Citation: Li-Jun Du, Wan-Tong Li, Jia-Bing Wang. Invasion entire solutions in a time periodic Lotka-Volterra competition system with diffusion[J]. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1187-1213. doi: 10.3934/mbe.2017061
[1] | Xixia Ma, Rongsong Liu, Liming Cai . Stability of traveling wave solutions for a nonlocal Lotka-Volterra model. Mathematical Biosciences and Engineering, 2024, 21(1): 444-473. doi: 10.3934/mbe.2024020 |
[2] | Haiyan Wang, Shiliang Wu . Spatial dynamics for a model of epidermal wound healing. Mathematical Biosciences and Engineering, 2014, 11(5): 1215-1227. doi: 10.3934/mbe.2014.11.1215 |
[3] | Jian Fang, Na Li, Chenhe Xu . A nonlocal population model for the invasion of Canada goldenrod. Mathematical Biosciences and Engineering, 2022, 19(10): 9915-9937. doi: 10.3934/mbe.2022462 |
[4] | Maryam Basiri, Frithjof Lutscher, Abbas Moameni . Traveling waves in a free boundary problem for the spread of ecosystem engineers. Mathematical Biosciences and Engineering, 2025, 22(1): 152-184. doi: 10.3934/mbe.2025008 |
[5] | José Luis Díaz Palencia, Abraham Otero . Modelling the interaction of invasive-invaded species based on the general Bramson dynamics and with a density dependant diffusion and advection. Mathematical Biosciences and Engineering, 2023, 20(7): 13200-13221. doi: 10.3934/mbe.2023589 |
[6] | Yong Yang, Zunxian Li, Chengyi Xia . Forced waves and their asymptotic behaviors in a Lotka-Volterra competition model with spatio-temporal nonlocal effect under climate change. Mathematical Biosciences and Engineering, 2023, 20(8): 13638-13659. doi: 10.3934/mbe.2023608 |
[7] | Baojian Hong . Bifurcation analysis and exact solutions for a class of generalized time-space fractional nonlinear Schrödinger equations. Mathematical Biosciences and Engineering, 2023, 20(8): 14377-14394. doi: 10.3934/mbe.2023643 |
[8] | Guo Lin, Shuxia Pan, Xiang-Ping Yan . Spreading speeds of epidemic models with nonlocal delays. Mathematical Biosciences and Engineering, 2019, 16(6): 7562-7588. doi: 10.3934/mbe.2019380 |
[9] | Ran Zhang, Shengqiang Liu . Traveling waves for SVIR epidemic model with nonlocal dispersal. Mathematical Biosciences and Engineering, 2019, 16(3): 1654-1682. doi: 10.3934/mbe.2019079 |
[10] | Tong Li, Zhi-An Wang . Traveling wave solutions of a singular Keller-Segel system with logistic source. Mathematical Biosciences and Engineering, 2022, 19(8): 8107-8131. doi: 10.3934/mbe.2022379 |
In this paper, we consider the following time periodic Lotka-Volterra competition-diffusion system
{ut=uxx+u(r1(t)−a1(t)u−b1(t)v),vt=dvxx+v(r2(t)−a2(t)u−b2(t)v), | (1.1) |
where
(u(t,x)v(t,x))=(X(t,x−ct)Y(t,x−ct)) |
satisfying
(X(t+T,z)Y(t+T,z))=(X(t,z)Y(t,z)) |
and
(X(t,±∞)Y(t,±∞)):=limz→±∞(X(t,z)Y(t,z))=(u±(t)v±(t)), |
where
{dudt=u(r1(t)−a1(t)u−b1(t)v),dvdt=v(r2(t)−a2(t)u−b2(t)v). | (1.2) |
Traveling wave solutions of system (1.1) with autonomous nonlinearities have been extensively studied. In particular, we can refer to Hosono [17] and Kan-on [20] for the monostable case, Conley and Gardner [8], Gardner [11] and Kan [19] for the bistable case, Tang and Fife [36] and Vuuren [37] for the coexistence case. At the same time, during the past decades, there have been many works on the space/time periodic traveling waves of scalar reaction-diffusion equations. For instance, one can see Alikakos et al. [1], Bates and Chen [4] and Shen [33] on time periodic traveling waves of the local, nonlocal and lattice equations, respectively, Berestycki and Hamel [5] and Hamel [14] on space periodic traveling waves, and Nadin [30,31] and Nolen et al. [32] on the space-time periodic traveling waves.
It is well known that traveling wave solutions are special examples of the so-called entire solutions defined for all time and whole space. As we all know, it is of great significance in studying the entire solution since it is essential for a full understanding of the transient dynamics and structures of the global attractor. In addition, entire solutions can be used to describe the dynamics of two solutions that have distinct histories in the configuration, though their asymptotic profiles as
However, to the best of our knowledge, the issue on constructing new types of entire solutions other than traveling waves for time periodic reaction-diffusion systems is still open, which is the motivation of our present work. More precisely, we deal with the time periodic system (1.1) focusing on the following monostable case
¯r1>maxt∈[0,T](b1(t)b2(t))¯r2>0,mint∈[0,T](a2(t)a1(t))¯r1≥¯r2>0, | (1.3) |
which implies that (1.2) has only three nonnegative T-periodic solutions
{p(t)=p0e∫t0r1(s)ds1+p0∫t0e∫s0r1(τ)dτa1(s)ds, p0=e∫T0r1(s)ds−1∫T0e∫s0r1(τ)dτa1(s)ds,q(t)=q0e∫t0r2(s)ds1+q0∫t0e∫s0r2(τ)dτb2(s)ds, q0=e∫T0r2(s)ds−1∫T0e∫s0r2(τ)dτb2(s)ds. |
For system (1.1), the time periodic traveling wave solution
{Xt=Xzz+cXz+X(r1(t)−a1(t)X−b1(t)Y),Yt=dYzz+cYz+Y(r2(t)−a2(t)X−b2(t)Y),(X(t,z),Y(t,z))=(X(t+T,z),Y(t+T,z)),limz→−∞(X,Y)=(0,q(t)),limz→+∞(X,Y)=(p(t),0). | (1.4) |
In the past few years, there were a few works devoted to the study of this issue. In particular, Zhao and Ruan [43] established the existence, uniqueness and stability of time periodic traveling waves under the monostable assumption (1.3). In 2014, the authors extended the results to a class of more general time-periodic advection-reaction-diffusion systems in [44]. In addition, Bao and Wang [3] obtained the existence and stability of time periodic traveling waves for the bistable case. Very recently, Bao et al. [2] further studied the existence, non-existence and asymptotic stability of bistable time-periodic traveling curved fronts in two-dimensional spatial space.
In our present paper, we shall consider the invasion entire solutions of system (1.1), that is, an entire solution
limt→−∞{|u(t,x)|+|v(t,x))−q(t)|}=0 locally in x∈R,limt→+∞{|u(t,x)−p(t)|+|v(t,x)|}=0 locally in x∈R. |
For future reference, we denote a vector by
(A1):
(A2):
(A3):
Now let
{ut=uxx+a1pu[1−N1(t)−u+N1(t)v],vt=dvxx+b2q(1−v)[N2(t)u−v)], | (1.5) |
where
(P(t,z),Q(t,z)):=(X(t,z)p(t),q(t)−Y(t,z)q(t)) |
is a periodic traveling wave solution of (1.5) connecting
{Pt=Pzz+cPz+a1pP[1−N1(t)−P+N1(t)Q],Qt=dQzz+cQz+b2q(1−Q)[N2(t)P−Q)],(P(t,z),Q(t,z))=(P(t+T,z),Q(t+T,z)),limz→−∞(P,Q)=(0,0),limz→+∞(P,Q)=(1,1). | (1.6) |
Clearly, if
limz→−∞(˜P,˜Q)=(1,1) and limz→+∞(˜P,˜Q)=(0,0). |
Under assumptions (A1) - (A3), for any
c∗=−2√¯(a1p−b1q) |
is the maximal wave speed (see [43]). In particular, the authors in [43] obtained the exact exponential decay rate of solutions of (1.6) as
The rest of this paper is organized as follows. In Section 2, we study the exact exponential decay rate of a periodic traveling wave solution of (1.5) as it approaches its stable limiting state. We then establish some key and useful estimates in Section 3. In Section 4, we establish the existence and qualitative properties of entire solutions by a comparing argument.
In this section we shall study the asymptotic behavior of time periodic traveling waves of (1.5).
