Processing math: 42%
 

Invasion entire solutions in a time periodic Lotka-Volterra competition system with diffusion

  • Received: 01 March 2016 Accepted: 01 October 2016 Published: 01 October 2017
  • MSC : Primary: 35K57, 35K55; Secondary: 35B15, 92D25

  • This paper is concerned with invasion entire solutions of a monostable time periodic Lotka-Volterra competition-diffusion system. We first give the asymptotic behaviors of time periodic traveling wave solutions at infinity by a dynamical approach coupled with the two-sided Laplace transform. According to these asymptotic behaviors, we then obtain some key estimates which are crucial for the construction of an appropriate pair of sub-super solutions. Finally, using the sub-super solutions method and comparison principle, we establish the existence of invasion entire solutions which behave as two periodic traveling fronts with different speeds propagating from both sides of x-axis. In other words, we formulate a new invasion way of the superior species to the inferior one in a time periodic environment.

    Citation: Li-Jun Du, Wan-Tong Li, Jia-Bing Wang. Invasion entire solutions in a time periodic Lotka-Volterra competition system with diffusion[J]. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1187-1213. doi: 10.3934/mbe.2017061

    Related Papers:

    [1] Xixia Ma, Rongsong Liu, Liming Cai . Stability of traveling wave solutions for a nonlocal Lotka-Volterra model. Mathematical Biosciences and Engineering, 2024, 21(1): 444-473. doi: 10.3934/mbe.2024020
    [2] Haiyan Wang, Shiliang Wu . Spatial dynamics for a model of epidermal wound healing. Mathematical Biosciences and Engineering, 2014, 11(5): 1215-1227. doi: 10.3934/mbe.2014.11.1215
    [3] Jian Fang, Na Li, Chenhe Xu . A nonlocal population model for the invasion of Canada goldenrod. Mathematical Biosciences and Engineering, 2022, 19(10): 9915-9937. doi: 10.3934/mbe.2022462
    [4] Maryam Basiri, Frithjof Lutscher, Abbas Moameni . Traveling waves in a free boundary problem for the spread of ecosystem engineers. Mathematical Biosciences and Engineering, 2025, 22(1): 152-184. doi: 10.3934/mbe.2025008
    [5] José Luis Díaz Palencia, Abraham Otero . Modelling the interaction of invasive-invaded species based on the general Bramson dynamics and with a density dependant diffusion and advection. Mathematical Biosciences and Engineering, 2023, 20(7): 13200-13221. doi: 10.3934/mbe.2023589
    [6] Yong Yang, Zunxian Li, Chengyi Xia . Forced waves and their asymptotic behaviors in a Lotka-Volterra competition model with spatio-temporal nonlocal effect under climate change. Mathematical Biosciences and Engineering, 2023, 20(8): 13638-13659. doi: 10.3934/mbe.2023608
    [7] Baojian Hong . Bifurcation analysis and exact solutions for a class of generalized time-space fractional nonlinear Schrödinger equations. Mathematical Biosciences and Engineering, 2023, 20(8): 14377-14394. doi: 10.3934/mbe.2023643
    [8] Guo Lin, Shuxia Pan, Xiang-Ping Yan . Spreading speeds of epidemic models with nonlocal delays. Mathematical Biosciences and Engineering, 2019, 16(6): 7562-7588. doi: 10.3934/mbe.2019380
    [9] Ran Zhang, Shengqiang Liu . Traveling waves for SVIR epidemic model with nonlocal dispersal. Mathematical Biosciences and Engineering, 2019, 16(3): 1654-1682. doi: 10.3934/mbe.2019079
    [10] Tong Li, Zhi-An Wang . Traveling wave solutions of a singular Keller-Segel system with logistic source. Mathematical Biosciences and Engineering, 2022, 19(8): 8107-8131. doi: 10.3934/mbe.2022379
  • This paper is concerned with invasion entire solutions of a monostable time periodic Lotka-Volterra competition-diffusion system. We first give the asymptotic behaviors of time periodic traveling wave solutions at infinity by a dynamical approach coupled with the two-sided Laplace transform. According to these asymptotic behaviors, we then obtain some key estimates which are crucial for the construction of an appropriate pair of sub-super solutions. Finally, using the sub-super solutions method and comparison principle, we establish the existence of invasion entire solutions which behave as two periodic traveling fronts with different speeds propagating from both sides of x-axis. In other words, we formulate a new invasion way of the superior species to the inferior one in a time periodic environment.


    1. Introduction

    In this paper, we consider the following time periodic Lotka-Volterra competition-diffusion system

    {ut=uxx+u(r1(t)a1(t)ub1(t)v),vt=dvxx+v(r2(t)a2(t)ub2(t)v), (1.1)

    where u=u(t,x) and v=v(t,x) denote the densities of two competing species at time tR+ and xR, d(0,1] denotes the relatively diffusive coefficient of the two species, ri(t),ai(t) and bi(t) are T-periodic continuous functions, ai() and bi() are positive in [0, T], and ¯ri:=1TT0ri(t)dt>0, where i=1,2. Systems like (1.1) arise in interactive populations which live in a fluctuating environment, for instance, physical environmental conditions such as temperature and humidity and the availability of food, water and other resources usually vary in time with seasonal or daily variations [45]. Time periodic traveling waves of (1.1) are solutions with the form

    (u(t,x)v(t,x))=(X(t,xct)Y(t,xct))

    satisfying

    (X(t+T,z)Y(t+T,z))=(X(t,z)Y(t,z))

    and

    (X(t,±)Y(t,±)):=limz±(X(t,z)Y(t,z))=(u±(t)v±(t)),

    where cR is the wave speed, z=xct is the co-moving frame coordinate, and (u±(t),v±(t)) are periodic solutions of the corresponding kinetic system

    {dudt=u(r1(t)a1(t)ub1(t)v),dvdt=v(r2(t)a2(t)ub2(t)v). (1.2)

    Traveling wave solutions of system (1.1) with autonomous nonlinearities have been extensively studied. In particular, we can refer to Hosono [17] and Kan-on [20] for the monostable case, Conley and Gardner [8], Gardner [11] and Kan [19] for the bistable case, Tang and Fife [36] and Vuuren [37] for the coexistence case. At the same time, during the past decades, there have been many works on the space/time periodic traveling waves of scalar reaction-diffusion equations. For instance, one can see Alikakos et al. [1], Bates and Chen [4] and Shen [33] on time periodic traveling waves of the local, nonlocal and lattice equations, respectively, Berestycki and Hamel [5] and Hamel [14] on space periodic traveling waves, and Nadin [30,31] and Nolen et al. [32] on the space-time periodic traveling waves.

    It is well known that traveling wave solutions are special examples of the so-called entire solutions defined for all time and whole space. As we all know, it is of great significance in studying the entire solution since it is essential for a full understanding of the transient dynamics and structures of the global attractor. In addition, entire solutions can be used to describe the dynamics of two solutions that have distinct histories in the configuration, though their asymptotic profiles as t+ coincide. The study of new types of entire solutions can be traced back to the works of Hamel and Nadirashvili [15,16] and Yagisita [41], see also [10,7,12,28,22,39] for equations with and without delays, and [21,35] with nonlocal dispersal. Note that all these works mainly concentrate on entire solutions of scalar space-time homogeneous equations. Recently, some researchers paid attention to the study of entire solutions for space/time periodic equations (see [34,6,23,25]). With regard to some systems, Morita and Tachibana [29] first established the existence of entire solutions for a homogeneous Lotka-Volterra competition-diffusion system while Li et al [24] lately considered the corresponding nonlocal dispersal system. The basic idea in establishing such entire solutions is to use traveling fronts propagating from both sides of the x-axis to construct sub-super solutions, and then obtain the existence of entire solutions by comparison principle. A similar result was established by Guo and Wu [13] for the discrete system. One can also see Zhang et al. [42] for a nonlocal dispersal epidemic system.

    However, to the best of our knowledge, the issue on constructing new types of entire solutions other than traveling waves for time periodic reaction-diffusion systems is still open, which is the motivation of our present work. More precisely, we deal with the time periodic system (1.1) focusing on the following monostable case

    ¯r1>maxt[0,T](b1(t)b2(t))¯r2>0,mint[0,T](a2(t)a1(t))¯r1¯r2>0, (1.3)

    which implies that (1.2) has only three nonnegative T-periodic solutions (0,0), (p(t),0) and (0,q(t)), with (p(t),0) globally stable and (0,q(t)) unstable in the positive quadrant R2+={(u,v)| u0, v0}, where p(t) and q(t) are given by

    {p(t)=p0et0r1(s)ds1+p0t0es0r1(τ)dτa1(s)ds, p0=eT0r1(s)ds1T0es0r1(τ)dτa1(s)ds,q(t)=q0et0r2(s)ds1+q0t0es0r2(τ)dτb2(s)ds, q0=eT0r2(s)ds1T0es0r2(τ)dτb2(s)ds.

    For system (1.1), the time periodic traveling wave solution (X(t,z),Y(t,z)) connecting (0,q(t)) and (p(t),0) actually satisfies

    {Xt=Xzz+cXz+X(r1(t)a1(t)Xb1(t)Y),Yt=dYzz+cYz+Y(r2(t)a2(t)Xb2(t)Y),(X(t,z),Y(t,z))=(X(t+T,z),Y(t+T,z)),limz(X,Y)=(0,q(t)),limz+(X,Y)=(p(t),0). (1.4)

    In the past few years, there were a few works devoted to the study of this issue. In particular, Zhao and Ruan [43] established the existence, uniqueness and stability of time periodic traveling waves under the monostable assumption (1.3). In 2014, the authors extended the results to a class of more general time-periodic advection-reaction-diffusion systems in [44]. In addition, Bao and Wang [3] obtained the existence and stability of time periodic traveling waves for the bistable case. Very recently, Bao et al. [2] further studied the existence, non-existence and asymptotic stability of bistable time-periodic traveling curved fronts in two-dimensional spatial space.

    In our present paper, we shall consider the invasion entire solutions of system (1.1), that is, an entire solution (u(t,x),v(t,x)) satisfying (1.1) as well as the following conditions

    limt{|u(t,x)|+|v(t,x))q(t)|}=0 locally in xR,limt+{|u(t,x)p(t)|+|v(t,x)|}=0 locally in xR.

    For future reference, we denote a vector by u=(u1,,un), where ui stands for the ith component of u. Let I, ΓR be two (possibly unbounded) intervals and MRn. Denote by C(I×Γ,M) the space of continuous functions u:I×ΓM, Cb(I×Γ,M) the space of functions uC(I×Γ,M) with |u|<, Ck,l(I×Γ,M) the space of functions uC(I×Γ,M) such that u(,x) is k-time continuously differentiable and u(t,) is l-time continuously differentiable, Ck,lb(I×Γ,M) the space of functions uCk,l(I×Γ,M) such that all partial derivatives of u are uniformly bounded. Throughout the paper, we always assume that

    (A1): ri, ai, biCθ(R,R) for some 0<θ<1, ri(t+T)=ri(t), ai(t+T)=ai(t), bi(t+T)=bi(t), i=1,2.

    (A2): ¯ri>0, ai(t)>0, bi(t)>0 for all t[0,T]. Moreover, ¯r1>maxt[0,T](b1b2)¯r2 and  ¯r2mint[0,T](a2a1)¯r1.

    (A3): a1(t)p(t)b1(t)q(t)a2(t)p(t)b2(t)q(t)0 for all t[0,T].

    Now let u(t,x)=u(t,x)p(t) and v(t,x)=q(t)v(t,x)q(t), then (1.1) becomes (omitting for simplicity)

    {ut=uxx+a1pu[1N1(t)u+N1(t)v],vt=dvxx+b2q(1v)[N2(t)uv)], (1.5)

    where N1(t)=b1(t)q(t)a1(t)p(t)1 and N2(t)=a2(t)p(t)b2(t)q(t)1 for all tR. It is easy to see that

    (P(t,z),Q(t,z)):=(X(t,z)p(t),q(t)Y(t,z)q(t))

    is a periodic traveling wave solution of (1.5) connecting (0,0) and (1,1), that is

    {Pt=Pzz+cPz+a1pP[1N1(t)P+N1(t)Q],Qt=dQzz+cQz+b2q(1Q)[N2(t)PQ)],(P(t,z),Q(t,z))=(P(t+T,z),Q(t+T,z)),limz(P,Q)=(0,0),limz+(P,Q)=(1,1). (1.6)

    Clearly, if (P(t,z),Q(t,z))=(P(t,xct),Q(t,xct)) is a periodic traveling wave solution of (1.5) with speed c, then (˜P(t,z),˜Q(t,z)):=(P(t,xct),Q(t,xct)) is a periodic traveling wave solution of (1.5) as well, with speed ˜c:=c>0 and satisfies

    limz(˜P,˜Q)=(1,1) and limz+(˜P,˜Q)=(0,0).

    Under assumptions (A1) - (A3), for any cc, (1.5) admits a time periodic traveling wave solution (P,Q)C1,2b(R×R,R2) with (Pz,Qz)>(0,0) and (P,Q)(1,1) for all (t,z)R×R, where

    c=2¯(a1pb1q)

    is the maximal wave speed (see [43]). In particular, the authors in [43] obtained the exact exponential decay rate of solutions of (1.6) as z in establishing the uniqueness of the periodic traveling wave solution. Next we will consider the cooperative system (1.5) to obtain invasion entire solutions of system (1.1). In order to employ the basic idea developed in [29,13,27] to establish the existence of such entire solutions, we essentially need some estimates which are concerned with the asymptotic behavior of the periodic traveling wave solution. One of the main difficulties arises in obtaining the exact exponential decay rate of the periodic traveling wave as it tends to its limiting state. In the autonomous case, the asymptotic behavior is usually obtained by investigating the linearized equations at the equilibrium points (see e.g. [38,18]), which can not be applied to system (1.1) since the presence of time dependent nonlinearities. Inspired by [43], we employ the two-sided Laplace transform method to obtain the exact exponential decay rate, which is essentially based on some a priori exponential decay estimates of the periodic traveling wave tails as z+. In particular, unlike the a priori exponential estimates as z characterized by the principle eigenvalue of the linear periodic eigenvalue problem associated with the linearized system at the unstable limiting state (see [43,Lemma 3.3]), the exponential estimates as z+ can only be characterized by a small perturbation of the corresponding principle eigenvalue (see 'λ±c,ϵ' in Lemma 2.2). Fortunately, this small perturbation can be declined small enough such that it imposes no influence on the Laurent development of the resolvent near the isolated principle eigenvalue.

