
[11] | [ M. C. Eisenberg,Z. Shuai,J. H. Tien,P. van den Driessche, A cholera model in a patchy environment with water and human movement, Math. Biosci., 246 (2013): 105-112. |
[12] | [ How Many Ebola Patients Have Been Treated Outside of Africa? website: http://ritholtz.com/2014/10/how-many-ebola-patients-have-been-treated-outside-africa/. |
[13] | [ D. Gao,S. Ruan, A multipathc malaria model with Logistic growth populations, SIAM J. Appl. Math., 72 (2012): 819-841. |
[14] | [ D. Gao and S. Ruan, Malaria Models with Spatial Effects, Analyzing and Modeling Spatial and Temporal Dynamics of Infectious Diseases, Wiley, 2015. |
[15] | [ D. Gao,S. Ruan, An SIS patch model with variable transmission coefficients, Math. Biosci., 232 (2011): 110-115. |
[16] | [ H. Guo,M. Li,Z. Shuai, Global stability of the endemic equilibrium of multigroup SIR epidemic models, Can. Appl. Math. Q., 14 (2006): 259-284. |
[17] | [ Vaccination, website: https://en.wikipedia.org/wiki/Vaccination. |
[18] | [ Immunisation Advisory Centre, A Brief History of Vaccination, website: http://www.immune.org.nz/brief-history-vaccination. |
[19] | [ K. E. Jones,N. G. Patel,M. A. Levy,A. Storeygard,D. Balk,J. L. Gittleman,P. Daszak, Global trends in emerging infectious diseases, Nature, 451 (2008): 990-993. |
[20] | [ J. P. LaSalle, The Stability of Dynamical systems, Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, 1976. |
[21] | [ S. Ruan,W. Wang,S. A. Levin, The effect of global travel on the spread of SARS, Math. Biosci. Eng., 3 (2006): 205-218. |
[22] | [ H. L. Smith and P. Waltman, The Theory of the Chemostat, Cambridge University, 1995. |
[23] | [ C. Sun,W. Yang,J. Arino,K. Khan, Effect of media-induced social distancing on disease transmission in a two patch setting, Math. Biosci., 230 (2011): 87-95. |
[24] | [ W. Wang,X. Zhao, An epidemic model in a patchy environment, Math. Biosci., 190 (2004): 97-112. |
[25] | [ W. Wang,X. Zhao, An epidemic model with population dispersal and infection period, SIAM J. Appl. Math., 66 (2006): 1454-1472. |