Denote
κ=¯a1p−b1q, ϕ(t)=e∫t0(a1(s)p(s)−b1(s)q(s))ds−κt, λ+c=−c−√c2−4κ2 |
if
{ϕd(t)=ϕd(0)e−∫t0(b2(s)q(s)+ρ0)ds+∫t0e−∫ts(b2(τ)q(τ)+ρ0)dτa2(s)p(s)ϕ(s)ds,ϕd(0)=(1−e−∫T0(b2(t)q(t)+ρ0)dt)−1∫T0e−∫Ts(b2(τ)q(τ)+ρ0)dτa2(s)p(s)ϕ(s)ds, |
where
Proposition 1. Assume (A1) - (A3) hold, and
limz→−∞P(t,z)k1|z|leλ+czϕ(t)=1,limz→−∞Q(t,z)k1|z|leλ+czϕd(t)=1uniformlyin t∈R, |
and
limz→−∞Pz(t,z)k1|z|leλ+czϕ(t)=λ+c,limz→−∞Qz(t,z)k1|z|leλ+czϕd(t)=λ+cuniformlyin t∈R, |
where
In order to characterize the asymptotic behavior of time periodic traveling waves as
Lemma 2.1. Let
Lk:=n∑i,j=1aki,j(t,x)∂2∂xi∂xj+n∑i=1bki(t,x)∂∂xi−∂∂t (k=1,2,⋯,l) |
be uniformly parabolic in an open domain
sup(τ,M)×Ω(|aki,j(t,x)|+|bki(t,x)|)≤β0forsomeβ0>0. |
Assume that
l∑s=1ck,s(t,x)ws+Lkwk≤0,(t,x)∈(τ,M)×Ω, k=1,2,⋯,l, | (2.1) |
where
sup(t,x)∈(τ,M)×Ω|ck,s(t,x)|≤γ0 (k,s=1,2,⋯,l)forsomeγ0>0. |
Let
inf(τ+3θ,τ+4θ)×Dwk≥ω1‖(wk)+‖Lp((τ+θ,τ+2θ)×D)−ω2maxj=1,⋯,ksup∂p((τ,τ+4θ)×U)(wj)−, |
here
Let
(U(t,z),V(t,z))=(p(t)−X(t,z)p(t),Y(t,z)q(t)), |
then we have
{Ut=Uzz+cUz+g(t,U,V),Vt=dVzz+cVz+h(t,U,V),(U(t,z),V(t,z))=(U(t+T,z),V(t+T,z)),limz→−∞(U,V)=(1,1),limz→+∞(U,V)=(0,0), | (2.2) |
where
{g(t,u,v)=−(1−u)[a1(t)p(t)u−b1(t)q(t)v],h(t,u,v)=−v[a2(t)p(t)(1−u)−b2(t)q(t)(1−v)]. |
For any
κ0=−¯hv(t,0,0)=¯a2p−b2q, λ−c=−c−√c2+4dκ02d, ψ(t)=e∫t0hv(s,0,0)ds+κ0t, |
and
κ1=−¯gu(t,0,0)=¯a1p, λc=−c−√c2+4κ12, ˜ψ(t)=e∫t0gu(s,0,0)ds+κ1t. |
To be specific and convenient, we give an additional assumption on the periodic coefficients.
(A4):
Remark 1. It follows from (A4) and (A3) that
(A4)⇒κκ1<45⇒κ0κ1≤κκ1<2√1+κ1κ+1=2√1+4κ1(c∗)2+1=minc≤c∗2√1+4κ1c2+1⇒κ0κ1<2√1+4κ1c2+1for any c≤c∗,⇔−4κ02c<4κ1√c2+4κ1−cfor any c≤c∗. |
Thus,
2(λc−λ−c)=c+√c2+4dκ0d−(c+√c2+4κ1)=4κ0√c2+4dκ0−c−4κ1√c2+4κ1−c<−4κ02c−4κ1√c2+4κ1−c<0for any c≤c∗. |
Remark 2. We also remark here that when
Noting that
{Ut=Uzz+cUz+U∫10gu(t,τU,τV)dτ+V∫10gv(t,τU,τV)dτ,Vt=dVzz+cVz+U∫10hu(t,τU,τV)dτ+V∫10hv(t,τU,τV)dτ. | (2.3) |
Let
(U(t,z),V(t,z))≤N(U(t′,z),V(t′,z))for all z∈R, t, t′∈R. | (2.4) |
We now state an essential lemma for system (2.2) on the exponential decay estimates of the periodic traveling wave tails as
Lemma 2.2. Assume (A1) - (A4) hold. Let
K1eσz≤U(t,z)≤K2eλ+c,ϵzforany (t,z)∈R×[0,+∞) | (2.5) |
and
K3eλ−c,ϵz≤V(t,z)≤K4eλ+c,ϵzforany (t,z)∈R×[0,+∞), | (2.6) |
where
Proof. According to definitions of
ˆu(z)=∫T0U(t,z)˜ψ(t)dt,ˆv(z)=∫T0V(t,z)ψ(t)dtfor any z∈R, |
then a direct calculation yields that
{ˆuzz+cˆuz−κ1ˆu+∫T0b1(t)q(t)V(t,z)˜ψ(t)dt+∫T0a1(t)p(t)U2(t,z)−b1(t)q(t)U(t,z)V(t,z)˜ψ(t)dt=0,dˆvzz+cˆvz−κ0ˆv+∫T0a2(t)p(t)U(t,z)V(t,z)−b2(t)q(t)V2(t,z)ψ(t)dt=0. | (2.7) |
Since
limz→+∞(U(t,z),V(t,z))=(0,0) uniformly in t∈R, |
for any
We first show (2.6). Let
V+(z)=ρeλ+c,ϵz with λ+c,ϵ=−c−√c2+4d(κ0−C+ϵ)2d<0, |
then
dvzz+cvz−κ0v+C+ϵv=0. | (2.8) |
Since
0=dˆvzz+cˆvz−κ0ˆv+∫T0a2(t)p(t)U(t,z)V(t,z)−b2(t)q(t)V2(t,z)ψ(t)dt≤dˆvzz+cˆvz−κ0ˆv+∫T0a2(t)p(t)U(t,z)V(t,z)ψ(t)dt≤dˆvzz+cˆvz−κ0ˆv+C+ϵˆv |
for any
dvzz+cvz−κ0v−C−ϵv=0. | (2.9) |
On the other hand, by the second equation of (2.7), we have
0=dˆvzz+cˆvz−κ0ˆv+∫T0a2(t)p(t)U(t,z)V(t,z)−b2(t)q(t)V2(t,z)ψ(t)dt≥dˆvzz+cˆvz−κ0ˆv−∫T0b2(t)q(t)V2(t,z)ψ(t)dt≥dˆvzz+cˆvz−κ0ˆv−C−ϵˆv |
for any
We now prove (2.5). Note that (A4) implies
∫T0b1(t)q(t)V(t,z)˜ψ(t)dt≤Tmax[0,T]b1(t)q(t)˜ψ(t)K4eλ+c,ϵz≤M1eλ+c,ϵz,∫T0a1(t)p(t)U2(t,z)˜ψ(t)dt≤max[0,T][a1(t)p(t)˜ψ(t)]∫T0U2(t,z)˜ψ2(t)dt≤M2(ˆu(z))2 |
for any
0=ˆuzz+cˆuz−κ1ˆu+∫T0b1(t)q(t)V(t,z)˜ψ(t)dt+∫T0a1(t)p(t)U2(t,z)−b1(t)q(t)U(t,z)V(t,z)˜ψ(t)dt≤ˆuzz+cˆuz−κ1ˆu+∫T0b1(t)q(t)V(t,z)˜ψ(t)dt+∫T0a1(t)p(t)U2(t,z)˜ψ(t)dt≤ˆuzz+cˆuz−κ1ˆu+M1eλ+c,ϵz+M2(ˆu(z))2≤ˆuzz+cˆuz−κ1ˆu+M1eλ+c,ϵz+L2ˆu |
for any
−uzz−cuz+κ1u−L2u−M1eλ+c,ϵz=0,z∈[M′,+∞). | (2.10) |
Let
−U+zz−cU+z+κ1U+−L2U+−M1eλ+c,ϵz=[−(λ+c,ϵ)2−cλ+c,ϵ+κ1−L2−M1δ]δeλ+c,ϵz=(L2−M1δ)δeλ+c,ϵz≥0 |
for any
∫T0b1(t)q(t)U(t,z)V(t,z)˜ψ(t)dt≤max[0,T](b1q)K4eλ+c,ϵz⋅ˆu≤N3eλ+c,ϵzˆu |
for any
0=ˆuzz+cˆuz−κ1ˆu+∫T0b1(t)q(t)V(t,z)˜ψ(t)dt+∫T0a1(t)p(t)U2(t,z)−b1(t)q(t)U(t,z)V(t,z)˜ψ(t)dt≥ˆuzz+cˆuz−κ1ˆu−∫T0b1(t)q(t)U(t,z)V(t,z)˜ψ(t)dt≥ˆuzz+cˆuz−κ1ˆu−N3eλ+c,ϵzˆu |
for any
Uzz+cUz−κ1U−N3eλ+c,ϵzU=0,z∈[0,+∞). | (2.11) |
By the definition of
U−zz+cU−z−κ1U−−N3eλ+c,ϵzU−=(σ2+cσ−κ1−N3eλ+c,ϵz)δ′eσz≥(σ2+cσ−κ1−N3eλ+c,ϵM′′)δeσz≥0 |
for any
Remark 3. The definitions of
Lemma 2.3. Suppose (A1) - (A4) hold, let
|U(t,z)|+|Uz(t,z)|+|Uzz(t,z)|≤C1eλ+c,ϵzforany (t,z)∈R×[0,+∞), |
|V(t,z)|+|Vz(t,z)|+|Vzz(t,z)|≤C2eλ+c,ϵzforany (t,z)∈R×[0,+∞), |
where
Proof. The proof is similar to [43,Proposition
We next establish the exact exponential decay rate of the solution of (2.2) as
Let
A=(0I1d(∂t−hv(t,0,0))−cd). | (2.12) |
It is easy to see that
ddz(vw)=A(vw)+(01d[hv(t,0,0)v−h(t,u,v)]). |
Similar to [43,Lemma
ker(λ−cI−A)n=ker(λ−cI−A)=span{(ψ(t)λ−cψ(t))} for n=2,3,⋯, |
which implies that
(λI−A)−1=∞∑n=0(−1)n(λ−λ−c)nSn+1+P(λ−λ−c)+∞∑n=1(λ−λ−c)n+1Dn, | (2.13) |
where
S=12πi∫Γ(λI−A)−1λ−λ−cdλ=limλ→λ−c(I−P)(λI−A)−1, |
(\lambda I-\mathcal A)^{-1}=\sum\limits_{n=0}^\infty{{(-1)^n}{{(\lambda-\lambda_c^-)}^n}{S^{n+1}}} +\frac{P}{{(\lambda-\lambda_c^-)}}. | (2.14) |
The formula (2.14) is therefore the Laurent series of
S=\left\{{\left(\left.{\begin{array}{*{20}{c}}0\\j \end{array}}\right)\right|j\in L_T^2} \right\}\subset Y |
and
\left\|{(\lambda I-\mathcal A)_S^{-1}}\right\|\leq\frac{C}{{\left|\eta\right|}}\text{ for } \left|\eta \right|\geq\varrho. | (2.15) |
Now we state the main results of this section as follows.