    The rest of this paper is organized as follows. In Section 2, we study the exact exponential decay rate of a periodic traveling wave solution of (1.5) as it approaches its stable limiting state. We then establish some key and useful estimates in Section 3. In Section 4, we establish the existence and qualitative properties of entire solutions by a comparing argument.


    2. Asymptotic behavior of periodic traveling wave fronts

    In this section we shall study the asymptotic behavior of time periodic traveling waves of (1.5).

    Denote

    κ=¯a1pb1q, ϕ(t)=et0(a1(s)p(s)b1(s)q(s))dsκt, λ+c=cc24κ2

    if cc=2κ, and

    {ϕd(t)=ϕd(0)et0(b2(s)q(s)+ρ0)ds+t0ets(b2(τ)q(τ)+ρ0)dτa2(s)p(s)ϕ(s)ds,ϕd(0)=(1eT0(b2(t)q(t)+ρ0)dt)1T0eTs(b2(τ)q(τ)+ρ0)dτa2(s)p(s)ϕ(s)ds,

    where ρ0=κ+(1d)(λ+c)2. For completeness, we first state the following asymptotic behavior of solutions of system (1.6) as it approaches its unstable limiting state (see [43,Theorem 3.8]).

    Proposition 1. Assume (A1) - (A3) hold, and (P(t,z),Q(t,z))C1,2b(R×R,R2) and c solve (1.6). Then

    limzP(t,z)k1|z|leλ+czϕ(t)=1,limzQ(t,z)k1|z|leλ+czϕd(t)=1uniformlyin tR,

    and

    limzPz(t,z)k1|z|leλ+czϕ(t)=λ+c,limzQz(t,z)k1|z|leλ+czϕd(t)=λ+cuniformlyin tR,

    where k1>0 is a constant, l=0 if c<c and l=1 if c=c.

    In order to characterize the asymptotic behavior of time periodic traveling waves as z+, we now list a useful lemma of the Harnack inequalities for cooperative parabolic system, which was given in [9] (see also [43,3]).

    Lemma 2.1. Let

    Lk:=ni,j=1aki,j(t,x)2xixj+ni=1bki(t,x)xit (k=1,2,,l)

    be uniformly parabolic in an open domain (τ,M)×Ω of (t,x)R×Rn, that is, there is α0>0 such that aki,j(t,x)ξiξjα0ni=1ξi2 for any n-tuples of real numbers (ξ1,ξ2,,ξn), where <τ<M+ and ω is open and bounded. Suppose that aki,j, bkiC((τ,M)×Ω,R) and

    sup(τ,M)×Ω(|aki,j(t,x)|+|bki(t,x)|)β0forsomeβ0>0.

    Assume that w=(w1,w2,,wl)C([τ,M)ׯΩ,Rl)C1,2((τ,M)×Ω,Rl) satisfies:

    ls=1ck,s(t,x)ws+Lkwk0,(t,x)(τ,M)×Ω,  k=1,2,,l, (2.1)

    where ck,sC((τ,M)×Ω,R) and ck,s0 if ks, and

    sup(t,x)(τ,M)×Ω|ck,s(t,x)|γ0 (k,s=1,2,,l)forsomeγ0>0.

    Let D and U be domains in ω such that D⊂⊂U, dist(¯D,U)>ρ and |D|>ε for certain positive constants ρ and ε>0. Let θ be a positive constant with τ+4θ<M. Then there exist positive constants p, ω1 and ω2, determined by α0, β0, γ0, ρ, ϵ, n, θ and diamΩ, such that

    inf(τ+3θ,τ+4θ)×Dwkω1(wk)+Lp((τ+θ,τ+2θ)×D)ω2maxj=1,,ksupp((τ,τ+4θ)×U)(wj),

    here (wk)+=max{wk,0}, (wk)=max{wk,0} and p((τ,τ+4θ)×U)={τ}×U[τ,τ+4θ]×U. Moreover, if all inequalities in (2.1) are replaced by equalities, then the conclusion holds with p=+, and with ω1,ω2 independent of ϵ.

    Let

    (U(t,z),V(t,z))=(p(t)X(t,z)p(t),Y(t,z)q(t)),

    then we have

    {Ut=Uzz+cUz+g(t,U,V),Vt=dVzz+cVz+h(t,U,V),(U(t,z),V(t,z))=(U(t+T,z),V(t+T,z)),limz(U,V)=(1,1),limz+(U,V)=(0,0), (2.2)

    where

    {g(t,u,v)=(1u)[a1(t)p(t)ub1(t)q(t)v],h(t,u,v)=v[a2(t)p(t)(1u)b2(t)q(t)(1v)].

    For any cc=2κ, denote

    κ0=¯hv(t,0,0)=¯a2pb2q, λc=cc2+4dκ02d, ψ(t)=et0hv(s,0,0)ds+κ0t,

    and

    κ1=¯gu(t,0,0)=¯a1p, λc=cc2+4κ12, ˜ψ(t)=et0gu(s,0,0)ds+κ1t.

    To be specific and convenient, we give an additional assumption on the periodic coefficients.

    (A4): a1(t)p(t)<5 b1(t)q(t) for all t[0,T].

    Remark 1. It follows from (A4) and (A3) that b1(t)q(t)a1(t)p(t)<5 b1(t)q(t) for all t[0,T], that is, assumption (A4) is compatible with (A3). It should be emphasized here that (A4) is a technique assumption that ensures λc>λc for any cc, which is essential in obtaining the exact exponential decay rate of u in our present work. Indeed, (A3) yields that κ0κ<κ1, then a direct computation shows that

    (A4)κκ1<45κ0κ1κκ1<21+κ1κ+1=21+4κ1(c)2+1=mincc21+4κ1c2+1κ0κ1<21+4κ1c2+1for any cc,4κ02c<4κ1c2+4κ1cfor any cc.

    Thus,

    2(λcλc)=c+c2+4dκ0d(c+c2+4κ1)=4κ0c2+4dκ0c4κ1c2+4κ1c<4κ02c4κ1c2+4κ1c<0for any cc.

    Remark 2. We also remark here that when d=1, condition (A4) can be deleted since λc>λc holds certainly under condition (A3).

    Noting that g(t,0,0)=h(t,0,0)=g(t,1,1)=h(t,1,1)=0, system (2.2) can be written as

    {Ut=Uzz+cUz+U10gu(t,τU,τV)dτ+V10gv(t,τU,τV)dτ,Vt=dVzz+cVz+U10hu(t,τU,τV)dτ+V10hv(t,τU,τV)dτ. (2.3)

    Let D=(z14,z+14), U=(z12,z+12), Ω=(z1,z+1) with zR, τ=0, and θ=T. Since U(,z) and V(,z) are periodic of t, and (U,V) are both positive and bounded, Lemma 2.1 then implies that there is some N>0 such that

    (U(t,z),V(t,z))N(U(t,z),V(t,z))for all zR, t, tR. (2.4)

    We now state an essential lemma for system (2.2) on the exponential decay estimates of the periodic traveling wave tails as z+ by using the method similar to [2].

    Lemma 2.2. Assume (A1) - (A4) hold. Let (U(t,z),V(t,z))C1,2b(R×R,R2) be a solution of (2.2). Then for any 0<ϵ<min{1,κ0C+}, there exist some constants Ki>0 (i=1,2,3,4) and σ<λc such that

    K1eσzU(t,z)K2eλ+c,ϵzforany (t,z)R×[0,+) (2.5)

    and

    K3eλc,ϵzV(t,z)K4eλ+c,ϵzforany (t,z)R×[0,+), (2.6)

    where λ±c,ϵ=cc2+4d(κ0C±ϵ)2d, C+=max[0,T]a2(t)p(t) and C=max[0,T]b2(t)q(t).

    Proof. According to definitions of ψ(t) and ˜ψ(t), U(t,z)˜ψ(t) and V(t,z)ψ(t) are Tperiodic in t for any zR. Let

    ˆu(z)=T0U(t,z)˜ψ(t)dt,ˆv(z)=T0V(t,z)ψ(t)dtfor any zR,

    then a direct calculation yields that

    {ˆuzz+cˆuzκ1ˆu+T0b1(t)q(t)V(t,z)˜ψ(t)dt+T0a1(t)p(t)U2(t,z)b1(t)q(t)U(t,z)V(t,z)˜ψ(t)dt=0,dˆvzz+cˆvzκ0ˆv+T0a2(t)p(t)U(t,z)V(t,z)b2(t)q(t)V2(t,z)ψ(t)dt=0. (2.7)

    Since

    limz+(U(t,z),V(t,z))=(0,0) uniformly in tR,

    for any 0<ϵ<min{1,κ0C+}, we can choose constant M>>1 such that (0,0)<(U(t,z),V(t,z))(ϵ,ϵ) for any (t,z)[0,T]×[M,+).

    We first show (2.6). Let

    V+(z)=ρeλ+c,ϵz with λ+c,ϵ=cc2+4d(κ0C+ϵ)2d<0,

    then V+(z) is a solution of the linear equation

    dvzz+cvzκ0v+C+ϵv=0. (2.8)

    Since ˆv is bounded, we can choose ρ>0 large enough such that ˆv(M)ρeλ+c,ϵM. In addition, we obtain from the second equation of (2.7) that

    0=dˆvzz+cˆvzκ0ˆv+T0a2(t)p(t)U(t,z)V(t,z)b2(t)q(t)V2(t,z)ψ(t)dtdˆvzz+cˆvzκ0ˆv+T0a2(t)p(t)U(t,z)V(t,z)ψ(t)dtdˆvzz+cˆvzκ0ˆv+C+ϵˆv

    for any z[M,+), which implies that ˆv(z) is a subsolution of (2.8) in [M,+). Since limz+ˆv(z)=limz+V+(z)=0, the maximum principle then yields that ˆv(z)ρeλ+c,ϵz for any z[M,+). Hence, there exists constant ρρ such that ˆv(z)ρeλ+c,ϵz for any z[0,+). Furthermore, we have inf[0,T]V(t,z)C1Tˆv(z)C1ρTeλ+c,ϵz for any z[0,+) with some constant C1>0, which combining the Harnack inequalities (2.4) shows that there exists K4>0 such that V(t,z)K4eλ+c,ϵz for any (t,z)R×[0,+). Similarly, let V(z)=ηeλc,ϵz, where λc,ϵ=cc2+4d(κ0+Cϵ)2d<0 and ˆv(M)ηeλc,ϵM for some η>0. Then V(z) satisfies

    dvzz+cvzκ0vCϵv=0. (2.9)

    On the other hand, by the second equation of (2.7), we have

    0=dˆvzz+cˆvzκ0ˆv+T0a2(t)p(t)U(t,z)V(t,z)b2(t)q(t)V2(t,z)ψ(t)dtdˆvzz+cˆvzκ0ˆvT0b2(t)q(t)V2(t,z)ψ(t)dtdˆvzz+cˆvzκ0ˆvCϵˆv

    for any z[M,+), thus ˆv(z) is a supersolution of (2.9) in [M,+). Since limz+ˆv(z)=limz+V(z)=0, it follows from the maximum principle that ˆv(z)ηeλc,ϵz for any z[M,+). A similar argument yields that there exists K3>0 such that V(t,z)K3eλc,ϵz for any (t,z)R×[0,+).

    We now prove (2.5). Note that (A4) implies λc<λc<λ+c,ϵ<0, it then follows from the definition of λc that L:=(λ+c,ϵ)2cλ+c,ϵ+κ1>0. In view of V(t,z)K4eλ+c,ϵz for any (t,z)R×[0,+), the Harnack inequalities (2.4) imply that there exist positive constants M1 and M2 such that

    T0b1(t)q(t)V(t,z)˜ψ(t)dtTmax[0,T]b1(t)q(t)˜ψ(t)K4eλ+c,ϵzM1eλ+c,ϵz,T0a1(t)p(t)U2(t,z)˜ψ(t)dtmax[0,T][a1(t)p(t)˜ψ(t)]T0U2(t,z)˜ψ2(t)dtM2(ˆu(z))2

    for any z[0,+). Moreover, we know from limz+ˆu(z)=0 that there exists a constant M>0 such that M2ˆu(z)12min{L,κ1} for any z[M,+). The first equation of (2.7) indicates that

    0=ˆuzz+cˆuzκ1ˆu+T0b1(t)q(t)V(t,z)˜ψ(t)dt+T0a1(t)p(t)U2(t,z)b1(t)q(t)U(t,z)V(t,z)˜ψ(t)dtˆuzz+cˆuzκ1ˆu+T0b1(t)q(t)V(t,z)˜ψ(t)dt+T0a1(t)p(t)U2(t,z)˜ψ(t)dtˆuzz+cˆuzκ1ˆu+M1eλ+c,ϵz+M2(ˆu(z))2ˆuzz+cˆuzκ1ˆu+M1eλ+c,ϵz+L2ˆu

    for any z[M,+), that is, ˆu is a subsolution of equation

    uzzcuz+κ1uL2uM1eλ+c,ϵz=0,z[M,+). (2.10)

    Let U+(z)=δeλ+c,ϵz with δ2M1L large enough such that ˆu(M)δeλ+c,ϵM, then

    U+zzcU+z+κ1U+L2U+M1eλ+c,ϵz=[(λ+c,ϵ)2cλ+c,ϵ+κ1L2M1δ]δeλ+c,ϵz=(L2M1δ)δeλ+c,ϵz0

    for any z[M,+), which shows that U+(z) is a supersolution of (2.10). Since limz+ˆu(z)=limz+U+(z)=0, the maximum principle yields that ˆu(z)U+(z) for all z[M,+). On the other hand, there exists N3>0 such that

    T0b1(t)q(t)U(t,z)V(t,z)˜ψ(t)dtmax[0,T](b1q)K4eλ+c,ϵzˆuN3eλ+c,ϵzˆu

    for any z[0,+), and we then have

    0=ˆuzz+cˆuzκ1ˆu+T0b1(t)q(t)V(t,z)˜ψ(t)dt+T0a1(t)p(t)U2(t,z)b1(t)q(t)U(t,z)V(t,z)˜ψ(t)dtˆuzz+cˆuzκ1ˆuT0b1(t)q(t)U(t,z)V(t,z)˜ψ(t)dtˆuzz+cˆuzκ1ˆuN3eλ+c,ϵzˆu

    for any z[0,+), that is, ˆu(z) is a supersolution of the equation

    Uzz+cUzκ1UN3eλ+c,ϵzU=0,z[0,+). (2.11)

    By the definition of λc, we have σ2+cσκ1>0 for σ<λc. Let MM such that eλ+c,ϵMσ2+cσκ1N3. Taking U(z)=δeσz with δ>0 large enough satisfying ˆu(M)δeσM, it then follows that

    Uzz+cUzκ1UN3eλ+c,ϵzU=(σ2+cσκ1N3eλ+c,ϵz)δeσz(σ2+cσκ1N3eλ+c,ϵM)δeσz0

    for any z[M,+), that is, U(z) is a subsolution of (2.11). Note that limz+ˆu(z)=limz+U(z)=0, again the maximum principle yields that ˆu(z)U(z) for any z[M,+). Thus δeσzˆu(z)δeλ+c,ϵz for all z[M,+), then (2.5) follows from the same argument as (2.6). The proof is complete.