Theorem 2.4. Assume (A1) - (A4) hold. Let
\mathop{\lim}\limits_{z \to + \infty}\frac{u(t,z)}{{k_2}{e^{\lambda_c^-z}}\widetilde \phi(t)}=1, ~\mathop{\lim}\limits_{z\to+\infty } \frac{v(t,z)}{{k_2}{e^{\lambda_c^-z}}\psi(t)}=1, ~\; uniformly\; in \; ~t\in \mathbb R | (2.16) |
and
\mathop{\lim}\limits_{z\to+\infty}\frac{{u_z}(t,z)}{{k_2}{e^{\lambda_c^-z}}\widetilde \phi(t)}= \lambda_c^-, ~\mathop{\lim}\limits_{z\to+\infty}\frac{{v_z}{(t,z)}}{{k_2}{e^{\lambda_c^-z}}\psi(t)}= \lambda_c^-, ~\; uniformly\; in\; ~t\in \mathbb R, | (2.17) |
where
\begin{cases} \widetilde\phi(t)=\widetilde\phi(0){e^{\int_0^t{(\rho+{g_u}(s,0,0))ds}}} +\int_0^t{{e^{\int_s^t{(\rho+{g_u}(\tau,0,0))d\tau}}}{g_v}(s,0,0)\psi(s)ds},\\ \widetilde\phi(0)={\left({1-{e^{\int_0^T{(\rho+{g_u}(s,0,0))ds}}}}\right)^{-1}} \int_0^T{{e^{\int_s^T{(\rho+{g_u}(\tau,0,0))d\tau}}}{g_v}(s,0,0)\psi(s)ds} \end{cases} | (2.18) |
with
Proof. The proof is divided into two steps.
Step Ⅰ. We prove that there exists
\mathop{\lim}\limits_{z\to+\infty}\frac{v(t,z)}{{k_2}{e^{\lambda_c^-z}}\psi(t)}=1, ~\mathop{\lim}\limits_{z\to+\infty}\frac{{{v}_z}{(t,z)}}{{k_2}{e^{\lambda_c^-z}}\psi(t)}=\lambda_c^-, ~\text{uniformly in }~t\in \mathbb R. |
Now we introduce an auxiliary function
\left\{{\chi\in C_b^3(R,R)\left|{\begin{gathered} {(ⅰ).~\chi(z)\equiv 1,~z \geq 0;}\hfill\\ {(ⅱ).~\chi(z)\equiv 0,~z <-1;} \hfill\\ {(ⅲ).~\left|{{\chi^\prime}}\right|+\left|{{\chi^{\prime\prime}}}\right|+\left|{{\chi^{\prime\prime\prime}}}\right|<\infty} \end{gathered}}\right.} \text{for all}~z\in \mathbb R \right\} |
and set
\breve{w}_z + \frac{c}{d}\breve{w}-\frac{1}{d}\breve{v}_t =-\frac{1}{d}{h_v}(t,0,0)\breve{v} + \frac{1}{d}\chi[{h_v}(t,0,0)v - h(t,u,v)] +{\chi^{\prime\prime}}v + 2{\chi^\prime}{v_z} + \frac{c}{d}{\chi^\prime}v. | (2.19) |
Let
\widetilde g(t,z)=\frac{1}{d}\chi[{h_v}(t,0,0)v-h(t,u,v)]+{\chi^{\prime\prime}}v+2{\chi^\prime}{v_z}+\frac{c}{d}{\chi^\prime}v, |
then we can rewrite (2.19) as a first order system
\frac{d}{{dz}}\left( {\begin{array}{*{20}{c}} {{\breve{v}}} \\{{\breve{w}}} \end{array}} \right) = \mathcal A \left({\begin{array}{*{20}{c}} {{\breve{v}}} \\ {{\breve{w}}} \end{array}} \right) + \left({\begin{array}{*{20}{c}}0 \\ {\widetilde g(t,z)} \end{array}} \right). | (2.20) |
Taking
\left({\begin{array}{*{20}{c}} {\int_\mathbb R{{e^{-\lambda s}}{\breve{v}}(\cdot,s)ds}}\\{\int_\mathbb R{{e^{-\lambda s}}{\breve{w}}(\cdot,s)ds} } \end{array}}\right)=\mathcal F(\lambda):={(\lambda I-\mathcal A)^{-1}}\left({\begin{array}{*{20}{c}} 0 \\ {\int_\mathbb R{{e^{-\lambda s}}\widetilde g(\cdot,s)ds}}\end{array}}\right), | (2.21) |
where
\left\|{{(\lambda I-\mathcal A)^{-1}}G(\lambda)}\right\|_Y\leq\frac{C_2}{{\left|\eta\right|}^2} \; \text{for any}\; ~\left|\eta\right|\geq\varrho, | (2.22) |
whenever
Choose
\left({\begin{array}{*{20}{c}} {{\breve{v}}(\cdot,z)} \\ {{\breve{w}}(\cdot,z)} \end{array}}\right) =\frac{1}{{2\pi i}}\int_{\mu-i\infty }^{\mu+i\infty}{{e^{\lambda z}}{{(\lambda I-\mathcal A)}^{-1}}G(\lambda)}d\lambda. |
Since
\left({\begin{array}{*{20}{c}}{{v}(\cdot,z)}\\{{w}(\cdot,z)} \end{array}}\right)=\frac{1}{{2\pi i}}\int_{\mu-i\infty}^{\mu+i\infty}{{e^{\lambda z}} {{(\lambda I-\mathcal A)}^{-1}}G(\lambda)}d\lambda \; \text{for any} \; ~z\geq 0. | (2.23) |
Let
\mathop{\lim}\limits_{\left|\eta\right|\to\infty}{\int_{\lambda_c^--{\varepsilon^\prime}}^\mu{\left\|{{e^{(\tau+i\eta)z}}{{((\tau+i\eta )I-\mathcal A)}^{-1}}G(\tau+i\eta)}\right\|}_Y}d\tau=0 \; \text{for any}~z \geq 0. |
Therefore, the path of integral in (2.23) can be shifted to
\begin{split} \left({\begin{array}{*{20}{c}}{{v}(\cdot,z)}\\{{w}(\cdot,z)}\end{array}} \right) =\frac{1}{{2\pi i}}\int_{\lambda_c^--\varepsilon^\prime-i\infty}^{\lambda_c^--\varepsilon^\prime+i\infty} {{e^{\lambda z}}{{(\lambda I-\mathcal A)}^{-1}}G(\lambda)}d\lambda +Res(e^{\lambda z}\mathcal F(\lambda),\lambda_c^-),~z\geq 0, \end{split} | (2.24) |
where
{(\lambda I-\mathcal A)^{-1}G(\lambda)}= \sum\limits_{n=0}^\infty{{(-1)^n}{{(\lambda-\lambda_c^-)}^n}{S^{n + 1}}G(\lambda)} +\frac{PG(\lambda_c^-)}{{(\lambda -\lambda_c^-)}}-\frac{P[G(\lambda_c^-)-{G(\lambda)]}}{{\lambda-\lambda_c^-}} |
for
PG\subset\ker(\lambda_c^-I-\mathcal A)=span\left\{{\left({\begin{array}{*{20}{c}}{\psi(t)} \\{\lambda_c^-\psi(t)}\end{array}}\right)}\right\} |
and
\begin{split} \left({\begin{array}{*{20}{c}}{v(t,z)}\\{w(t,z)}\end{array}}\right)= &\frac{e^{(\lambda_c^--{\varepsilon^\prime})z}}{2\pi}\int_{-\infty }^{+\infty} {{e^{i\eta z}}{{((\lambda_c^--{\varepsilon^\prime}+i\eta )I -\mathcal A)}^{- 1}}G(\lambda_c^--{\varepsilon^\prime}+i\eta)}d\eta \\ &+{k_2}{e^{\lambda_c^-z}}\left({\begin{array}{*{20}{c}}{\psi(t)}\\ {\lambda_c^-\psi(t)}\end{array}}\right),~z\geq 0, \end{split} | (2.25) |