    Remark 3. The definitions of λ±c,ϵ indicate that there exist ε±=ε±(ϵ)>0 such that for any cc and 0<ϵ<min{1,κ0C+}, there holds λ±c,ϵ=λc±ε± with ε±(ϵ)0+ as ϵ0+. Actually, we know from the proof of Lemma 2.2 that the exponential decay as z+ can only be estimated by the perturbation λ±c,ϵ rather than λc, since there is no such exponential type sub-super solutions that equipped with λc as the exponential decay rate.

    Lemma 2.3. Suppose (A1) - (A4) hold, let (U(t,z),V(t,z))C1,2b(R×R,R2) be a solution of (2.2). Then there exist C1>0 and C2>0 such that

    |U(t,z)|+|Uz(t,z)|+|Uzz(t,z)|C1eλ+c,ϵzforany (t,z)R×[0,+),
    |V(t,z)|+|Vz(t,z)|+|Vzz(t,z)|C2eλ+c,ϵzforany (t,z)R×[0,+),

    where λ+c,ϵ are defined as in Lemma 2.2.

    Proof. The proof is similar to [43,Proposition 3.4], using the interior parabolic estimates and Lemma 2.1, so we omit the details here.

    We next establish the exact exponential decay rate of the solution of (2.2) as z+. Specifically, regarding variable z as the evolution variable, we employ the Laplace transform method and spectral theory for this purpose. In the following of the current section, we denote (u(t,z),v(t,z)):=(U(t,z),V(t,z)) for convenience of writing.

    Let Y=L2T×L2T, where L2T:={T0|h(t+s)|2ds<, h(t+T)=h(t)} is equipped with the norm hL2T=(T0|h(s)|2ds)12, and H1T={hL2T, suptRT0|h(t+s)|2ds<}. Define A:D(A)YY as

    A=(0I1d(thv(t,0,0))cd). (2.12)

    It is easy to see that A is closed and densely defined in D(A)=H1T×L2T. Now let w=vz, then the v--equation of (2.2) can be written as a first order system

    ddz(vw)=A(vw)+(01d[hv(t,0,0)vh(t,u,v)]).

    Similar to [43,Lemma 3.5], we have that λcσ(A) (the spectrum of A) and

    ker(λcIA)n=ker(λcIA)=span{(ψ(t)λcψ(t))} for n=2,3,,

    which implies that λc is a simple pole of (λIA)1 (see [26,Remark A.2.4]). Moreover, a similar argument as [43,Proposition 3.6] shows that there exists ε>0 such that Θεσ(A)={λc}, where Θε={λC|λcεReλλc+ε} is the vertical strip containing the vertical line Reλ=λc. Thus, λc is the only singular point of λIA in Θε. Then by [26], we have

    (λIA)1=n=0(1)n(λλc)nSn+1+P(λλc)+n=1(λλc)n+1Dn, (2.13)

    where P=12πiΓ(λIA)1dλ is the spectral projection with Γ:|λλc|<ε for some small ε>0 and

    S=12πiΓ(λIA)1λλcdλ=limλλc(IP)(λIA)1,

    D=(AλcI)P. Since \lambda_c^- is a simple pole of {(\lambda I-\mathcal A)^{-1}}, [26,Proposition A.2.2] then implies that {R(P)}=\ker(\lambda_c^-I-\mathcal A) for any c\leq c^*, hence {{D^n}=0} for all n\in N^+ and (2.13) becomes

    (\lambda I-\mathcal A)^{-1}=\sum\limits_{n=0}^\infty{{(-1)^n}{{(\lambda-\lambda_c^-)}^n}{S^{n+1}}} +\frac{P}{{(\lambda-\lambda_c^-)}}. (2.14)

    The formula (2.14) is therefore the Laurent series of (\lambda I-\mathcal A)^{-1} near \lambda=\lambda_c^-, and the projection P is the residue of (\lambda I-\mathcal A)^{-1} at \lambda=\lambda_c^-. On the other hand, if we let \lambda=\mu+i\eta\in\rho(\mathcal A) with \mu,~\eta\in\mathbb{R}, denote by

    S=\left\{{\left(\left.{\begin{array}{*{20}{c}}0\\j \end{array}}\right)\right|j\in L_T^2} \right\}\subset Y

    and (\lambda I-\mathcal A)_S^{-1} the restriction of (\lambda I-\mathcal A)^{-1} to S, similar to [43,Remark 3.7], there exist positive constants C and \varrho such that for any \mu\in[\lambda_c^--{\varepsilon^\prime},\lambda_c^-+{\varepsilon^\prime}], there holds

    \left\|{(\lambda I-\mathcal A)_S^{-1}}\right\|\leq\frac{C}{{\left|\eta\right|}}\text{ for } \left|\eta \right|\geq\varrho. (2.15)

    Now we state the main results of this section as follows.

    Theorem 2.4. Assume (A1) - (A4) hold. Let (u(t,z),v(t,z))\in C_b^{1,2}(\mathbb R \times \mathbb R,\mathbb R^2) be a solution of (2.2). Then for any c\leq c^*, we have

    \mathop{\lim}\limits_{z \to + \infty}\frac{u(t,z)}{{k_2}{e^{\lambda_c^-z}}\widetilde \phi(t)}=1, ~\mathop{\lim}\limits_{z\to+\infty } \frac{v(t,z)}{{k_2}{e^{\lambda_c^-z}}\psi(t)}=1, ~\; uniformly\; in \; ~t\in \mathbb R (2.16)

    and

    \mathop{\lim}\limits_{z\to+\infty}\frac{{u_z}(t,z)}{{k_2}{e^{\lambda_c^-z}}\widetilde \phi(t)}= \lambda_c^-, ~\mathop{\lim}\limits_{z\to+\infty}\frac{{v_z}{(t,z)}}{{k_2}{e^{\lambda_c^-z}}\psi(t)}= \lambda_c^-, ~\; uniformly\; in\; ~t\in \mathbb R, (2.17)

    where k_2>0 is some constant and

    \begin{cases} \widetilde\phi(t)=\widetilde\phi(0){e^{\int_0^t{(\rho+{g_u}(s,0,0))ds}}} +\int_0^t{{e^{\int_s^t{(\rho+{g_u}(\tau,0,0))d\tau}}}{g_v}(s,0,0)\psi(s)ds},\\ \widetilde\phi(0)={\left({1-{e^{\int_0^T{(\rho+{g_u}(s,0,0))ds}}}}\right)^{-1}} \int_0^T{{e^{\int_s^T{(\rho+{g_u}(\tau,0,0))d\tau}}}{g_v}(s,0,0)\psi(s)ds} \end{cases} (2.18)

    with \rho={(\lambda_c^-)^2}+c\lambda_c^-.

    Proof. The proof is divided into two steps.

    Step Ⅰ. We prove that there exists k_2>0 such that

    \mathop{\lim}\limits_{z\to+\infty}\frac{v(t,z)}{{k_2}{e^{\lambda_c^-z}}\psi(t)}=1, ~\mathop{\lim}\limits_{z\to+\infty}\frac{{{v}_z}{(t,z)}}{{k_2}{e^{\lambda_c^-z}}\psi(t)}=\lambda_c^-, ~\text{uniformly in }~t\in \mathbb R.

    Now we introduce an auxiliary function

    \left\{{\chi\in C_b^3(R,R)\left|{\begin{gathered} {(ⅰ).~\chi(z)\equiv 1,~z \geq 0;}\hfill\\ {(ⅱ).~\chi(z)\equiv 0,~z <-1;} \hfill\\ {(ⅲ).~\left|{{\chi^\prime}}\right|+\left|{{\chi^{\prime\prime}}}\right|+\left|{{\chi^{\prime\prime\prime}}}\right|<\infty} \end{gathered}}\right.} \text{for all}~z\in \mathbb R \right\}

    and set w={v_z}, \breve{v}=\chi v, \breve{w}={(\chi v)_z}. A direct calculation yields that

    \breve{w}_z + \frac{c}{d}\breve{w}-\frac{1}{d}\breve{v}_t =-\frac{1}{d}{h_v}(t,0,0)\breve{v} + \frac{1}{d}\chi[{h_v}(t,0,0)v - h(t,u,v)] +{\chi^{\prime\prime}}v + 2{\chi^\prime}{v_z} + \frac{c}{d}{\chi^\prime}v. (2.19)

    Let

    \widetilde g(t,z)=\frac{1}{d}\chi[{h_v}(t,0,0)v-h(t,u,v)]+{\chi^{\prime\prime}}v+2{\chi^\prime}{v_z}+\frac{c}{d}{\chi^\prime}v,

    then we can rewrite (2.19) as a first order system

    \frac{d}{{dz}}\left( {\begin{array}{*{20}{c}} {{\breve{v}}} \\{{\breve{w}}} \end{array}} \right) = \mathcal A \left({\begin{array}{*{20}{c}} {{\breve{v}}} \\ {{\breve{w}}} \end{array}} \right) + \left({\begin{array}{*{20}{c}}0 \\ {\widetilde g(t,z)} \end{array}} \right). (2.20)

    Taking 0<\varepsilon^\prime<\min\{-\frac{{\lambda_c^-}}{4},\lambda_c^--\lambda_c\} sufficiently small such that \Theta_{\varepsilon^\prime}\cap\sigma(\mathcal A)=\{\lambda_c^-\}. For this fixed \varepsilon^\prime>0, it follows from Remark 3 that there exists 0<\epsilon<\min\{1,\frac{\kappa_0}{C^+}\} small enough such that \pm(\lambda_{c,\epsilon}^\pm-{\lambda_c^-})={\varepsilon^\pm}={\varepsilon^\pm}(\epsilon)<\frac{1}{2}{\varepsilon^\prime}. Due to Lemma 2.3, we have \mathop{\sup}\limits_{t\in R}(\left|{{\breve{v}}}\right|+\left|{{\breve{w}}}\right|+\left|{\breve{v}_z}\right|+ \left|{\breve{w}_z}\right|)=O({e^{\lambda_{c,\epsilon}^+z}}) as z\to+\infty. Thus for any Re\lambda\in (\lambda_{c,\epsilon}^+,\lambda_c^-+{\varepsilon^\prime}], there holds ({e^{-\lambda z}}{\breve{v}},{e^{-\lambda z}}{\breve{w}})\in {W^{1,1}}(\mathbb R,Y)\cap{W^{1,\infty}}(\mathbb R,Y). We now take the two-sided Laplace transform of (2.20) with respect to z and obtain that

    \left({\begin{array}{*{20}{c}} {\int_\mathbb R{{e^{-\lambda s}}{\breve{v}}(\cdot,s)ds}}\\{\int_\mathbb R{{e^{-\lambda s}}{\breve{w}}(\cdot,s)ds} } \end{array}}\right)=\mathcal F(\lambda):={(\lambda I-\mathcal A)^{-1}}\left({\begin{array}{*{20}{c}} 0 \\ {\int_\mathbb R{{e^{-\lambda s}}\widetilde g(\cdot,s)ds}}\end{array}}\right), (2.21)

    where \lambda_{c,\epsilon}^+<Re\lambda\leq\lambda_c^-+{\varepsilon^\prime}. It follows from the expression of \widetilde g and Lemma 2.3 that \mathop{\sup}\limits_{t\in \mathbb R}\left({\left|{\widetilde g}\right|+\left|{{{\widetilde g}_z}}\right|}\right) =O({e^{2\lambda_{c,\epsilon}^+z}}) as z\to+\infty. Hence {\int_\mathbb R{{e^{-\lambda s}}\widetilde g(\cdot,s)ds}} and {\int_\mathbb R{{e^{-\lambda s}}\widetilde g_z(\cdot,s)ds}} are analytic for \lambda with Re\lambda\in(\lambda_{c,\epsilon}^+-3{\varepsilon^\prime},0). Let \lambda=\mu+i\eta, then \int_\mathbb R{{e^{-\lambda s}}\widetilde g(\cdot,s)ds} =\int_\mathbb R{{e^{-i\eta s}}\cdot{e^{-\mu s}}\widetilde g(\cdot,s)ds}=\hat{f_\mu}(\eta), where \hat{f_\mu} is the Fourier transform of {f_\mu}(s):={e^{-\mu s}}\widetilde g(\cdot,s). It is easy to see that {f_\mu}(s)\in{W^{1,1}}(\mathbb R,L_T^2)\cap{W^{1,\infty}}(\mathbb R,L_T^2) for any fixed \mu\in[\lambda_{c,\varepsilon}^+-\frac{5}{2}{\varepsilon ^\prime},-\frac{1}{2}{\varepsilon^\prime}]. Particularly, {\left\|{{e^{-\mu s}}\widetilde g}\right\|_{{W^{1,1}}(\mathbb R,L_T^2)}} is uniformly bounded in \mu\in [\lambda_{c,\varepsilon}^+-\frac{5}{2}{\varepsilon^\prime},- \frac{1}{2}{\varepsilon^\prime}], hence there exist positive constants C_1 and \varrho_0 such that {\left\|{\hat{f}(\eta)}\right\|_{L_T^2}}={\left\|{\int_\mathbb R{{e^{-\lambda s}}\widetilde g(\cdot,s)ds}}\right\|_{L_T^2}} \leq\frac{C_1}{{\left|\eta\right|}} for any \left|\eta \right|\geq{\varrho_0} whenever \mu\in [\lambda_{c,\varepsilon}^+-\frac{5}{2}{\varepsilon^\prime},-\frac{1}{2}{\varepsilon^\prime}]. Inequality (2.15) then yields that there exist C_2>0 and \varrho>0 such that

    \left\|{{(\lambda I-\mathcal A)^{-1}}G(\lambda)}\right\|_Y\leq\frac{C_2}{{\left|\eta\right|}^2} \; \text{for any}\; ~\left|\eta\right|\geq\varrho, (2.22)

    whenever \mu\in[\lambda_c^--{\varepsilon^\prime}, \lambda_c^-+\frac{1}{2}{\varepsilon^\prime}]\backslash\{\lambda_c^-\}, where G(\lambda)=\left({\begin{array}{*{20}{c}}0\\{\int_\mathbb R {{e^{-\lambda s}}\widetilde g(\cdot,s)ds}}\end{array}}\right). Thus we have that \mathcal F(\lambda)=\mathcal F(\mu+i\eta)\in{L^1}(\mathbb R,Y)\cap{L^\infty}(\mathbb R,Y) for any fixed \mu\in[\lambda_c^--{\varepsilon^\prime},\lambda_c^-+\frac{1}{2}{\varepsilon^\prime}]\backslash\{\lambda_c^-\}.

    Choose \mu\in(\lambda_{c,\varepsilon}^+,~\lambda_c^-+\frac{1}{2}{\varepsilon^\prime}]. By the inverse Laplace transform we get that

    \left({\begin{array}{*{20}{c}} {{\breve{v}}(\cdot,z)} \\ {{\breve{w}}(\cdot,z)} \end{array}}\right) =\frac{1}{{2\pi i}}\int_{\mu-i\infty }^{\mu+i\infty}{{e^{\lambda z}}{{(\lambda I-\mathcal A)}^{-1}}G(\lambda)}d\lambda.

    Since ({\breve{v}}(\cdot,z),{\breve{w}}(\cdot,z))=(v(\cdot,z),w(\cdot,z)) for z\geq 0, it follows that

    \left({\begin{array}{*{20}{c}}{{v}(\cdot,z)}\\{{w}(\cdot,z)} \end{array}}\right)=\frac{1}{{2\pi i}}\int_{\mu-i\infty}^{\mu+i\infty}{{e^{\lambda z}} {{(\lambda I-\mathcal A)}^{-1}}G(\lambda)}d\lambda \; \text{for any} \; ~z\geq 0. (2.23)

    Let \widetilde\mu=\lambda_c^--{\varepsilon^\prime}, then \lambda_c^- is the only pole of \mathcal F(\lambda) in Re\lambda\in (\widetilde\mu,\lambda_{c,\varepsilon}^+]. In view of (2.22), we have

    \mathop{\lim}\limits_{\left|\eta\right|\to\infty}{\int_{\lambda_c^--{\varepsilon^\prime}}^\mu{\left\|{{e^{(\tau+i\eta)z}}{{((\tau+i\eta )I-\mathcal A)}^{-1}}G(\tau+i\eta)}\right\|}_Y}d\tau=0 \; \text{for any}~z \geq 0.

    Therefore, the path of integral in (2.23) can be shifted to Re\lambda=\widetilde\mu such that

    \begin{split} \left({\begin{array}{*{20}{c}}{{v}(\cdot,z)}\\{{w}(\cdot,z)}\end{array}} \right) =\frac{1}{{2\pi i}}\int_{\lambda_c^--\varepsilon^\prime-i\infty}^{\lambda_c^--\varepsilon^\prime+i\infty} {{e^{\lambda z}}{{(\lambda I-\mathcal A)}^{-1}}G(\lambda)}d\lambda +Res(e^{\lambda z}\mathcal F(\lambda),\lambda_c^-),~z\geq 0, \end{split} (2.24)

    where Res(g,\lambda_0):=\frac{1}{{2\pi i}} \int_{\Gamma:\left|{\lambda-\lambda_0}\right|<{\varepsilon^\prime}}{g(\lambda)d\lambda} denotes the residue of g at \lambda_0 with \varepsilon^\prime>0 sufficiently small. Furthermore, with the aid of

    {(\lambda I-\mathcal A)^{-1}G(\lambda)}= \sum\limits_{n=0}^\infty{{(-1)^n}{{(\lambda-\lambda_c^-)}^n}{S^{n + 1}}G(\lambda)} +\frac{PG(\lambda_c^-)}{{(\lambda -\lambda_c^-)}}-\frac{P[G(\lambda_c^-)-{G(\lambda)]}}{{\lambda-\lambda_c^-}}

    for \left|{\lambda-\lambda_c^-}\right|<\varepsilon^\prime,

    PG\subset\ker(\lambda_c^-I-\mathcal A)=span\left\{{\left({\begin{array}{*{20}{c}}{\psi(t)} \\{\lambda_c^-\psi(t)}\end{array}}\right)}\right\}

    and G(\lambda) is analytic in Re\lambda\in(\lambda_{c,\varepsilon }^+-3{\varepsilon^\prime},0), using the residue theorem, we obtain that

    \begin{split} \left({\begin{array}{*{20}{c}}{v(t,z)}\\{w(t,z)}\end{array}}\right)= &\frac{e^{(\lambda_c^--{\varepsilon^\prime})z}}{2\pi}\int_{-\infty }^{+\infty} {{e^{i\eta z}}{{((\lambda_c^--{\varepsilon^\prime}+i\eta )I -\mathcal A)}^{- 1}}G(\lambda_c^--{\varepsilon^\prime}+i\eta)}d\eta \\ &+{k_2}{e^{\lambda_c^-z}}\left({\begin{array}{*{20}{c}}{\psi(t)}\\ {\lambda_c^-\psi(t)}\end{array}}\right),~z\geq 0, \end{split} (2.25)

    where k_2 \geq 0 is a constant. Let \zeta(t,z)=v(t,z)-{k_2}{e^{\lambda_c^-z}}\psi(t) for all (t,z)\in\mathbb R\times{\mathbb R^+}. Note that \zeta(t,z) is T-periodic in t, then (2.25) and (2.22) imply that there exists C_3>0 such that {\left({\int_{z-1}^{z+1}}{{\int_0^{2T}{{{\left|{\zeta(\tau,s)}\right|}^2}d\tau ds}}}\right)^{\frac{1}{2}}} \leq{C_3}{e^{(\lambda_c^--{\varepsilon ^\prime})z}} for any z\geq 0. Since \zeta(t,z) satisfies

    [h(t,u,v)-{h_v}(t,0,0)v]+{h_v}(t,0,0)\zeta+d{\zeta_{zz}}+c{\zeta_z}-{\zeta_t}=0 \; \text{for all} \; ~(t,z)\in R\times{R^+}

    and Lemma 2.3 yields that [h(t,u,v)-{h_v}(t,0,0)v]=O({e^{2\lambda_{c,\varepsilon}^+z}}) as z\to+\infty, by the interior parabolic estimates, we infer that there exists C_4>0 independent of z such that

    \left({\int_{z-\frac{1}{2}}^{z+\frac{1}{2}}{\int_T^{2T} {\left({{{\left|{{\zeta_{zz}}(\tau,s)}\right|}^2}+{{\left|{{\zeta_z}(\tau,s)}\right|}^2} +{{\left|{{\zeta_t}(\tau,s)}\right|}^2}}\right)d\tau ds}}}\right)^{\frac{1}{2}} \leq{C_4}{e^{(\lambda_c^--{\varepsilon^\prime})z}}

    for any z\geq 0. Sobolev embedding theorem then implies that \mathop{\sup}\limits_{t \in [0,T]}\left|{\zeta (t,z)}\right|\leq{C_5}{e^{(\lambda_c^--{\varepsilon^\prime})z}} for all z\geq 0, where C_5>0 is constant. Noting that \lambda_{c,\varepsilon}^-=\lambda_c^--\varepsilon^->\lambda_c^--\varepsilon^\prime, then (2.6) yields that k_2>0, and thus

    \mathop{\lim}\limits_{z\to+\infty}\frac{v(t,z)}{{k_2}{e^{\lambda_c^-z}}\psi(t)}=1 \; \text{uniformly in}~t\in \mathbb R.

    Now set \widetilde\zeta(t,z)={v_z}(t,z)-{k_2}\lambda_c^-{e^{\lambda_c^-z}}\psi(t) for any (t,z)\in \mathbb R\times\mathbb R^+. We know from (2.22) that there exits C_6>0 such that {\left({\int_{z-1}^{z+1}}{{\int_0^{2T}{{{\left|{\widetilde\zeta(\tau,s)}\right|}^2}d\tau ds}}}\right)^{\frac{1}{2}}} \leq{C_6}{e^{(\lambda _c^--{\varepsilon^\prime})z}} for any z\geq0. Noting that for any (t,z)\in \mathbb R \times {\mathbb R^+},~\widetilde \zeta satisfies

    [{h_u}(t,u,v){u_z}+{h_v}(t,u,v){v_z}-{h_v}(t,0,0){v_z}]+{h_v}(t,0,0)\widetilde\zeta +d{\widetilde\zeta_{zz}}+c{\widetilde\zeta_z}-{\widetilde\zeta_t}=0

    and [{h_u}(t,u,v){u_z}+{h_v}(t,u,v){v_z}-{h_v}(t,0,0){v_z}]=O({e^{2\lambda _{c,\varepsilon }^+z}}) as z\to+\infty by Lemma 2.3. Through the same argument as above, we know that there exists C_7>0 such that \mathop{\sup}\limits_{t\in[0,T]}\left|{\widetilde\zeta(t,z)}\right|\leq{C_7} {e^{(\lambda_c^--{\varepsilon^\prime})z}} for any z\geq 0, and hence

    \mathop{\lim}\limits_{z\to+\infty }\frac{v_z(t,z)}{{k_2}{e^{\lambda_c^-z}}\psi(t)} =\lambda_c^- \; \text{uniformly in}~t\in \mathbb R.

    Step Ⅱ. We study the asymptotic behavior of u. Let \widetilde \rho=\rho+\overline{{g_u}(t,0,0)}, where \rho={(\lambda_c^-)^2}+c\lambda_c^-, then \widetilde \rho= \rho-\kappa_1 <0. Hence the equation

    {g_v}(t,0,0)\psi(t)+[{(\lambda_c^-)^2}+c\lambda_c^-+{g_u}(t,0,0)]w-{w_t}=0

    has a unique positive periodic solution \widetilde \phi(t) given by (2.18). A direct calculation shows that \omega (t,z):={k_2}{e^{\lambda_c^-z}}\widetilde \phi(t) satisfies

    {g_u}(t,0,0)\omega+{g_v}(t,0,0){k_2}{e^{\lambda_c^-z}}\psi(t)+{\omega_{zz}}+c{\omega_z}-{\omega_t}=0.

    Now let

    \xi(t,z)=\frac{{u(t,z)-{k_2}{e^{\lambda_c^-z}}\widetilde \phi(t)}}{{\widetilde \psi(t)}}, \eta(t,z)=\frac{{v(t,z) - {k_2}{e^{\lambda_c^-z}}\psi (t)}}{{\widetilde \psi(t)}},~(t,z)\in \mathbb R\times{\mathbb R^+}.

    Then \xi (t,z) satisfies R(t,z)-\kappa_1 \xi+{\xi_{zz}}+c{\xi_z}-{\xi_t}=0 for any z\geq0, where

    R(t,z)=[g(t,u,v)-{g_v}(t,0,0)v-{g_u}(t,0,0)u]{\widetilde\psi^{-1}}+{g_v}(t,0,0)\eta.

    We know from Step Ⅰ that \mathop{\sup}\limits_{t \in \mathbb R}\left|{\eta(t,z)}\right|=O({e^{(\lambda_c^--{\varepsilon^\prime})z}}) as z\to+\infty. In addition, we know from Lemma 2.3 that \mathop{sup}\limits_{t \in R}[g(t,u,v)-{g_v}(t,0,0)v-{g_u}(t,0,0)u]=O({e^{2\lambda_{c,\varepsilon}^-z}}) as z\to+\infty. Thus there exist positive constants M and K_M such that

    \left|{R(t,z)}\right|\leq\left|{[g(t,u,v)-{g_v}(t,0,0)v-{g_u}(t,0,0)u]{{\widetilde \psi}^{-1}}}\right|+ \left|{{g_v}(t,0,0)\eta}\right|\leq {K_M}{e^{(\lambda_c^--{\varepsilon^\prime})z}}

    for all (t,z)\in \mathbb R\times[M,+\infty). Next we show that \mathop{sup}\limits_{t\in \mathbb R}\left|{\xi(t,z)}\right|=o({e^{{\lambda_c^-}z}}) as z\to+\infty. In view of Lemma 2.2, we have \mathop{\sup}\limits_{t\in\mathbb R}\left|{\xi(t,z)}\right|=O({e^{\lambda_{c,\varepsilon}^+z}})~\text{as}~z\to+\infty. Notice that \lambda_c^--{\varepsilon^\prime}>\lambda_c, then Q:={(\lambda_c^--{\varepsilon^\prime})^2}+c(\lambda_c^--{\varepsilon^\prime})-\kappa_1<0. It is easy to verify that \pm K{e^{(\lambda_c^--{\varepsilon ^\prime})z}} satisfy respectively

    R(t,z)-\kappa_1\omega+{\omega_{zz}}+c{\omega_z}-{\omega_t}\leq(\geq)~0 \; \text{for all}~z\geq M,

    whenever K\geq\frac{K_M}{\left|Q\right|}. Since \left|{\xi(t,z)}\right| is bounded in (t,z)\in\mathbb R\times{\mathbb R^+}, then there exists {K_Q}\geq\frac{K_M}{\left|Q\right|} such that \left|{\xi (t,M)}\right|\leq{K_Q}{e^{(\lambda_c^--{\varepsilon^\prime})M}} for all t\in \mathbb R, hence

    -{K_Q}{e^{(\lambda_c^--{\varepsilon^\prime})z}}\leq\xi(t,z) \leq{K_Q}{e^{(\lambda_c^--{\varepsilon^\prime})z}} \; \text{for all}~(t,z)\in \mathbb R\times[M,+\infty ). (2.26)

    Indeed, set {\omega^\pm}(t,z)=\pm{K_Q}{e^{(\lambda_c^--{\varepsilon^\prime})z}}-\xi(t,z) for all (t,z)\in \mathbb R\times[M,+\infty), then we have

    \omega_{zz}^++c\omega_z^+-\omega_t^+-\kappa_1{\omega ^+}\leq 0,\\ ~~\omega_{zz}^-+c\omega_z^--\omega_t^--\kappa_1{\omega^-}\geq 0. (2.27)

    Since {\omega^\pm}(t,z) is T- periodic in t, it is sufficient to show that {\omega^+}(t,z)\geq0 for (t,z)\in(0,2T)\times [M,+\infty), while the similar argument holds for {\omega^-}(t,z)\leq 0. Assume to the contrary that \mathop{\inf}\limits_{(t,z)\in(0,2T)\times [M,+\infty)}{\omega^+}(t,z)<0, since \mathop{\lim}\limits_{z\to+\infty}\mathop{\sup}\limits_{t\in[0,2T]}{\omega^+}(t,z)=0, it follows that there exists ({t^*},{z^*})\in(0,2T)\times(M,+\infty ) such that {\omega^+}({t^*},{z^*})=\mathop {\inf}\limits_{(t,z)\in(0,2T)\times [M,+\infty)}{\omega^+}(t,z)<0, and hence \left[{\omega_{zz}^++c\omega_z^+-\omega_t^+-\kappa_1{\omega^+}}\right]_{({t^*},{z^*})} >0, which contradicts to (2.27). Hence (2.26) implies that \mathop{sup}\limits_{t \in \mathbb R} \left| {\xi(t,z)} \right|=o({e^{{\lambda_c^-}z}}) as z\to+\infty. Thus, we know from the definition of \xi(t,z) that

    \mathop{\lim}\limits_{z\to +\infty}\frac{u(t,z)}{{k_2}{e^{\lambda_c^-z}}\widetilde\phi(t)}=1 \; \text{uniformly in}~t\in \mathbb R.