where
[h(t,u,v)-{h_v}(t,0,0)v]+{h_v}(t,0,0)\zeta+d{\zeta_{zz}}+c{\zeta_z}-{\zeta_t}=0 \; \text{for all} \; ~(t,z)\in R\times{R^+} |
and Lemma 2.3 yields that
\left({\int_{z-\frac{1}{2}}^{z+\frac{1}{2}}{\int_T^{2T} {\left({{{\left|{{\zeta_{zz}}(\tau,s)}\right|}^2}+{{\left|{{\zeta_z}(\tau,s)}\right|}^2} +{{\left|{{\zeta_t}(\tau,s)}\right|}^2}}\right)d\tau ds}}}\right)^{\frac{1}{2}} \leq{C_4}{e^{(\lambda_c^--{\varepsilon^\prime})z}} |
for any
\mathop{\lim}\limits_{z\to+\infty}\frac{v(t,z)}{{k_2}{e^{\lambda_c^-z}}\psi(t)}=1 \; \text{uniformly in}~t\in \mathbb R. |
Now set
[{h_u}(t,u,v){u_z}+{h_v}(t,u,v){v_z}-{h_v}(t,0,0){v_z}]+{h_v}(t,0,0)\widetilde\zeta +d{\widetilde\zeta_{zz}}+c{\widetilde\zeta_z}-{\widetilde\zeta_t}=0 |
and
\mathop{\lim}\limits_{z\to+\infty }\frac{v_z(t,z)}{{k_2}{e^{\lambda_c^-z}}\psi(t)} =\lambda_c^- \; \text{uniformly in}~t\in \mathbb R. |
Step Ⅱ. We study the asymptotic behavior of
{g_v}(t,0,0)\psi(t)+[{(\lambda_c^-)^2}+c\lambda_c^-+{g_u}(t,0,0)]w-{w_t}=0 |
has a unique positive periodic solution
{g_u}(t,0,0)\omega+{g_v}(t,0,0){k_2}{e^{\lambda_c^-z}}\psi(t)+{\omega_{zz}}+c{\omega_z}-{\omega_t}=0. |
Now let
\xi(t,z)=\frac{{u(t,z)-{k_2}{e^{\lambda_c^-z}}\widetilde \phi(t)}}{{\widetilde \psi(t)}}, \eta(t,z)=\frac{{v(t,z) - {k_2}{e^{\lambda_c^-z}}\psi (t)}}{{\widetilde \psi(t)}},~(t,z)\in \mathbb R\times{\mathbb R^+}. |
Then
R(t,z)=[g(t,u,v)-{g_v}(t,0,0)v-{g_u}(t,0,0)u]{\widetilde\psi^{-1}}+{g_v}(t,0,0)\eta. |
We know from Step Ⅰ that
\left|{R(t,z)}\right|\leq\left|{[g(t,u,v)-{g_v}(t,0,0)v-{g_u}(t,0,0)u]{{\widetilde \psi}^{-1}}}\right|+ \left|{{g_v}(t,0,0)\eta}\right|\leq {K_M}{e^{(\lambda_c^--{\varepsilon^\prime})z}} |
for all
R(t,z)-\kappa_1\omega+{\omega_{zz}}+c{\omega_z}-{\omega_t}\leq(\geq)~0 \; \text{for all}~z\geq M, |
whenever
-{K_Q}{e^{(\lambda_c^--{\varepsilon^\prime})z}}\leq\xi(t,z) \leq{K_Q}{e^{(\lambda_c^--{\varepsilon^\prime})z}} \; \text{for all}~(t,z)\in \mathbb R\times[M,+\infty ). | (2.26) |
Indeed, set
\omega_{zz}^++c\omega_z^+-\omega_t^+-\kappa_1{\omega ^+}\leq 0,\\ ~~\omega_{zz}^-+c\omega_z^--\omega_t^--\kappa_1{\omega^-}\geq 0. | (2.27) |
Since
\mathop{\lim}\limits_{z\to +\infty}\frac{u(t,z)}{{k_2}{e^{\lambda_c^-z}}\widetilde\phi(t)}=1 \; \text{uniformly in}~t\in \mathbb R. |
The argument for
\widetilde\xi(t,z)=\frac{u_z(t,z)-{k_2}{\lambda_c^-}{e^{\lambda_c^-z}}\widetilde \phi(t)}{\widetilde \psi(t)}, ~\widetilde\eta(t,z)=\frac{{v_z(t,z)-{k_2}{\lambda_c^-}{e^{\lambda_c^-z}}\psi(t)}}{{\widetilde \psi(t)}} |
for
\widetilde R(t,z)-\kappa_1\widetilde\xi+{\widetilde\xi_{zz}}+c{\widetilde\xi_z}-{\widetilde\xi_t}=0 \; \text{for all}~z\geq 0 |
with
\widetilde R(t,z)=[(g_u(t,u,v)-{g_u}(t,0,0))u_z+({g_v}(t,u,v)-{g_v}(t,0,0))v_z]{\widetilde\psi^{-1}}+{g_v}(t,0,0)\widetilde\eta. |
The same argument as above implies that
\mathop{\lim}\limits_{z\to+\infty}\frac{{u_z}{(t,z)}}{{k_2}{e^{\lambda_c^-z}}\widetilde\phi(t)}=\lambda_c^- \; \text{uniformly in}~t\in\mathbb R. |
Now we complete all the proof.
The following is a direct result of Theorem 2.4.
Corollary 1. Assume (A1) - (A4) hold. Let
\mathop{\lim}\limits_{z\to+\infty}\frac{1-P(t,z)}{{k_2}{e^{\lambda_c^-z}}\widetilde\phi(t)}=1, \mathop {\lim}\limits_{z\to+\infty }\frac{1-Q(t,z)}{{k_2}{e^{\lambda_c^-z}}\psi(t)}=1 ~ \;uniformly\; in\; ~t\in\mathbb R,~c\leq c^*, |
and
\mathop{\lim}\limits_{z\to+\infty}\frac{{P_z}(t,z)}{{k_2}{e^{\lambda_c^-z}}\widetilde\phi(t)}=-\lambda_c^-, \mathop{\lim}\limits_{z\to+\infty}\frac{{Q_z}{(t,z)}}{{k_2}{e^{\lambda_c^-z}}\psi (t)}= -\lambda_c^- ~\; uniformly\; in\; ~t\in\mathbb R,~c\leq c^*, |
for some constant
Remark 4. For the autonomous system
\begin{cases} u_t=u_{xx}+u(1-u-k_1v), (t,x)\in \mathbb R\times \mathbb R,\\ v_t=dv_{xx}+av(1-k_2u-v), (t,x)\in \mathbb R\times \mathbb R, \end{cases} | (2.28) |
where
\begin{cases} 0=\phi^{\prime\prime}+c\phi^\prime+(1-\phi-k_1\psi),\\ 0=d\psi^{\prime\prime}+c\psi^\prime+a(1-k_2\phi-\psi),\\ \mathop{\lim}\limits_{z\to-\infty}(\phi,\psi)=(0,1), \mathop{\lim}\limits_{z\to+\infty}(\phi,\psi)=(1,0). \end{cases} |
Then Proposition 1 yields that
\phi(z)={\alpha_1}|z|^l{e^{\lambda_c^+z}}+h.o.t, 1-\psi(z)={\beta_1}|z|^l{e^{\lambda_c^+z}}+h.o.t \text{as}~z\to -\infty, |
where
1-\phi(z)={\alpha_2}{e^{\lambda_c^-z}}+h.o.t, \psi(z)={\beta_2}{e^{\lambda_c^-z}}+h.o.t \text{as}~z\to +\infty,~\text{for all}~c\leq c^*, |
where
In this section, we give some crucial estimates which are helpful for the construction of sub-super solutions. Throughout this section, we always assume that (A1) - (A4) hold. In view of Proposition 1 and Corollary 1, the following lemma holds obviously.
Lemma 3.1. Let
Q(t,z)\leq M(c)P(t,z), t\in \mathbb R,~z \leq 0, | (3.1) |
\delta_1(c)P(t,z)\leq P_z(t,z)\leq \delta_2(c)P(t,z), t\in \mathbb R,~z \leq 0, | (3.2) |
\gamma_1(c)Q(t,z)\leq Q_z(t,z)\leq \gamma_2(c)Q(t,z), t\in \mathbb R,~z \leq 0 . | (3.3) |
1-Q(t,z)\leq N(c)(1-P(t,z)), t\in \mathbb R,~z \geq 0, | (3.4) |
\delta_1(c)m(c)e^{\lambda_c^-z}\leq \delta_1(c)(1-P(t,z))\leq P_z(t,z), t\in \mathbb R,~z \geq 0, | (3.5) |
\gamma_1(c)n(c)e^{\lambda_c^-z}\leq \gamma_1(c)(1-Q(t,z))\leq Q_z(t,z), t\in \mathbb R,~z \geq 0 . | (3.6) |
In particular, for any
P(t,z)\leq K_\varepsilon(c)e^{(\lambda_c^+ -\varepsilon)z}, t\in \mathbb R,~z \leq 0, | (3.7) |
Q(t,z)\leq K_\varepsilon(c)e^{(\lambda_c^+ -\varepsilon)z}, t\in \mathbb R,~z \leq 0 . | (3.8) |
We now give some key estimates in the following two lemmas.
Lemma 3.2. Let
P_1=P_1(t,x+p_1),~P_2=P_2(t,-x+p_2),~Q_1=Q_1(t,x+p_1),~Q_2=Q_2(t,-x+p_2) |
and
H_1(t,x)=-2a_1pP_1P_2+a_1pN_1[P_1Q_2(1-Q_1)+P_2Q_1(1-Q_2)]. |
Then there exist positive constants
\frac{H_1(t,x)}{P_{1,z}(t,x+p_1)+P_{2,z}(t,-x+p_2)}\leq K_1e^{\alpha _1 p_1} \; for\; any\; ~(t,x)\in \mathbb{R}\times \mathbb{R}. | (3.9) |
Proof. We divide
Case A.
\begin{align*} &\frac{H_1(t,x)}{P_{1,z}(t,x+p_1)+P_{2,z}(t,-x+p_2)}\\ &\leq\frac{a_1pN_1P_1Q_2}{P_{2,z}(t,-x+p_2)}+\frac{a_1pN_1P_2Q_1}{P_{2,z}(t,-x+p_2)}\\ &\leq\mathop{\max}\limits_{t\in [0,T]}(b_1q)\left[{\frac{{K_\varepsilon}(c_1)e^{(\lambda_{c_1}^+-\varepsilon)(x+p_1)} \cdot M(c_2)P_2}{\delta_1(c_2)P_2}+\frac{K_\varepsilon(c_1)e^{(\lambda_{c_1}^+ -\varepsilon)(x +p_1)}P_2}{\delta _1(c_2)P_2}}\right]\\ &\leq\mathop {\max}\limits_{t\in[0,T]}(b_1q)\frac{K_\varepsilon(c_1)(M(c_2)+1)}{\delta_1(c_2)}e^{(\lambda_{c_1}^+-\varepsilon )p_1},~t\in \mathbb R. \end{align*} |
Case B.
\begin{align*} &\frac{H_1(t,x)}{P_{1,z}(t,x+p_1)+P_{2,z}(t,-x+p_2)}\\ &\leq\mathop{\max}\limits_{t\in[0,T]}(b_1q)\frac{K_\varepsilon(c_2)(M(c_1)+1)} {\delta_1(c_1)}e^{(\lambda_{c_2}^+-\varepsilon )p_1},~t\in \mathbb R. \end{align*} |
Case C.
\begin{align*} H_1(t,x)&\leq -a_1p N_1P_1P_2+a_1pN_1[P_1Q_2(1-Q_1)+P_2Q_1]\\ &\leq a_1pN_1Q_2(1-Q_1)+a_1pN_1P_2(1-P_1). \end{align*} |
By (3.4), (3.5), (3.7) and (3.8), we have
\begin{align*} &\frac{H_1(t,x)}{P_{1,z}(t,x+p_1)+P_{2,z}(t,-x+p_2)} \leq\frac{a_1pN_1Q_2(1-Q_1)}{P_{1,z}(t,x+p_1)}+\frac{a_1pN_1P_2(1-P_1)}{P_{1,z}(t,x+p_1)}\\ &\leq\mathop{\max}\limits_{t\in [0,T]}(b_1q)\\ &\times\left[{\frac{{K_\varepsilon}(c_2)e^{(\lambda_{c_2}^+-\varepsilon )(-x+p_2)}N(c_1)(1-P_1)}{\delta_1(c_1)(1-P_1)} +\frac{K_\varepsilon(c_2)e^{(\lambda_{c_2}^+ -\varepsilon)(-x+p_2)}(1-P_1)}{\delta_1(c_1)(1-P_1)}}\right]\\ &\leq\mathop {\max}\limits_{t\in[0,T]}(b_1q)\frac{K_\varepsilon(c_2)(N(c_1)+1)} {\delta_1(c_1)}e^{(\lambda_{c_2}^+-\varepsilon )p_1},~t\in\mathbb R. \end{align*} |
Case D.
\begin{align*} H_1(t,x)&\leq -N_1a_1pP_1P_2+a_1pN_1[P_1Q_2+P_2Q_1(1-Q_2)]\\ &\leq a_1pN_1P_1(1-P_2)+a_1pN_1Q_1(1-Q_2), \end{align*} |
Similar to case C, we can prove that
\begin{align*} &\frac{H_1(t,x)}{P_{1,z}(t,x+p_1)+P_{2,z}(t,-x+p_2)}\\ &\leq\mathop{\max}\limits_{t\in[0,T]}(b_1q) \frac{K_\varepsilon(c_1)(N(c_2)+1)}{\delta_1(c_2)}e^{(\lambda_{c_1}^+-\varepsilon )p_1}, ~t\in \mathbb R. \end{align*} |
For any fixed
Lemma 3.3. Let
Q_1=Q_1(t,x+p_1),~Q_2=Q_2(t,-x+p_2) |
and
\tilde{H_2}(t,x)=2dQ_{1,z}Q_{2,z}+b_2qQ_1Q_2(1-Q_1)(1-Q_2). |
Then there exist positive constants
\frac{\tilde{H_2}(t,x)}{(1-Q_2)Q_{1,z}+(1-Q_1)Q_{2,z}}\leq K_2e^{\alpha _2p_1}, ~(t,x)\in \mathbb{R}\times \mathbb{R}. | (3.10) |
Proof. We divide
Case A.
\begin{split} &\frac{\tilde{H_2}(t,x)}{(1-Q_2)Q_{1,z}+(1-Q_1)Q_{2,z}}\\ &\leq \frac{2dQ_{1,z}Q_{2,z}+b_2qQ_1Q_2(1-Q_1)(1-Q_2)}{(1-Q_1)Q_{2,z}}\\ &\leq \frac{2dQ_{1,z}}{1-Q_1}+\frac{b_2qQ_1Q_2}{Q_{2,z}}\\ &\leq \frac{2d\gamma_2(c_1)K_\varepsilon(c_1)e^{(\lambda _{c_1}^+-\varepsilon)(x+p_1)}}{1-Q_1(t,0)} +\frac{b_2qK_\varepsilon(c_1)e^{(\lambda _{c_1}^+-\varepsilon)(x+p_1)}Q_2}{\gamma_1(c_2)Q_2}\\ &\leq \left({\frac{2d\gamma _2(c_1)K_\varepsilon(c_1)}{1-Q_1(t,0)} + \mathop{\max}\limits_{t\in [0,T]}(b_2q)\frac{K_\varepsilon(c_1)}{\gamma_1(c_2)}}\right)e^{(\lambda_{c_1}^+-\varepsilon)p_1}, ~t\in \mathbb R. \end{split} |
Case B.
\begin{split} &\frac{\tilde{H_2}(t,x)}{(1-Q_2)Q_{1,z}+(1-Q_1)Q_{2,z}}\\ &\leq\left({\frac{2d\gamma_2(c_2)K_\varepsilon(c_2)}{1-Q_2(t,0)} +\mathop{\max}\limits_{t\in [0,T]}(b_2q)\frac{K_\varepsilon(c_2)}{\gamma_1(c_1)}}\right) e^{(\lambda_{c_2}^+-\varepsilon )p_1},~t\in \mathbb R. \end{split} |
Case C.
\begin{split} &\frac{\tilde{H_2}(t,x)}{(1-Q_2)Q_{1,z}+(1-Q_1)Q_{2,z}}\\ &\leq \frac{2dQ_{1,z}Q_{2,z}+b_2qQ_1Q_2(1-Q_1)(1-Q_2)}{(1-Q_2)Q_{1,z}}\\ &\leq \frac{2dQ_{2,z}}{1-Q_2}+\frac{b_2qQ_2(1-Q_1)}{Q_{1,z}}\\ &\leq \frac{2d\gamma_2(c_2)K_\varepsilon(c_2)e^{(\lambda _{c_2}^+-\varepsilon)(-x+p_2)}} {1-Q_2(t,0)}+\frac{b_2qK_\varepsilon(c_2)e^{(\lambda _{c_2}^+-\varepsilon)(-x+p_2)}(1-Q_1)}{\gamma_1(c_1)(1-Q_1)}\\ &\leq \left({\frac{2d\gamma _2(c_2)K_\varepsilon(c_2)}{1-Q_2(t,0)} +\mathop{\max}\limits_{t\in [0,T]}(b_2q)\frac{K_\varepsilon(c_2)}{\gamma_1(c_1)}} \right)e^{(\lambda_{c_2}^+-\varepsilon )p_1}, ~t\in \mathbb R. \end{split} |
Case D.