    The argument for {u_z(t,z)} is similar and we only give a brief sketch here. Let

    \widetilde\xi(t,z)=\frac{u_z(t,z)-{k_2}{\lambda_c^-}{e^{\lambda_c^-z}}\widetilde \phi(t)}{\widetilde \psi(t)}, ~\widetilde\eta(t,z)=\frac{{v_z(t,z)-{k_2}{\lambda_c^-}{e^{\lambda_c^-z}}\psi(t)}}{{\widetilde \psi(t)}}

    for (t,z)\in \mathbb R\times{\mathbb R^+}, then

    \widetilde R(t,z)-\kappa_1\widetilde\xi+{\widetilde\xi_{zz}}+c{\widetilde\xi_z}-{\widetilde\xi_t}=0 \; \text{for all}~z\geq 0

    with

    \widetilde R(t,z)=[(g_u(t,u,v)-{g_u}(t,0,0))u_z+({g_v}(t,u,v)-{g_v}(t,0,0))v_z]{\widetilde\psi^{-1}}+{g_v}(t,0,0)\widetilde\eta.

    The same argument as above implies that \mathop{sup}\limits_{t\in\mathbb R}\left|{\widetilde\xi(t,z)}\right|=o({e^{{\lambda_c^-}z}}) as z\to+\infty, and then

    \mathop{\lim}\limits_{z\to+\infty}\frac{{u_z}{(t,z)}}{{k_2}{e^{\lambda_c^-z}}\widetilde\phi(t)}=\lambda_c^- \; \text{uniformly in}~t\in\mathbb R.

    Now we complete all the proof.

    The following is a direct result of Theorem 2.4.

    Corollary 1. Assume (A1) - (A4) hold. Let (P(t,z),Q(t,z))\in C_b^{1,2}(\mathbb R \times \mathbb R,\mathbb R^2) be a solution of (1.6). Then

    \mathop{\lim}\limits_{z\to+\infty}\frac{1-P(t,z)}{{k_2}{e^{\lambda_c^-z}}\widetilde\phi(t)}=1, \mathop {\lim}\limits_{z\to+\infty }\frac{1-Q(t,z)}{{k_2}{e^{\lambda_c^-z}}\psi(t)}=1 ~ \;uniformly\; in\; ~t\in\mathbb R,~c\leq c^*,

    and

    \mathop{\lim}\limits_{z\to+\infty}\frac{{P_z}(t,z)}{{k_2}{e^{\lambda_c^-z}}\widetilde\phi(t)}=-\lambda_c^-, \mathop{\lim}\limits_{z\to+\infty}\frac{{Q_z}{(t,z)}}{{k_2}{e^{\lambda_c^-z}}\psi (t)}= -\lambda_c^- ~\; uniformly\; in\; ~t\in\mathbb R,~c\leq c^*,

    for some constant k_2>0.

    Remark 4. For the autonomous system

    \begin{cases} u_t=u_{xx}+u(1-u-k_1v), (t,x)\in \mathbb R\times \mathbb R,\\ v_t=dv_{xx}+av(1-k_2u-v), (t,x)\in \mathbb R\times \mathbb R, \end{cases} (2.28)

    where d, a, k_1, k_2 are positive constants. If we further assume that 1-k_1\geq a(k_2-1)>0 and {1}/{5}<k_1<1, then the nonlinearity is monostable and (A3) and (A4) hold for (2.28). The traveling wave solution (\phi(z),\psi(z))~(z=x-ct) of (2.28) connecting (0,1) and (1,0) satisfies

    \begin{cases} 0=\phi^{\prime\prime}+c\phi^\prime+(1-\phi-k_1\psi),\\ 0=d\psi^{\prime\prime}+c\psi^\prime+a(1-k_2\phi-\psi),\\ \mathop{\lim}\limits_{z\to-\infty}(\phi,\psi)=(0,1), \mathop{\lim}\limits_{z\to+\infty}(\phi,\psi)=(1,0). \end{cases}

    Then Proposition 1 yields that

    \phi(z)={\alpha_1}|z|^l{e^{\lambda_c^+z}}+h.o.t, 1-\psi(z)={\beta_1}|z|^l{e^{\lambda_c^+z}}+h.o.t \text{as}~z\to -\infty,

    where l=0 if c<c^* and l=1 if c=c^*, and by Corollary 1, we have

    1-\phi(z)={\alpha_2}{e^{\lambda_c^-z}}+h.o.t, \psi(z)={\beta_2}{e^{\lambda_c^-z}}+h.o.t \text{as}~z\to +\infty,~\text{for all}~c\leq c^*,

    where c^*=-2\sqrt{1-k_1}, h.o.t denotes the higher-order terms, \alpha_i, \beta_i~(i=1,2) are positive constants, \lambda_c^+=\frac{-c-\sqrt{{c^2}-4(1-k_1)}}{2}>0 and \lambda_c^-=\frac{{-c-\sqrt{{c^2}+4da(k_2-1)}}}{2d}<0 are roots of linear eigenvalue equations \lambda^2+c\lambda+(1-k_1)=0 and d\lambda^2+c\lambda-a(k_2-1)=0, respectively. These results are consistent with those in Morita and Tachibana [29].


    3. Key estimates

    In this section, we give some crucial estimates which are helpful for the construction of sub-super solutions. Throughout this section, we always assume that (A1) - (A4) hold. In view of Proposition 1 and Corollary 1, the following lemma holds obviously.

    Lemma 3.1. Let (P(t,z),Q(t,z))\in C_b^{1,2}(\mathbb R\times \mathbb R,\mathbb R^2) be solution of (1.6) with c\leq c^*. Then there exist positive constants M(c),~N(c),~m(c),~n(c),~\delta_j(c),~\gamma_j(c) (j=1,2) such that

    Q(t,z)\leq M(c)P(t,z), t\in \mathbb R,~z \leq 0, (3.1)
    \delta_1(c)P(t,z)\leq P_z(t,z)\leq \delta_2(c)P(t,z), t\in \mathbb R,~z \leq 0, (3.2)
    \gamma_1(c)Q(t,z)\leq Q_z(t,z)\leq \gamma_2(c)Q(t,z), t\in \mathbb R,~z \leq 0 . (3.3)
    1-Q(t,z)\leq N(c)(1-P(t,z)), t\in \mathbb R,~z \geq 0, (3.4)
    \delta_1(c)m(c)e^{\lambda_c^-z}\leq \delta_1(c)(1-P(t,z))\leq P_z(t,z), t\in \mathbb R,~z \geq 0, (3.5)
    \gamma_1(c)n(c)e^{\lambda_c^-z}\leq \gamma_1(c)(1-Q(t,z))\leq Q_z(t,z), t\in \mathbb R,~z \geq 0 . (3.6)

    In particular, for any 0<\varepsilon<\lambda_c^+, there exist K_\varepsilon(c)>0 such that

    P(t,z)\leq K_\varepsilon(c)e^{(\lambda_c^+ -\varepsilon)z}, t\in \mathbb R,~z \leq 0, (3.7)
    Q(t,z)\leq K_\varepsilon(c)e^{(\lambda_c^+ -\varepsilon)z}, t\in \mathbb R,~z \leq 0 . (3.8)

    We now give some key estimates in the following two lemmas.

    Lemma 3.2. Let (P_i(t,z),Q_i(t,z))\in C_b^{1,2}(\mathbb R\times \mathbb R,\mathbb R^2)~(i=1,2) be solutions of (1.6). Assume that c_i\leq c^* and p_2\leq p_1\leq 0. Denote

    P_1=P_1(t,x+p_1),~P_2=P_2(t,-x+p_2),~Q_1=Q_1(t,x+p_1),~Q_2=Q_2(t,-x+p_2)

    and

    H_1(t,x)=-2a_1pP_1P_2+a_1pN_1[P_1Q_2(1-Q_1)+P_2Q_1(1-Q_2)].

    Then there exist positive constants \alpha_1 and K_1 such that

    \frac{H_1(t,x)}{P_{1,z}(t,x+p_1)+P_{2,z}(t,-x+p_2)}\leq K_1e^{\alpha _1 p_1} \; for\; any\; ~(t,x)\in \mathbb{R}\times \mathbb{R}. (3.9)

    Proof. We divide x\in \mathbb R into four intervals.

    Case A. p_2\leq x \leq 0. Then x+p_1\leq 0 and -x+p_2\leq 0. By (3.1), (3.2), (3.7) and (3.8), we have

    \begin{align*} &\frac{H_1(t,x)}{P_{1,z}(t,x+p_1)+P_{2,z}(t,-x+p_2)}\\ &\leq\frac{a_1pN_1P_1Q_2}{P_{2,z}(t,-x+p_2)}+\frac{a_1pN_1P_2Q_1}{P_{2,z}(t,-x+p_2)}\\ &\leq\mathop{\max}\limits_{t\in [0,T]}(b_1q)\left[{\frac{{K_\varepsilon}(c_1)e^{(\lambda_{c_1}^+-\varepsilon)(x+p_1)} \cdot M(c_2)P_2}{\delta_1(c_2)P_2}+\frac{K_\varepsilon(c_1)e^{(\lambda_{c_1}^+ -\varepsilon)(x +p_1)}P_2}{\delta _1(c_2)P_2}}\right]\\ &\leq\mathop {\max}\limits_{t\in[0,T]}(b_1q)\frac{K_\varepsilon(c_1)(M(c_2)+1)}{\delta_1(c_2)}e^{(\lambda_{c_1}^+-\varepsilon )p_1},~t\in \mathbb R. \end{align*}

    Case B. 0\leq x\leq -p_1. Then x+p_1\leq 0 and -x+p_2\leq0. Similar to case A,

    \begin{align*} &\frac{H_1(t,x)}{P_{1,z}(t,x+p_1)+P_{2,z}(t,-x+p_2)}\\ &\leq\mathop{\max}\limits_{t\in[0,T]}(b_1q)\frac{K_\varepsilon(c_2)(M(c_1)+1)} {\delta_1(c_1)}e^{(\lambda_{c_2}^+-\varepsilon )p_1},~t\in \mathbb R. \end{align*}

    Case C. x\geq -p_1. Then x+p_1\geq 0 and -x+p_2\leq 0. Note that N_1\leq 1 and P_i,Q_i\leq1 (i=1,2), then

    \begin{align*} H_1(t,x)&\leq -a_1p N_1P_1P_2+a_1pN_1[P_1Q_2(1-Q_1)+P_2Q_1]\\ &\leq a_1pN_1Q_2(1-Q_1)+a_1pN_1P_2(1-P_1). \end{align*}

    By (3.4), (3.5), (3.7) and (3.8), we have

    \begin{align*} &\frac{H_1(t,x)}{P_{1,z}(t,x+p_1)+P_{2,z}(t,-x+p_2)} \leq\frac{a_1pN_1Q_2(1-Q_1)}{P_{1,z}(t,x+p_1)}+\frac{a_1pN_1P_2(1-P_1)}{P_{1,z}(t,x+p_1)}\\ &\leq\mathop{\max}\limits_{t\in [0,T]}(b_1q)\\ &\times\left[{\frac{{K_\varepsilon}(c_2)e^{(\lambda_{c_2}^+-\varepsilon )(-x+p_2)}N(c_1)(1-P_1)}{\delta_1(c_1)(1-P_1)} +\frac{K_\varepsilon(c_2)e^{(\lambda_{c_2}^+ -\varepsilon)(-x+p_2)}(1-P_1)}{\delta_1(c_1)(1-P_1)}}\right]\\ &\leq\mathop {\max}\limits_{t\in[0,T]}(b_1q)\frac{K_\varepsilon(c_2)(N(c_1)+1)} {\delta_1(c_1)}e^{(\lambda_{c_2}^+-\varepsilon )p_1},~t\in\mathbb R. \end{align*}

    Case D. x \leq p_2. Then x+p_1\leq 0 and -x+p_2\geq 0. Note that N_1\leq 1, then

    \begin{align*} H_1(t,x)&\leq -N_1a_1pP_1P_2+a_1pN_1[P_1Q_2+P_2Q_1(1-Q_2)]\\ &\leq a_1pN_1P_1(1-P_2)+a_1pN_1Q_1(1-Q_2), \end{align*}

    Similar to case C, we can prove that

    \begin{align*} &\frac{H_1(t,x)}{P_{1,z}(t,x+p_1)+P_{2,z}(t,-x+p_2)}\\ &\leq\mathop{\max}\limits_{t\in[0,T]}(b_1q) \frac{K_\varepsilon(c_1)(N(c_2)+1)}{\delta_1(c_2)}e^{(\lambda_{c_1}^+-\varepsilon )p_1}, ~t\in \mathbb R. \end{align*}

    For any fixed 0<\varepsilon<\min\{\lambda_{c_1}^+,\lambda_{c_2}^+\}, now let \alpha_1=\min\{\lambda_{c_1}^+-\varepsilon,\lambda_{c_2}^+-\varepsilon\} and K_1=\mathop{\max}\limits_{t\in[0,T]}(b_1q)\mathop{\max}\limits_{\begin{subarray}{l} i,j = 1,2\\~~i \ne j\end{subarray}}\left\{{\frac{K_\varepsilon(c_i)(M(c_j)+1)}{\delta _1(c_j)}, \frac{K_\varepsilon(c_i)(N(c_j)+1)}{\delta_1(c_j)}}\right\}, then (3.9) holds.