\begin{split} &\frac{\tilde{H_2}(t,x)}{(1-Q_2)Q_{1,z}+(1-Q_1)Q_{2,z}}\\ &\leq \left({\frac{2d\gamma _2(c_1)K_\varepsilon(c_1)}{1-Q_1(t,0)} +\mathop{\max}\limits_{t\in [0,T]}(b_2q)\frac{K_\varepsilon(c_1)}{\gamma_1(c_2)}}\right) e^{(\lambda_{c_1}^+-\varepsilon )p_1}, ~t\in \mathbb R. \end{split} |
For any fixed
In this section, we establish the existence and some qualitative properties of invasion entire solutions by constructing appropriate sub-super solutions and using the comparison principle. Let
\begin{cases} \mathcal{F}_1(t,u,v)=u_t-u_{xx}-f_1(t,u,v),\\ \mathcal{F}_2(t,u,v)=v_t-dv_{xx}-f_2(t,u,v), \end{cases} |
where
\begin{cases} \mathcal{F}_1(t,u,v)=0,\\ \mathcal{F}_2(t,u,v)=0.\\ \end{cases} |
Definition 4.1. Suppose
\begin{cases} \mathcal{F}_1(t,\overline U,\overline V)\geq 0,\\ \mathcal{F}_2(t,\overline U,\overline V)\geq 0.\\ \end{cases} |
If for any
Lemma 4.2. (ⅰ) For any
(ⅱ) Let
Proof. The proof is similar to that of [14,Lemma 3.1] and we omit the details here.
To construct a supersolution of (1.5), we first introduce an auxiliary coupled system of ordinary differential equations
\begin{cases} p_1^\prime(t)=-c_1+Ke^{\alpha p_1(t)},~~t<0,\\ p_2^\prime(t)=-c_2+Ke^{\alpha p_1(t)},~~t<0,\\ p_2(0)\leq p_1(0)\leq 0, \end{cases} | (4.1) |
where
\begin{cases} p_1(t)=p_1(0)-c_1t-\frac{1}{\alpha}\ln\left({1-\frac{K}{c_1}e^{\alpha p_1(0)}(1-e^{-c_1\alpha t})}\right)\leq 0~(t\leq 0),\\ p_2(t)=p_2(0)-c_2t-\frac{1}{\alpha}\ln\left({1-\frac{K}{c_1}e^{\alpha p_1(0)}(1-e^{-c_1\alpha t})}\right)\leq 0~(t\leq 0). \end{cases} |
Then
\omega_1=p_1(0)-\frac{1}{\alpha}\ln\left({1-\frac{K}{c_1}e^{\alpha p_1(0)}}\right), ~\omega_2=p_2(0)-\frac{1}{\alpha}\ln\left({1-\frac{K}{c_1}e^{\alpha p_1(0)}}\right). | (4.2) |
Then
p_i(t) - (-c_it+\omega_i)=-\frac{1}{\alpha}\ln\left({1-\frac{\varsigma}{1+\varsigma}e^{-c_1\alpha t}}\right) ~~\text{with}~~\varsigma=-\frac{K}{c_1}e^{\alpha p_1(0)}, |
and there is a constant
0<p_1(t) - (-c_1t+\omega_1)=p_2(t) - (-c_2t+\omega_2)\leq C_0e^{-c_1\alpha t} \text{for all}~t\leq 0. |
Now we can construct a supersolution of (1.5) as follows.
Lemma 4.3. Let
\begin{cases} \overline{U}(t,x):=\min\{1,P_1(t,x+p_1(t))+P_2(t,-x+p_2(t))\},\\ \overline{V}(t,x):=Q_1(t,x+p_1(t))+Q_2(t,-x+p_2(t))\\ -Q_1(t,x+p_1(t))Q_2(t,-x+p_2(t)) \end{cases} | (4.3) |
is a supersolution of (1.5) defined in
Proof. Firstly, we prove
\begin{align*} S_1&=\{(t,x)|P_1(t,x+p_1(t))+P_2(t,-x+p_2(t))>1\},\\ S_2&=\{(t,x)|P_1(t,x+p_1(t))+P_2(t,-x+p_2(t))\leq 1\}, \end{align*} |
If
\begin{split} &\mathcal{F}_1(t,\overline U,\overline V)\\ &=P_{1,t}-c_1P_{1,z}-P_{1,zz}+P_{2,t}-c_2P_{2,z}-P_{2,zz}+Ke^{\alpha p_1}(P_{1,z}+P_{2,z})\\ & -a_1p(P_1+P_2)[1-N_1-(P_1+P_2)+N_1(Q_1+Q_2-Q_1Q_2)]\\ &=Ke^{\alpha p_1}(P_{1,z}+P_{2,z})+a_1pP_1(1-N_1-P_1+N_1Q_1)\\ & +a_1pP_2(1-N_1-P_2+N_1Q_2)\\ & -a_1p(P_1+P_2)[1-N_1-(P_1+P_2)+N_1(Q_1+Q_2-Q_1Q_2)]\\ &=Ke^{\alpha p_1}(P_{1,z}+P_{2,z})-H_1(t,x), \end{split} |
where
\frac{H_1(t,x)}{P_{1,z}(t,x+p_1)+P_{2,z}(t,-x+p_2)}\leq K_1e^{\alpha _1 p_1}\leq Ke^{\alpha p_1} \text{ for any } (t,x)\in (-\infty,0]\times \mathbb{R}, |
and hence
\mathcal{F}_1(t,\overline U,\overline V)=Ke^{\alpha p_1}(P_{1,z}+P_{2,z})-H_1(t,x)\geq 0 \; \text{for any} \; ~(t,x)\in (-\infty,0]\times \mathbb{R}. |
Then we prove that
\begin{split} &\mathcal{F}_2(t,\overline U,\overline V)\\ &=(Q_{1,t}-c_1Q_{1,z}-dQ_{1,zz})(1-Q_2)+(Q_{2,t}-c_2Q_{2,z}-dQ_{2,zz})(1-Q_1)\\ & -2dQ_{1,z}Q_{2,z}-b_2q[1-(Q_1+Q_2-Q_1Q_2)][N_2\overline U-(Q_1+Q_2-Q_1Q_2)]\\ & +Ke^{\alpha p_1}[(1-Q_2)Q_{1,z}+(1-Q_1)Q_{2,z}]\\ &=b_2q(1-Q_1)(N_2P_1-Q_1)(1-Q_2)+b_2q(1-Q_2)(N_2P_2-Q_2)(1-Q_1)\\ & -2dQ_{1,z}Q_{2,z}-b_2q[1-(Q_1+Q_2-Q_1Q_2)][N_2\overline U-(Q_1+Q_2-Q_1Q_2)]\\ & +Ke^{\alpha p_1}[(1-Q_2)Q_{1,z}+(1-Q_1)Q_{2,z}]\\ &=Ke^{\alpha p_1}[(1-Q_2)Q_{1,z}+(1-Q_1)Q_{2,z}]-H_2(t,x), \end{split} |
where
\frac{\tilde{H_2}(t,x)}{(1-Q_2)Q_{1,z}+(1-Q_1)Q_{2,z}} \leq K_2e^{\alpha _2p_1}\leq Ke^{\alpha p_1} \; \text{for any}~(t,x)\in (-\infty,0]\times \mathbb{R}. |
Hence
\mathcal{F}_2(t,\overline U,\overline V)=Ke^{\alpha p_1}[(1-Q_2)Q_{1,z}+(1-Q_1)Q_{2,z}]-H_2(t,x)\geq 0 |
for any
We now state our main result as follows.
Theorem 4.4. Assume (A1) - (A4) hold. Let
\begin{split}\label{uP1P2} \lim\limits_{t\rightarrow -\infty}\bigg\{&\sup\limits_{x \geq 0}{|U_{\theta_1,\theta_2}(t,x)-P_1(t,x-c_1t+\theta_1)|}\\ &+\sup\limits_{x\leq 0}{|U_{\theta_1,\theta_2}(t,x)-P_2(t,-x-c_2t+\theta_2)|}\bigg\}=0 \end{split} | (4.4) |
and
\begin{split} \lim\limits_{t\rightarrow -\infty}\bigg\{&\sup\limits_{x\geq 0}{|V_{\theta_1,\theta_2}(t,x)-Q_1(t,x-c_1t+\theta_1)|}\\ &+\sup\limits_{x\leq 0}{|V_{\theta_1,\theta_2}(t,x)-Q_2(t,-x-c_2t+\theta_2)|}\bigg\}=0. \end{split} | (4.5) |
Furthermore, we have
(ⅰ)
(ⅱ)
(ⅲ)
(ⅳ)
(ⅴ)
(ⅵ)
Proof. Let
\begin{cases} \underline{u}(t,x)=\mathop{\max}\left\{P_1(t,x-c_1t+\omega_1),P_2(t,-x-c_2t+\omega_2)\right\},\\ \underline{v}(t,x)=\mathop{\max}\left\{Q_1(t,x-c_1t+\omega_1),Q_2(t,-x-c_2t+\omega_2)\right\}, \end{cases} | (4.6) |
then
\begin{cases} u_t^n=u_{xx}^n+f_1(t,u^n,v^n), (t,x)\in (-n,+\infty)\times \mathbb R,\\ v_t^n=dv_{xx}^n+f_2(t,u^n,v^n), (t,x)\in (-n,+\infty)\times \mathbb R,\\ u^n(-n,x):=u_0^n(x)=\underline{u}(-n,x), x\in \mathbb R,\\ v^n(-n,x):=v_0^n(x)=\underline{v}(-n,x), x\in \mathbb R. \end{cases} | (4.7) |
We know from [26] that the problem (4.7) is well posed and the (strong) maximum principle holds since all the coefficients are periodic with respect to
\begin{cases} (\underline{u}(t,x),\underline{v}(t,x))\leq(u^n(t,x),v^n(t,x)) \leq(u^{n+1}(t,x),v^{n+1}(t,x)) \leq(1,1), t\geq-n,\\ (\underline{u}(t,x),\underline{v}(t,x)) \leq(u^n(t,x),v^n(t,x)) \leq(\overline{U}(t,x),\overline{V}(t,x)), t\in(-n,0]. \end{cases} |
Using the standard parabolic estimates and the diagonal extraction process, there exists a subsequence
\begin{cases} (\underline{u}(t,x),\underline{v}(t,x))\leq(u(t,x),v(t,x)\leq(1,1), ~x\in\mathbb R,~t\in \mathbb R.\\ (\underline{u}(t,x),\underline{v}(t,x)) \leq(u(t,x),v(t,x)\leq(\overline{U}(t,x),\overline{V}(t,x)), x\in\mathbb R, t\in(-\infty,0]. \end{cases} | (4.8) |
Particularly, the (strong) maximum principle implies that for any
We now prove (4.4) and (4.5). Firstly, we prove
\lim\limits_{t\rightarrow-\infty}\left\{\sup\limits_{x\geq 0}{|u(t,x)-P_1(t,x-c_1t+\omega_1)|}+\sup\limits_{x\leq 0}{|u(t,x)-P_2(t,-x-c_2t+\omega_2)|}\right\}=0. | (4.9) |
For
\begin{split} 0&\leq u(t,x)-\underline u(t,x)\\ &\leq u(t,x)-P_1(t,x-c_1t+\omega_1)\\ &\leq \overline U(t,x)-P_1(t,x-c_1t+\omega_1)\\ &\leq P_1(t,x+p_1(t))+P_2(t,-x+p_2(t))-P_1(t,x-c_1t+\omega_1)\\ &\leq K_\varepsilon(c_2)e^{(\lambda_{c_2}^+ -\varepsilon)(-x+p_2)}+\mathop {\sup}\limits_{(t,z)\in [0,T]\times\mathbb R} \left|{P_{1,z}(t,z)}\right|\cdot \left|{p_1(t) - (-c_1t+\omega_1)}\right|\\ &\leq K_\varepsilon(c_2)e^{\alpha p_1}+L_1e^{-c_1\alpha t}\rightarrow 0 \text{ as } t\rightarrow-\infty.\\ \end{split} |
For
\begin{split} 0&\leq u(t,x)-\underline u(t,x)\\ &\leq u(t,x)-P_2(t,-x-c_2t+\omega_2)\\ &\leq \overline U(t,x)-P_2(t,-x-c_2t+\omega_2)\\ &\leq P_1(t,x+p_1(t))+P_2(t,-x+p_2(t))-P_2(t,-x-c_2t+\omega_2)\\ &\leq K_\varepsilon(c_1)e^{(\lambda_{c_1}^+ -\varepsilon)(x+p_1)} +\mathop{\sup}\limits_{(t,z)\in [0,T]\times \mathbb R}\left|{P_{2,z}(t,z)}\right|\cdot\left|{p_2(t) - (-c_2t+\omega_2)}\right|\\ &\leq K_\varepsilon(c_1)e^{\alpha p_1}+L_2e^{-c_1\alpha t}\rightarrow 0 \text{ as } t\rightarrow-\infty. \end{split} |
(4.9) then follows.
Note from (4.2) that
(U_{\theta_1,\theta_2}(t,x),V_{\theta_1,\theta_2}(t,x))=(u(t+n^*T,x+x_0),v(t+n^*T,x+x_0)) |
with
The assertions (ⅱ) - (ⅵ) in Theorem 4.4 are straightforward consequences of (4.8). Therefore, we only prove the assertion (ⅰ).
(ⅰ) For any
\begin{aligned} \underline{u}(t+T,x) &=\mathop{\max}\left\{P_1(t+T,x-c_1(t+T)+\omega_1),P_2(t+T,-x-c_2(t+T)+\omega_2)\right\}\\ &=\mathop{\max}\left\{P_1(t,x-c_1(t+T)+\omega_1),P_2(t,-x-c_2(t+T)+\omega_2))\right\}\\ &>\mathop{\max}\left\{P_1(t,x-c_1t+\omega_1),P_2(t,-x-c_2t+\omega_2)\right\}\\ &=\underline{u}(t,x), \end{aligned} |
and similarly
\begin{aligned} u^n(t+T,x) &=u(t+T+n,x;\underline u(-n,\cdot)) =u(t+n,x;u(T,x;\underline u(-n,\cdot)))\\ &\geq u(t+n,x;\underline u(T-n,\cdot)) \geq u(t+n,x;\underline u(-n,\cdot)) =u^n(t,x), \end{aligned} |
and similarly
Remark 5. For the autonomous Lotka-Volterra competition system with random (local) and nonlocal dispersal, Morita and Tachibana [29] and Li et al. [24] established the existence of invasion entire solutions, respectively. Notice that in their papers, the following condition is needed, which may be technical:
(C): There exists a positive number
In fact, according to Remark 4, when the time periodic system (1.1) degenerates into the homogeneous case, the condition (C) holds obviously under our assumptions (A1) - (A3). We point out that the following supersolution
\begin{cases} \overline{U}(t,x):=P_1(t,x+p_1(t))+P_2(t,-x+p_2(t))-P_1(t,x+p_1(t))P_2(t,-x+p_2(t)),\\ \overline{V}(t,x):=Q_1(t,x+p_1(t))+Q_2(t,-x+p_2(t))-Q_1(t,x+p_1(t))Q_2(t,-x+p_2(t)), \end{cases} |
which has been used in [29,24], is also applicable to our problem. In this sense, we generalize the result about entire solutions from autonomous case to periodic case.
Remark 6. By the relation between systems (1.5) and (1.1), we get that (1.1) admits an entire solution
\begin{align*} \mathop{\lim}\limits_{t\rightarrow-\infty}\{|u(t,x)|+|v(t,x))-q(t)|\}=0 \; \text{ locally in } x\in\mathbb{R}, \\ \mathop{\lim}\limits_{t\rightarrow+\infty}\{|u(t,x)-p(t)|+|v(t,x)|\}=0 \; \text{ uniformly in } x\in\mathbb{R}, \end{align*} |
which indicates that the entire solution
The authors are very grateful to the anonymous referee for careful reading and helpful suggestions. The second author was supported by NSF of China (11671180) and FRFCU (lzujbky-2016-ct12). The third author was supported by FRFCU (lzujbky-2016-226).