    Lemma 3.3. Let (P_i(t,z),Q_i(t,z))\in C_b^{1,2}(\mathbb R\times \mathbb R,\mathbb R^2)~(i=1,2) be solutions of (1.6). Assume that c_i\leq c^* and p_2\leq p_1 \leq 0. Denote

    Q_1=Q_1(t,x+p_1),~Q_2=Q_2(t,-x+p_2)

    and

    \tilde{H_2}(t,x)=2dQ_{1,z}Q_{2,z}+b_2qQ_1Q_2(1-Q_1)(1-Q_2).

    Then there exist positive constants \alpha_2 and K_2 such that

    \frac{\tilde{H_2}(t,x)}{(1-Q_2)Q_{1,z}+(1-Q_1)Q_{2,z}}\leq K_2e^{\alpha _2p_1}, ~(t,x)\in \mathbb{R}\times \mathbb{R}. (3.10)

    Proof. We divide x\in \mathbb R into four intervals.

    Case A. p_2\leq x\leq 0. Then x+p_1\leq 0 and -x+p_2\leq 0. By (3.3) and (3.8), we have

    \begin{split} &\frac{\tilde{H_2}(t,x)}{(1-Q_2)Q_{1,z}+(1-Q_1)Q_{2,z}}\\ &\leq \frac{2dQ_{1,z}Q_{2,z}+b_2qQ_1Q_2(1-Q_1)(1-Q_2)}{(1-Q_1)Q_{2,z}}\\ &\leq \frac{2dQ_{1,z}}{1-Q_1}+\frac{b_2qQ_1Q_2}{Q_{2,z}}\\ &\leq \frac{2d\gamma_2(c_1)K_\varepsilon(c_1)e^{(\lambda _{c_1}^+-\varepsilon)(x+p_1)}}{1-Q_1(t,0)} +\frac{b_2qK_\varepsilon(c_1)e^{(\lambda _{c_1}^+-\varepsilon)(x+p_1)}Q_2}{\gamma_1(c_2)Q_2}\\ &\leq \left({\frac{2d\gamma _2(c_1)K_\varepsilon(c_1)}{1-Q_1(t,0)} + \mathop{\max}\limits_{t\in [0,T]}(b_2q)\frac{K_\varepsilon(c_1)}{\gamma_1(c_2)}}\right)e^{(\lambda_{c_1}^+-\varepsilon)p_1}, ~t\in \mathbb R. \end{split}

    Case B. 0\leq x\leq -p_1. Then x+p_1\leq 0 and -x+p_2\leq 0. Similar to case A,

    \begin{split} &\frac{\tilde{H_2}(t,x)}{(1-Q_2)Q_{1,z}+(1-Q_1)Q_{2,z}}\\ &\leq\left({\frac{2d\gamma_2(c_2)K_\varepsilon(c_2)}{1-Q_2(t,0)} +\mathop{\max}\limits_{t\in [0,T]}(b_2q)\frac{K_\varepsilon(c_2)}{\gamma_1(c_1)}}\right) e^{(\lambda_{c_2}^+-\varepsilon )p_1},~t\in \mathbb R. \end{split}

    Case C. x\geq -p_1. Then x+p_1\geq 0 and -x+p_2\leq 0. By (3.3), (3.6) and (3.8), we have

    \begin{split} &\frac{\tilde{H_2}(t,x)}{(1-Q_2)Q_{1,z}+(1-Q_1)Q_{2,z}}\\ &\leq \frac{2dQ_{1,z}Q_{2,z}+b_2qQ_1Q_2(1-Q_1)(1-Q_2)}{(1-Q_2)Q_{1,z}}\\ &\leq \frac{2dQ_{2,z}}{1-Q_2}+\frac{b_2qQ_2(1-Q_1)}{Q_{1,z}}\\ &\leq \frac{2d\gamma_2(c_2)K_\varepsilon(c_2)e^{(\lambda _{c_2}^+-\varepsilon)(-x+p_2)}} {1-Q_2(t,0)}+\frac{b_2qK_\varepsilon(c_2)e^{(\lambda _{c_2}^+-\varepsilon)(-x+p_2)}(1-Q_1)}{\gamma_1(c_1)(1-Q_1)}\\ &\leq \left({\frac{2d\gamma _2(c_2)K_\varepsilon(c_2)}{1-Q_2(t,0)} +\mathop{\max}\limits_{t\in [0,T]}(b_2q)\frac{K_\varepsilon(c_2)}{\gamma_1(c_1)}} \right)e^{(\lambda_{c_2}^+-\varepsilon )p_1}, ~t\in \mathbb R. \end{split}

    Case D. x\leq p_2. Then x+p_1\leq 0 and -x+p_2\geq 0. Similar to case C, we have

    \begin{split} &\frac{\tilde{H_2}(t,x)}{(1-Q_2)Q_{1,z}+(1-Q_1)Q_{2,z}}\\ &\leq \left({\frac{2d\gamma _2(c_1)K_\varepsilon(c_1)}{1-Q_1(t,0)} +\mathop{\max}\limits_{t\in [0,T]}(b_2q)\frac{K_\varepsilon(c_1)}{\gamma_1(c_2)}}\right) e^{(\lambda_{c_1}^+-\varepsilon )p_1}, ~t\in \mathbb R. \end{split}

    For any fixed 0<\varepsilon<\min\{\lambda_{c_1}^+,\lambda_{c_2}^+\}, now let \alpha_2=\min\{\lambda_{c_1}^+-\varepsilon,\lambda_{c_2}^+-\varepsilon\} and K_2=\mathop{\max}\limits_{\begin{subarray}{l}i,j=1,2,i \ne j \\~~t\in [0,T]\end{subarray}} \left\{{\frac{2d\gamma_2(c_i)K_\varepsilon(c_i)}{1-Q_i(t,0)}+ \mathop{\max}\limits_{t\in [0,T]}(b_2q)\frac{K_\varepsilon(c_i)}{\gamma_1(c_j)}}\right\}, then (3.10) holds. The proof is complete.


    4. Entire solutions

    In this section, we establish the existence and some qualitative properties of invasion entire solutions by constructing appropriate sub-super solutions and using the comparison principle. Let

    \begin{cases} \mathcal{F}_1(t,u,v)=u_t-u_{xx}-f_1(t,u,v),\\ \mathcal{F}_2(t,u,v)=v_t-dv_{xx}-f_2(t,u,v), \end{cases}

    where f_1(t,u,v)=a_1pu(1-N_1(t)-u+N_1(t)v) and f_2(t,u,v)=b_2q(1-v)(N_2(t)u-v). Then (1.5) can be written as

    \begin{cases} \mathcal{F}_1(t,u,v)=0,\\ \mathcal{F}_2(t,u,v)=0.\\ \end{cases}

    Definition 4.1. Suppose s<T\leq\infty, a pair (\overline{U}(t,x),\overline{V}(t,x))\in C^{1,2}((s,T)\times \mathbb R,[0,1]^2) is said to be a supersolution of (1.5) in (t,x)\in (s,T)\times \mathbb R, if there holds

    \begin{cases} \mathcal{F}_1(t,\overline U,\overline V)\geq 0,\\ \mathcal{F}_2(t,\overline U,\overline V)\geq 0.\\ \end{cases}

    If for any s<T, (\overline{U}(t,x),\overline{V}(t,x)) is a supersolution of (1.5) in (t,x)\in (s,T)\times \mathbb R, then we call that (\overline{U}(t,x),\overline{V}(t,x)) is a supersolution of (1.5) in (t,x)\in (-\infty,T)\times \mathbb R. The subsolution (\underline{u}(t,x),\underline{v}(t,x)) can be defined in a similar way by reversing the inequality.

    Lemma 4.2. (ⅰ) For any (0,0)\leq(u_0,v_0)\leq(1,1), system (1.5) admits a unique classical solution (u(t,x;u_0),v(t,x;v_0)) with (u(s,x;u_0),v(s,x;v_0))=(u_0,v_0) which satisfies (0,0)\leq(u,v)\leq(1,1) for all (t,x)\in [s,+\infty)\times\mathbb R.

    (ⅱ) Let (\overline{U},\overline{V}) and (\underline{u},\underline{v}) be supersolution and subsolution of (1.5) in (t,x)\in(s,T)\times\mathbb R, respectively. If (\underline{u}(s,\cdot),\underline{v}(s,\cdot))\leq(\overline{U}(s,\cdot),\overline{V}(s,\cdot)), then (\underline{u}(t,\cdot),\underline{v}(t,\cdot))\leq(\overline{U}(t,\cdot),\overline{V}(t,\cdot)) for all s \leq t\leq T.

    Proof. The proof is similar to that of [14,Lemma 3.1] and we omit the details here.

    To construct a supersolution of (1.5), we first introduce an auxiliary coupled system of ordinary differential equations

    \begin{cases} p_1^\prime(t)=-c_1+Ke^{\alpha p_1(t)},~~t<0,\\ p_2^\prime(t)=-c_2+Ke^{\alpha p_1(t)},~~t<0,\\ p_2(0)\leq p_1(0)\leq 0, \end{cases} (4.1)

    where c_2\leq c_1\leq c^*,~\alpha and K are positive constants. Solving the equations explicitly, we obtain

    \begin{cases} p_1(t)=p_1(0)-c_1t-\frac{1}{\alpha}\ln\left({1-\frac{K}{c_1}e^{\alpha p_1(0)}(1-e^{-c_1\alpha t})}\right)\leq 0~(t\leq 0),\\ p_2(t)=p_2(0)-c_2t-\frac{1}{\alpha}\ln\left({1-\frac{K}{c_1}e^{\alpha p_1(0)}(1-e^{-c_1\alpha t})}\right)\leq 0~(t\leq 0). \end{cases}

    Then p_i(t) is monotone increasing, and by virtue of p_2^\prime(t)-p_1^\prime(t)=c_1-c_2\geq 0, we have p_2(t)\leq p_1(t)\leq 0 for all t\leq 0. Let

    \omega_1=p_1(0)-\frac{1}{\alpha}\ln\left({1-\frac{K}{c_1}e^{\alpha p_1(0)}}\right), ~\omega_2=p_2(0)-\frac{1}{\alpha}\ln\left({1-\frac{K}{c_1}e^{\alpha p_1(0)}}\right). (4.2)

    Then

    p_i(t) - (-c_it+\omega_i)=-\frac{1}{\alpha}\ln\left({1-\frac{\varsigma}{1+\varsigma}e^{-c_1\alpha t}}\right) ~~\text{with}~~\varsigma=-\frac{K}{c_1}e^{\alpha p_1(0)},

    and there is a constant C_0>0 such that

    0<p_1(t) - (-c_1t+\omega_1)=p_2(t) - (-c_2t+\omega_2)\leq C_0e^{-c_1\alpha t} \text{for all}~t\leq 0.

    Now we can construct a supersolution of (1.5) as follows.

    Lemma 4.3. Let (P_i(t,z),Q_i(t,z))\in C_b^{1,2}(\mathbb R\times \mathbb R,\mathbb R^2)~(i=1,2) be the periodic traveling wave of (1.5) with c_2\leq c_1\leq c^*. Choose \alpha=\min\{\alpha_1,\alpha_2\} and K=\max\{K_1,K_2\} in (4.1), where (\alpha_1,K_1) and (\alpha_2,K_2) are defined as in Lemmas 3.2 and 3.3, respectively. Then

    \begin{cases} \overline{U}(t,x):=\min\{1,P_1(t,x+p_1(t))+P_2(t,-x+p_2(t))\},\\ \overline{V}(t,x):=Q_1(t,x+p_1(t))+Q_2(t,-x+p_2(t))\\ -Q_1(t,x+p_1(t))Q_2(t,-x+p_2(t)) \end{cases} (4.3)

    is a supersolution of (1.5) defined in (t,x)\in (-\infty,0]\times \mathbb R.

    Proof. Firstly, we prove \mathcal{F}_1(t,\overline U,\overline V)\geq 0. Denote

    \begin{align*} S_1&=\{(t,x)|P_1(t,x+p_1(t))+P_2(t,-x+p_2(t))>1\},\\ S_2&=\{(t,x)|P_1(t,x+p_1(t))+P_2(t,-x+p_2(t))\leq 1\}, \end{align*}

    If (t,x)\in S_1, then \overline U\equiv 1 and thus \mathcal{F}_1(t,\overline U,\overline V)=b_1q(1-\overline V)\geq 0. If (t,x)\in S_2, then \overline U=P_1(t,x+p_1(t))+P_2(t,-x+p_2(t)). Moreover, we have

    \begin{split} &\mathcal{F}_1(t,\overline U,\overline V)\\ &=P_{1,t}-c_1P_{1,z}-P_{1,zz}+P_{2,t}-c_2P_{2,z}-P_{2,zz}+Ke^{\alpha p_1}(P_{1,z}+P_{2,z})\\ & -a_1p(P_1+P_2)[1-N_1-(P_1+P_2)+N_1(Q_1+Q_2-Q_1Q_2)]\\ &=Ke^{\alpha p_1}(P_{1,z}+P_{2,z})+a_1pP_1(1-N_1-P_1+N_1Q_1)\\ & +a_1pP_2(1-N_1-P_2+N_1Q_2)\\ & -a_1p(P_1+P_2)[1-N_1-(P_1+P_2)+N_1(Q_1+Q_2-Q_1Q_2)]\\ &=Ke^{\alpha p_1}(P_{1,z}+P_{2,z})-H_1(t,x), \end{split}

    where H_1(t,x)=-2a_1pP_1P_2+a_1pN_1[P_1Q_2(1-Q_1)+P_2Q_1(1-Q_2)]. By Lemma 3.2, there hold

    \frac{H_1(t,x)}{P_{1,z}(t,x+p_1)+P_{2,z}(t,-x+p_2)}\leq K_1e^{\alpha _1 p_1}\leq Ke^{\alpha p_1} \text{ for any } (t,x)\in (-\infty,0]\times \mathbb{R},

    and hence

    \mathcal{F}_1(t,\overline U,\overline V)=Ke^{\alpha p_1}(P_{1,z}+P_{2,z})-H_1(t,x)\geq 0 \; \text{for any} \; ~(t,x)\in (-\infty,0]\times \mathbb{R}.

    Then we prove that \mathcal{F}_2(t,\overline U,\overline V)\geq 0. Noting that

    \begin{split} &\mathcal{F}_2(t,\overline U,\overline V)\\ &=(Q_{1,t}-c_1Q_{1,z}-dQ_{1,zz})(1-Q_2)+(Q_{2,t}-c_2Q_{2,z}-dQ_{2,zz})(1-Q_1)\\ & -2dQ_{1,z}Q_{2,z}-b_2q[1-(Q_1+Q_2-Q_1Q_2)][N_2\overline U-(Q_1+Q_2-Q_1Q_2)]\\ & +Ke^{\alpha p_1}[(1-Q_2)Q_{1,z}+(1-Q_1)Q_{2,z}]\\ &=b_2q(1-Q_1)(N_2P_1-Q_1)(1-Q_2)+b_2q(1-Q_2)(N_2P_2-Q_2)(1-Q_1)\\ & -2dQ_{1,z}Q_{2,z}-b_2q[1-(Q_1+Q_2-Q_1Q_2)][N_2\overline U-(Q_1+Q_2-Q_1Q_2)]\\ & +Ke^{\alpha p_1}[(1-Q_2)Q_{1,z}+(1-Q_1)Q_{2,z}]\\ &=Ke^{\alpha p_1}[(1-Q_2)Q_{1,z}+(1-Q_1)Q_{2,z}]-H_2(t,x), \end{split}

    where H_2(t,x)=2dQ_{1,z}Q_{2,z}+b_2q(1-Q_1)(1-Q_2)[N_2(\overline U-P_1-P_2)+Q_1Q_2]. It is easy to see that H_2(t,x)\leq 2dQ_{1,z}Q_{2,z}+b_2q Q_1Q_2(1-Q_1)(1-Q_2)=\tilde{H_2}(t,x). Then it follows from Lemma 3.3 that

    \frac{\tilde{H_2}(t,x)}{(1-Q_2)Q_{1,z}+(1-Q_1)Q_{2,z}} \leq K_2e^{\alpha _2p_1}\leq Ke^{\alpha p_1} \; \text{for any}~(t,x)\in (-\infty,0]\times \mathbb{R}.

    Hence

    \mathcal{F}_2(t,\overline U,\overline V)=Ke^{\alpha p_1}[(1-Q_2)Q_{1,z}+(1-Q_1)Q_{2,z}]-H_2(t,x)\geq 0

    for any (t,x)\in (-\infty,0]\times \mathbb{R}. The proof is complete.

    We now state our main result as follows.

    Theorem 4.4. Assume (A1) - (A4) hold. Let (P_i(t,z),Q_i(t,z)) be the periodic traveling wave solution of system (1.5) with c_2 \leq c_1 \leq -2\sqrt{\kappa}. Then for any given constants \theta_1,~\theta_2 \in \mathbb R, there exists an entire solution (U_{\theta_1,\theta_2}(t,x),V_{\theta_1,\theta_2}(t,x)) of (1.5) such that (0,0)<(U_{\theta_1,\theta_2},V_{\theta_1,\theta_2})<(1,1), and satisfying

    \begin{split}\label{uP1P2} \lim\limits_{t\rightarrow -\infty}\bigg\{&\sup\limits_{x \geq 0}{|U_{\theta_1,\theta_2}(t,x)-P_1(t,x-c_1t+\theta_1)|}\\ &+\sup\limits_{x\leq 0}{|U_{\theta_1,\theta_2}(t,x)-P_2(t,-x-c_2t+\theta_2)|}\bigg\}=0 \end{split} (4.4)

    and

    \begin{split} \lim\limits_{t\rightarrow -\infty}\bigg\{&\sup\limits_{x\geq 0}{|V_{\theta_1,\theta_2}(t,x)-Q_1(t,x-c_1t+\theta_1)|}\\ &+\sup\limits_{x\leq 0}{|V_{\theta_1,\theta_2}(t,x)-Q_2(t,-x-c_2t+\theta_2)|}\bigg\}=0. \end{split} (4.5)

    Furthermore, we have

    (ⅰ) (U_{\theta_1,\theta_2}(t+T,x),V_{\theta_1,\theta_2}(t+T,x))= (U_{\theta_1,\theta_2}(t,x),V_{\theta_1,\theta_2}(t,x)) for any (t,x)\in\mathbb R\times\mathbb R or (U_{\theta_1,\theta_2},V_{\theta_1,\theta_2})(t+T,x)> (U_{\theta_1,\theta_2},V_{\theta_1,\theta_2})(t,x) for any (t,x)\in\mathbb R\times\mathbb R;

    (ⅱ) \mathop{\lim}\limits_{t\to+\infty}\mathop{sup}\limits_{x \in \mathbb R} \left\{|U_{\theta_1,\theta_2}(t,x)-1|+|V_{\theta_1,\theta_2}(t,x)-1|\right\}=0;

    (ⅲ) \mathop{\lim}\limits_{t\to-\infty}\mathop{sup}\limits_{x \in(x_1,x_2)} \{|U_{\theta_1,\theta_2}(t,x)|+|V_{\theta_1,\theta_2}(t,x)|\}=0 for any x_1<x_2;

    (ⅳ) \mathop{\lim}\limits_{|x|\rightarrow +\infty}\mathop{sup}\limits_{t \geq t_0} \{|U_{\theta_1,\theta_2}(t,x)-1|+|V_{\theta_1,\theta_2}(t,x)-1|\}=0 for any t_0\in \mathbb R;

    (ⅴ) (U_{\theta_1,\theta_2}(t,x),V_{\theta_1,\theta_2}(t,x)) is monotone increasing with respect to \theta_1 and \theta_2 for any (t,x)\in \mathbb R^2;

    (ⅵ) (U_{\theta_1,\theta_2}(t,x),V_{\theta_1,\theta_2}(t,x)) converges to (1,1) locally in (t,x)\in \mathbb R^2 as \theta_i \to +\infty.

    Proof. Let \omega_1 and \omega_2 be as in (4.2) and define

    \begin{cases} \underline{u}(t,x)=\mathop{\max}\left\{P_1(t,x-c_1t+\omega_1),P_2(t,-x-c_2t+\omega_2)\right\},\\ \underline{v}(t,x)=\mathop{\max}\left\{Q_1(t,x-c_1t+\omega_1),Q_2(t,-x-c_2t+\omega_2)\right\}, \end{cases} (4.6)

    then (\underline{u},\underline{v}) is a subsolution of (1.5) in (t,x)\in\mathbb R\times\mathbb R, satisfying (\underline{u},\underline{v})\leq(\overline{U},\overline{V}) for any (t,x)\in(-\infty,0]\times \mathbb{R}, where (\overline{U},\overline{V}) is defined in (4.3). Now consider the following initial value problem

    \begin{cases} u_t^n=u_{xx}^n+f_1(t,u^n,v^n), (t,x)\in (-n,+\infty)\times \mathbb R,\\ v_t^n=dv_{xx}^n+f_2(t,u^n,v^n), (t,x)\in (-n,+\infty)\times \mathbb R,\\ u^n(-n,x):=u_0^n(x)=\underline{u}(-n,x), x\in \mathbb R,\\ v^n(-n,x):=v_0^n(x)=\underline{v}(-n,x), x\in \mathbb R. \end{cases} (4.7)

    We know from [26] that the problem (4.7) is well posed and the (strong) maximum principle holds since all the coefficients are periodic with respect to t. By virtue of Lemmas 4.2 and 4.3, for x\in \mathbb R, we have

    \begin{cases} (\underline{u}(t,x),\underline{v}(t,x))\leq(u^n(t,x),v^n(t,x)) \leq(u^{n+1}(t,x),v^{n+1}(t,x)) \leq(1,1), t\geq-n,\\ (\underline{u}(t,x),\underline{v}(t,x)) \leq(u^n(t,x),v^n(t,x)) \leq(\overline{U}(t,x),\overline{V}(t,x)), t\in(-n,0]. \end{cases}

    Using the standard parabolic estimates and the diagonal extraction process, there exists a subsequence \{(u^{n_k}(t,x),v^{n_k}(t,x))\}_{k\in N} such that \{(u^{n_k}(t,x),v^{n_k}(t,x))\} converges to a function (u(t,x),v(t,x)) locally in (t,x)\in\mathbb R\times\mathbb R as k\to+\infty~(n_k\to+\infty). In view of (u^n(t,x),v^n(t,x))\leq(u^{n+1}(t,x),v^{n+1}(t,x)) for any t>-n, (u^{n}(t,x),v^{n}(t,x)) converges to (u(t,x),v(t,x)) in (t,x)\in\mathbb R^2 as n\to+\infty. Clearly, (u(t,x),v(t,x)) is an entire solution of (1.5) and satisfies

    \begin{cases} (\underline{u}(t,x),\underline{v}(t,x))\leq(u(t,x),v(t,x)\leq(1,1), ~x\in\mathbb R,~t\in \mathbb R.\\ (\underline{u}(t,x),\underline{v}(t,x)) \leq(u(t,x),v(t,x)\leq(\overline{U}(t,x),\overline{V}(t,x)), x\in\mathbb R, t\in(-\infty,0]. \end{cases} (4.8)

    Particularly, the (strong) maximum principle implies that for any (t,x)\in\mathbb R\times\mathbb R, (0,0)<(u(t,x),v(t,x))<(1,1).

    We now prove (4.4) and (4.5). Firstly, we prove

    \lim\limits_{t\rightarrow-\infty}\left\{\sup\limits_{x\geq 0}{|u(t,x)-P_1(t,x-c_1t+\omega_1)|}+\sup\limits_{x\leq 0}{|u(t,x)-P_2(t,-x-c_2t+\omega_2)|}\right\}=0. (4.9)

    For x\geq 0, there exists L_1>0 such that

    \begin{split} 0&\leq u(t,x)-\underline u(t,x)\\ &\leq u(t,x)-P_1(t,x-c_1t+\omega_1)\\ &\leq \overline U(t,x)-P_1(t,x-c_1t+\omega_1)\\ &\leq P_1(t,x+p_1(t))+P_2(t,-x+p_2(t))-P_1(t,x-c_1t+\omega_1)\\ &\leq K_\varepsilon(c_2)e^{(\lambda_{c_2}^+ -\varepsilon)(-x+p_2)}+\mathop {\sup}\limits_{(t,z)\in [0,T]\times\mathbb R} \left|{P_{1,z}(t,z)}\right|\cdot \left|{p_1(t) - (-c_1t+\omega_1)}\right|\\ &\leq K_\varepsilon(c_2)e^{\alpha p_1}+L_1e^{-c_1\alpha t}\rightarrow 0 \text{ as } t\rightarrow-\infty.\\ \end{split}

    For x\leq 0, there exists L_2>0 such that

    \begin{split} 0&\leq u(t,x)-\underline u(t,x)\\ &\leq u(t,x)-P_2(t,-x-c_2t+\omega_2)\\ &\leq \overline U(t,x)-P_2(t,-x-c_2t+\omega_2)\\ &\leq P_1(t,x+p_1(t))+P_2(t,-x+p_2(t))-P_2(t,-x-c_2t+\omega_2)\\ &\leq K_\varepsilon(c_1)e^{(\lambda_{c_1}^+ -\varepsilon)(x+p_1)} +\mathop{\sup}\limits_{(t,z)\in [0,T]\times \mathbb R}\left|{P_{2,z}(t,z)}\right|\cdot\left|{p_2(t) - (-c_2t+\omega_2)}\right|\\ &\leq K_\varepsilon(c_1)e^{\alpha p_1}+L_2e^{-c_1\alpha t}\rightarrow 0 \text{ as } t\rightarrow-\infty. \end{split}

    (4.9) then follows.

    Note from (4.2) that \omega_1=\omega_1(p_1(0)) and \omega_2=\omega_2(p_1(0),p_2(0)) are defined for any p_2(0)\leq p_1(0)\leq0. Then for any \theta_1,\theta_2\in\mathbb R, there exist p_2(0)\leq p_1(0)\leq0 such that \omega_1=\omega_1(p_1(0)) and \omega_2=\omega_2(p_1(0),p_2(0)) satisfy n^*:=\frac{\omega_1-\theta_1+\omega_2-\theta_2}{(c_1+c_2)T}\in\mathbb Z. Define

    (U_{\theta_1,\theta_2}(t,x),V_{\theta_1,\theta_2}(t,x))=(u(t+n^*T,x+x_0),v(t+n^*T,x+x_0))

    with x_0=\frac{c_2(\theta_1-\omega_1)-c_1(\theta_2-\omega_2)}{c_1+c_2}, then (U_{\theta_1,\theta_2}(t,x),V_{\theta_1,\theta_2}(t,x)) is an entire solution of (1.5). In view of (4.9), we can easily see (4.4) holds. A similar argument yields that (4.5) holds.

    The assertions (ⅱ) - (ⅵ) in Theorem 4.4 are straightforward consequences of (4.8). Therefore, we only prove the assertion (ⅰ).