[1] | [ N. D. Alikakos,P. W. Bates,X. Chen, Periodic traveling waves and locating oscillating patterns in multidimensional domains, Trans. Amer. Math. Soc., 351 (1999): 2777-2805. |
[2] | [ X. Bao,W. T. Li,Z. C. Wang, Time periodic traveling curved fronts in the periodic Lotka-Volterra competition-diffusion system, J. Dynam. Differential Equations, null (2015): 1-36. |
[3] | [ X. Bao,Z. C. Wang, Existence and stability of time periodic traveling waves for a periodic bistable Lotka-Volterra competition system, J. Differential Equations, 255 (2013): 2402-2435. |
[4] | [ P. W. Bates,F. Chen, Periodic traveling waves for a nonlocal integro-differential model, Electron. J. Differential Equations, 1999 (1999): 1-19. |
[5] | [ H. Berestycki,F. Hamel, Front propagation in periodic excitable media, Comm. Pure Appl. Math., 55 (2002): 949-1032. |
[6] | [ Z. H. Bu,Z. C. Wang,N. W. Liu, Asymptotic behavior of pulsating fronts and entire solutions of reaction-advection-diffusion equations in periodic media, Nonlinear Anal. Real World Appl., 28 (2016): 48-71. |
[7] | [ X. Chen,J. S. Guo, Existence and uniqueness of entire solutions for a reaction-diffusion equation, J. Differential Equations, 212 (2005): 62-84. |
[8] | [ C. Conley,R. Gardner, An application of the generalized morse index to travelling wave solutions of a competitive reaction-diffusion model, Indiana Univ. Math. J., 33 (1984): 319-343. |
[9] | [ J. Foldes,P. Poláčik, On cooperative parabolic systems: Harnack inequalities and asymptotic symmetry, Discrete Cont. Dynam. Syst. Ser. A., 25 (2009): 133-157. |
[10] | [ Y. Fukao,Y. Morita,H. Ninomiya, Some entire solutions of the Allen-Cahn equation, Taiwanese J. Math., 8 (2004): 15-32. |
[11] | [ R. A. Gardner, Existence and stability of travelling wave solutions of competition models: A degree theoretic approach, J. Differential Equations., 44 (1982): 343-364. |
[12] | [ J. S. Guo,Y. Morita, Entire solutions of reaction-diffusion equations and an application to discrete diffusive equations, Discrete Contin. Dyn. Syst. Ser. A., 12 (2005): 193-212. |
[13] | [ J. S. Guo,C. H. Wu, Entire solutions for a two-component competition system in a lattice, Tohoku Math. J., 62 (2010): 17-28. |
[14] | [ F. Hamel, Qualitative properties of monostable pulsating fronts: Exponential decayed monotonicity, J. Math. Pures Appl., 89 (2008): 355-399. |
[15] | [ F. Hamel,N. Nadirashvili, Entire solutions of the KPP equation, Comm. Pure Appl. Math., 52 (1999): 1255-1276. |
[16] | [ F. Hamel,N. Nadirashvili, Travelling fronts and entire solutions of the Fisher-KPP equation in \mathbb R^N, Arch. Ration. Mech. Anal., 157 (2001): 91-163. |
[17] | [ Y. Hosono, Singular perturbation analysis of travelling waves of diffusive Lotka-Volterra competition models, Numerical and Applied Mathematics, Part Ⅱ (Paris 1988), null (1989): 687-692. |
[18] | [ X. Hou,A. W. Leung, Traveling wave solutions for a competitive reaction-diffusion system and their asymptotics, Nonlinear Anal. Real World Appl., 9 (2008): 2196-2213. |
[19] | [ Y. Kan-On, Parameter dependence of propagation speed of travelling waves for competition-diffusion equations, SIAM J. Math. Anal., 26 (1995): 340-363. |
[20] | [ Y. Kan-On, Fisher wave fronts for the Lotka-Volterra competition model with diffusion, Nonlinear Anal., 28 (1997): 145-164. |
[21] | [ W. T. Li,Y. J. Sun,Z. C. Wang, Entire solutions in the Fisher-KPP equation with nonlocal dispersal, Nonlinear Anal. Real World Appl., 11 (2010): 2302-2313. |
[22] | [ W. T. Li,Z. C. Wang,J. Wu, Entire solutions in monostable reaction-diffusion equations with delayed nonlinearity, J. Differential Equations, 245 (2008): 102-129. |
[23] | [ W. T. Li,J. B. Wang,L. Zhang, Entire solutions of nonlocal dispersal equations with monostable nonlinearity in space periodic habitats, J. Differential Equations, 261 (2016): 2472-2501. |
[24] | [ W. T. Li,L. Zhang,G. B. Zhang, Invasion entire solutions in a competition system with nonlocal dispersal, Discrete Contin. Dyn. Syst. Ser. A., 35 (2015): 1531-1560. |
[25] | [ N. W. Liu,W. T. Li,Z. C. Wang, Pulsating type entire solutions of monostable reaction-advection-diffusion equations in periodic excitable media, Nonlinear Anal., 75 (2012): 1869-1880. |
[26] | [ A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhauser, Boston, 1995. |
[27] | [ G. Lv,M. Wang, Traveling wave front in diffusive and competitive Lotka-Volterra system with delays, Nonlinear Anal. Real World Appl., 11 (2010): 1323-1329. |
[28] | [ Y. Morita,H. Ninomiya, Entire solutions with merging fronts to reaction-diffusion equations, J. Dynam. Differential Equations, 18 (2006): 841-861. |
[29] | [ Y. Morita,K. Tachibana, An entire solution to the Lotka-Volterra competition-diffusion equations, SIAM J. Math. Anal., 40 (2009): 2217-2240. |
[30] | [ G. Nadin, Traveling fronts in space-time periodic media, J. Math. Pures Appl., 92 (2009): 232-262. |
[31] | [ G. Nadin, Existence and uniqueness of the solution of a space-time periodic reaction-diffusion equation, J. Differential Equations, 249 (2010): 1288-1304. |
[32] | [ J. Nolen,M. Rudd,J. Xin, Existence of KPP fronts in spatially-temporally periodic advection and variational principle for propagation speeds, Dyn. Partial Differ. Equ., 2 (2005): 1-24. |
[33] | [ W. Shen, Traveling waves in time periodic lattice differential equations, Nonlinear Anal., 54 (2003): 319-339. |
[34] | [ W. J. Sheng and J. B. Wang, Entire solutions of time periodic bistable reaction-advection-diffusion equations in infinite cylinders J. Math. Phys., 56 (2015), 081501, 17 pp. |
[35] | [ Y. J. Sun,W. T. Li,Z. C. Wang, Entire solutions in nonlocal dispersal equations with bistable nonlinearity, J. Differential Equations, 251 (2011): 551-581. |
[36] | [ M. M. Tang,P. C. Fife, Propagating fronts for competing species equations with diffusion, Arch. Ration. Mech. Anal., 73 (1980): 69-77. |
[37] | [ J. H. Vuuren, The existence of traveling plane waves in a general class of competition-diffusion systems, SIMA J. Appl. Math., 55 (1995): 135-148. |
[38] | [ M. Wang,G. Lv, Entire solutions of a diffusive and competitive Lotka-Volterra type system with nonlocal delays, Nonlinearity, 23 (2010): 1609-1630. |
[39] | [ Z. C. Wang,W. T. Li,S. Ruan, Entire solutions in bistable reaction-diffusion equations with nonlocal delayed nonlinearity, Trans. Amer. Math. Soc., 361 (2009): 2047-2084. |
[40] | [ Z. C. Wang,W. T. Li,J. Wu, Entire solutions in delayed lattice differential equations with monostable nonlinearity, SIAM J. Math. Anal., 40 (2009): 2392-2420. |
[41] | [ H. Yagisita, Backward global solutions characterizing annihilation dynamics of travelling fronts, Publ. Res. Inst. Math. Sci., 39 (2003): 117-164. |
[42] | [ L. Zhang,W. T. Li,S. L. Wu, Multi-type entire solutions in a nonlocal dispersal epidemic model, J. Dynam. Differential Equations, 28 (2016): 189-224. |
[43] | [ G. Zhao,S. Ruan, Existence, uniqueness and asymptotic stability of time periodic traveling waves for a periodic Lotka-Volterra competition system with diffusion, J. Math. Pures Appl., 95 (2011): 627-671. |
[44] | [ G. Zhao,S. Ruan, Time periodic traveling wave solutions for periodic advection-reaction-diffusion systems, J. Differential Equations, 257 (2014): 1078-1147. |
[45] | [ X. Q. Zhao, Dynamical Systems in Population Biology, Springer-Verlag, New York, 2003. |
1. | Wei-Jian Bo, Guo Lin, Yuanwei Qi, Propagation dynamics of a time periodic diffusion equation with degenerate nonlinearity, 2019, 45, 14681218, 376, 10.1016/j.nonrwa.2018.07.010 | |
2. | Li-Jun Du, Wan-Tong Li, Shi-Liang Wu, Pulsating fronts and front-like entire solutions for a reaction–advection–diffusion competition model in a periodic habitat, 2019, 266, 00220396, 8419, 10.1016/j.jde.2018.12.029 | |
3. | Li-Jun Du, Wan-Tong Li, Shi-Liang Wu, Propagation phenomena for a bistable Lotka–Volterra competition system with advection in a periodic habitat, 2020, 71, 0044-2275, 10.1007/s00033-019-1236-6 | |
4. | Jingjing Cai, Li Xu, Yuan Chai, Entire solutions of time periodic Fisher–KPP equation on the half line, 2020, 200, 0362546X, 112005, 10.1016/j.na.2020.112005 | |
5. | Li-Jun Du, Wan-Tong Li, Jia-Bing Wang, Asymptotic behavior of traveling fronts and entire solutions for a periodic bistable competition–diffusion system, 2018, 265, 00220396, 6210, 10.1016/j.jde.2018.07.024 | |
6. | Yu-Xia Hao, Wan-Tong Li, Jia-Bing Wang, Propagation dynamics of Lotka-Volterra competition systems with asymmetric dispersal in periodic habitats, 2021, 300, 00220396, 185, 10.1016/j.jde.2021.07.041 | |
7. | Qiong Wu, Chaohong Pan, Hongyong Wang, Speed determinacy of the traveling waves for a three species time‐periodic Lotka–Volterra competition system, 2022, 45, 0170-4214, 6080, 10.1002/mma.8156 |