    (ⅰ) For any (0,0)\leq(u_0,v_0)\leq(1,1), let (u(t,x;u_0),v(t,x;v_0)) be the unique classical solution of (1.5) with initial value (u(0,x;u_0),v(0,x;v_0))=(u_0,v_0), then it is easy to see that (u^n(t,x),v^n(t,x))=(u(t+n,x;\underline u(-n,\cdot)),v(t+n,x;\underline v(-n,\cdot))). Note that for any (t,x)\in\mathbb R\times\mathbb R, there is

    \begin{aligned} \underline{u}(t+T,x) &=\mathop{\max}\left\{P_1(t+T,x-c_1(t+T)+\omega_1),P_2(t+T,-x-c_2(t+T)+\omega_2)\right\}\\ &=\mathop{\max}\left\{P_1(t,x-c_1(t+T)+\omega_1),P_2(t,-x-c_2(t+T)+\omega_2))\right\}\\ &>\mathop{\max}\left\{P_1(t,x-c_1t+\omega_1),P_2(t,-x-c_2t+\omega_2)\right\}\\ &=\underline{u}(t,x), \end{aligned}

    and similarly \underline{v}(t+T,x)>\underline{v}(t,x). it follows from the uniqueness of solutions and the comparison principle that for any (t,x)\in[-n,+\infty)\times\mathbb R, there hold

    \begin{aligned} u^n(t+T,x) &=u(t+T+n,x;\underline u(-n,\cdot)) =u(t+n,x;u(T,x;\underline u(-n,\cdot)))\\ &\geq u(t+n,x;\underline u(T-n,\cdot)) \geq u(t+n,x;\underline u(-n,\cdot)) =u^n(t,x), \end{aligned}

    and similarly v^n(t+T,x)>v^n(t,x). Then there holds (u(t+T,x),v(t+T,x))\geq(u(t,x),v(t,x)) for any (t,x)\in\mathbb R\times\mathbb R. Therefore, the (strong) maximum principle further implies that (u(t+T,x),v(t+T,x))=(u(t,x),v(t,x)) or (u(t+T,x),v(t+T,x))>(u(t,x),v(t,x)) for any (t,x)\in\mathbb R\times\mathbb R. (ⅰ) then follows. This completes the proof.

    Remark 5. For the autonomous Lotka-Volterra competition system with random (local) and nonlocal dispersal, Morita and Tachibana [29] and Li et al. [24] established the existence of invasion entire solutions, respectively. Notice that in their papers, the following condition is needed, which may be technical:

    (C): There exists a positive number \eta_0 such that \frac{\phi(z)}{1-\varphi(z)}\geq \eta_0 for z\leq0, where (\phi(z),\psi(z)) is the invasion traveling wave solution.

    In fact, according to Remark 4, when the time periodic system (1.1) degenerates into the homogeneous case, the condition (C) holds obviously under our assumptions (A1) - (A3). We point out that the following supersolution

    \begin{cases} \overline{U}(t,x):=P_1(t,x+p_1(t))+P_2(t,-x+p_2(t))-P_1(t,x+p_1(t))P_2(t,-x+p_2(t)),\\ \overline{V}(t,x):=Q_1(t,x+p_1(t))+Q_2(t,-x+p_2(t))-Q_1(t,x+p_1(t))Q_2(t,-x+p_2(t)), \end{cases}

    which has been used in [29,24], is also applicable to our problem. In this sense, we generalize the result about entire solutions from autonomous case to periodic case.

    Remark 6. By the relation between systems (1.5) and (1.1), we get that (1.1) admits an entire solution (u(t,x),v(t,x)):=(p(t)U_{\theta_1,\theta_2}(t,x),q(t)(1-V_{\theta_1,\theta_2}(t,x))). According to Theorem 4.4 (ⅱ) and (ⅲ), we have

    \begin{align*} \mathop{\lim}\limits_{t\rightarrow-\infty}\{|u(t,x)|+|v(t,x))-q(t)|\}=0 \; \text{ locally in } x\in\mathbb{R}, \\ \mathop{\lim}\limits_{t\rightarrow+\infty}\{|u(t,x)-p(t)|+|v(t,x)|\}=0 \; \text{ uniformly in } x\in\mathbb{R}, \end{align*}

    which indicates that the entire solution (u,v) exhibits the extinction of the inferior species v by the superior one u invading from both sides of x-axis. In fact, this kind of entire solution describes a different type of biological invasion from one presented by traveling waves in a time periodic environment. On the other hand, we point out in particular that the continuous dependence of such an entire solution on parameters such as wave speeds and the shifted variables is important but still open. For some related works on this issue, one can see Hamel and Nadirashvili [15] for a local dispersal KPP equation, Wang et al. [40] for a delayed lattice differential equation, and Li et al. [23] for a nonlocal dispersal periodic monostable equation. We will leave such problems about our system (1.1) for a future study.


    Acknowledgments

    The authors are very grateful to the anonymous referee for careful reading and helpful suggestions. The second author was supported by NSF of China (11671180) and FRFCU (lzujbky-2016-ct12). The third author was supported by FRFCU (lzujbky-2016-226).


    [1] [ N. D. Alikakos,P. W. Bates,X. Chen, Periodic traveling waves and locating oscillating patterns in multidimensional domains, Trans. Amer. Math. Soc., 351 (1999): 2777-2805.
    [2] [ X. Bao,W. T. Li,Z. C. Wang, Time periodic traveling curved fronts in the periodic Lotka-Volterra competition-diffusion system, J. Dynam. Differential Equations, null (2015): 1-36.
    [3] [ X. Bao,Z. C. Wang, Existence and stability of time periodic traveling waves for a periodic bistable Lotka-Volterra competition system, J. Differential Equations, 255 (2013): 2402-2435.
    [4] [ P. W. Bates,F. Chen, Periodic traveling waves for a nonlocal integro-differential model, Electron. J. Differential Equations, 1999 (1999): 1-19.
    [5] [ H. Berestycki,F. Hamel, Front propagation in periodic excitable media, Comm. Pure Appl. Math., 55 (2002): 949-1032.
    [6] [ Z. H. Bu,Z. C. Wang,N. W. Liu, Asymptotic behavior of pulsating fronts and entire solutions of reaction-advection-diffusion equations in periodic media, Nonlinear Anal. Real World Appl., 28 (2016): 48-71.
    [7] [ X. Chen,J. S. Guo, Existence and uniqueness of entire solutions for a reaction-diffusion equation, J. Differential Equations, 212 (2005): 62-84.
    [8] [ C. Conley,R. Gardner, An application of the generalized morse index to travelling wave solutions of a competitive reaction-diffusion model, Indiana Univ. Math. J., 33 (1984): 319-343.
    [9] [ J. Foldes,P. Poláčik, On cooperative parabolic systems: Harnack inequalities and asymptotic symmetry, Discrete Cont. Dynam. Syst. Ser. A., 25 (2009): 133-157.
    [10] [ Y. Fukao,Y. Morita,H. Ninomiya, Some entire solutions of the Allen-Cahn equation, Taiwanese J. Math., 8 (2004): 15-32.
    [11] [ R. A. Gardner, Existence and stability of travelling wave solutions of competition models: A degree theoretic approach, J. Differential Equations., 44 (1982): 343-364.
    [12] [ J. S. Guo,Y. Morita, Entire solutions of reaction-diffusion equations and an application to discrete diffusive equations, Discrete Contin. Dyn. Syst. Ser. A., 12 (2005): 193-212.
    [13] [ J. S. Guo,C. H. Wu, Entire solutions for a two-component competition system in a lattice, Tohoku Math. J., 62 (2010): 17-28.
    [14] [ F. Hamel, Qualitative properties of monostable pulsating fronts: Exponential decayed monotonicity, J. Math. Pures Appl., 89 (2008): 355-399.
    [15] [ F. Hamel,N. Nadirashvili, Entire solutions of the KPP equation, Comm. Pure Appl. Math., 52 (1999): 1255-1276.
    [16] [ F. Hamel,N. Nadirashvili, Travelling fronts and entire solutions of the Fisher-KPP equation in \mathbb R^N, Arch. Ration. Mech. Anal., 157 (2001): 91-163.
    [17] [ Y. Hosono, Singular perturbation analysis of travelling waves of diffusive Lotka-Volterra competition models, Numerical and Applied Mathematics, Part Ⅱ (Paris 1988), null (1989): 687-692.
    [18] [ X. Hou,A. W. Leung, Traveling wave solutions for a competitive reaction-diffusion system and their asymptotics, Nonlinear Anal. Real World Appl., 9 (2008): 2196-2213.
    [19] [ Y. Kan-On, Parameter dependence of propagation speed of travelling waves for competition-diffusion equations, SIAM J. Math. Anal., 26 (1995): 340-363.
    [20] [ Y. Kan-On, Fisher wave fronts for the Lotka-Volterra competition model with diffusion, Nonlinear Anal., 28 (1997): 145-164.
    [21] [ W. T. Li,Y. J. Sun,Z. C. Wang, Entire solutions in the Fisher-KPP equation with nonlocal dispersal, Nonlinear Anal. Real World Appl., 11 (2010): 2302-2313.
    [22] [ W. T. Li,Z. C. Wang,J. Wu, Entire solutions in monostable reaction-diffusion equations with delayed nonlinearity, J. Differential Equations, 245 (2008): 102-129.
    [23] [ W. T. Li,J. B. Wang,L. Zhang, Entire solutions of nonlocal dispersal equations with monostable nonlinearity in space periodic habitats, J. Differential Equations, 261 (2016): 2472-2501.
    [24] [ W. T. Li,L. Zhang,G. B. Zhang, Invasion entire solutions in a competition system with nonlocal dispersal, Discrete Contin. Dyn. Syst. Ser. A., 35 (2015): 1531-1560.
    [25] [ N. W. Liu,W. T. Li,Z. C. Wang, Pulsating type entire solutions of monostable reaction-advection-diffusion equations in periodic excitable media, Nonlinear Anal., 75 (2012): 1869-1880.
    [26] [ A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhauser, Boston, 1995.
    [27] [ G. Lv,M. Wang, Traveling wave front in diffusive and competitive Lotka-Volterra system with delays, Nonlinear Anal. Real World Appl., 11 (2010): 1323-1329.
    [28] [ Y. Morita,H. Ninomiya, Entire solutions with merging fronts to reaction-diffusion equations, J. Dynam. Differential Equations, 18 (2006): 841-861.
    [29] [ Y. Morita,K. Tachibana, An entire solution to the Lotka-Volterra competition-diffusion equations, SIAM J. Math. Anal., 40 (2009): 2217-2240.
    [30] [ G. Nadin, Traveling fronts in space-time periodic media, J. Math. Pures Appl., 92 (2009): 232-262.
    [31] [ G. Nadin, Existence and uniqueness of the solution of a space-time periodic reaction-diffusion equation, J. Differential Equations, 249 (2010): 1288-1304.
    [32] [ J. Nolen,M. Rudd,J. Xin, Existence of KPP fronts in spatially-temporally periodic advection and variational principle for propagation speeds, Dyn. Partial Differ. Equ., 2 (2005): 1-24.
    [33] [ W. Shen, Traveling waves in time periodic lattice differential equations, Nonlinear Anal., 54 (2003): 319-339.
    [34] [ W. J. Sheng and J. B. Wang, Entire solutions of time periodic bistable reaction-advection-diffusion equations in infinite cylinders J. Math. Phys., 56 (2015), 081501, 17 pp.
    [35] [ Y. J. Sun,W. T. Li,Z. C. Wang, Entire solutions in nonlocal dispersal equations with bistable nonlinearity, J. Differential Equations, 251 (2011): 551-581.
    [36] [ M. M. Tang,P. C. Fife, Propagating fronts for competing species equations with diffusion, Arch. Ration. Mech. Anal., 73 (1980): 69-77.
    [37] [ J. H. Vuuren, The existence of traveling plane waves in a general class of competition-diffusion systems, SIMA J. Appl. Math., 55 (1995): 135-148.
    [38] [ M. Wang,G. Lv, Entire solutions of a diffusive and competitive Lotka-Volterra type system with nonlocal delays, Nonlinearity, 23 (2010): 1609-1630.
    [39] [ Z. C. Wang,W. T. Li,S. Ruan, Entire solutions in bistable reaction-diffusion equations with nonlocal delayed nonlinearity, Trans. Amer. Math. Soc., 361 (2009): 2047-2084.
    [40] [ Z. C. Wang,W. T. Li,J. Wu, Entire solutions in delayed lattice differential equations with monostable nonlinearity, SIAM J. Math. Anal., 40 (2009): 2392-2420.
    [41] [ H. Yagisita, Backward global solutions characterizing annihilation dynamics of travelling fronts, Publ. Res. Inst. Math. Sci., 39 (2003): 117-164.
    [42] [ L. Zhang,W. T. Li,S. L. Wu, Multi-type entire solutions in a nonlocal dispersal epidemic model, J. Dynam. Differential Equations, 28 (2016): 189-224.
    [43] [ G. Zhao,S. Ruan, Existence, uniqueness and asymptotic stability of time periodic traveling waves for a periodic Lotka-Volterra competition system with diffusion, J. Math. Pures Appl., 95 (2011): 627-671.
    [44] [ G. Zhao,S. Ruan, Time periodic traveling wave solutions for periodic advection-reaction-diffusion systems, J. Differential Equations, 257 (2014): 1078-1147.
    [45] [ X. Q. Zhao, Dynamical Systems in Population Biology, Springer-Verlag, New York, 2003.
  • This article has been cited by:

    1. Wei-Jian Bo, Guo Lin, Yuanwei Qi, Propagation dynamics of a time periodic diffusion equation with degenerate nonlinearity, 2019, 45, 14681218, 376, 10.1016/j.nonrwa.2018.07.010
    2. Li-Jun Du, Wan-Tong Li, Shi-Liang Wu, Pulsating fronts and front-like entire solutions for a reaction–advection–diffusion competition model in a periodic habitat, 2019, 266, 00220396, 8419, 10.1016/j.jde.2018.12.029
    3. Li-Jun Du, Wan-Tong Li, Shi-Liang Wu, Propagation phenomena for a bistable Lotka–Volterra competition system with advection in a periodic habitat, 2020, 71, 0044-2275, 10.1007/s00033-019-1236-6
    4. Jingjing Cai, Li Xu, Yuan Chai, Entire solutions of time periodic Fisher–KPP equation on the half line, 2020, 200, 0362546X, 112005, 10.1016/j.na.2020.112005
    5. Li-Jun Du, Wan-Tong Li, Jia-Bing Wang, Asymptotic behavior of traveling fronts and entire solutions for a periodic bistable competition–diffusion system, 2018, 265, 00220396, 6210, 10.1016/j.jde.2018.07.024
    6. Yu-Xia Hao, Wan-Tong Li, Jia-Bing Wang, Propagation dynamics of Lotka-Volterra competition systems with asymmetric dispersal in periodic habitats, 2021, 300, 00220396, 185, 10.1016/j.jde.2021.07.041
    7. Qiong Wu, Chaohong Pan, Hongyong Wang, Speed determinacy of the traveling waves for a three species time‐periodic Lotka–Volterra competition system, 2022, 45, 0170-4214, 6080, 10.1002/mma.8156
  • Reader Comments
  • © 2017 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3231) PDF downloads(564) Cited by(7)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog