Citation: Li-Jun Du, Wan-Tong Li, Jia-Bing Wang. Invasion entire solutions in a time periodic Lotka-Volterra competition system with diffusion[J]. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1187-1213. doi: 10.3934/mbe.2017061
[1] | [ N. D. Alikakos,P. W. Bates,X. Chen, Periodic traveling waves and locating oscillating patterns in multidimensional domains, Trans. Amer. Math. Soc., 351 (1999): 2777-2805. |
[2] | [ X. Bao,W. T. Li,Z. C. Wang, Time periodic traveling curved fronts in the periodic Lotka-Volterra competition-diffusion system, J. Dynam. Differential Equations, null (2015): 1-36. |
[3] | [ X. Bao,Z. C. Wang, Existence and stability of time periodic traveling waves for a periodic bistable Lotka-Volterra competition system, J. Differential Equations, 255 (2013): 2402-2435. |
[4] | [ P. W. Bates,F. Chen, Periodic traveling waves for a nonlocal integro-differential model, Electron. J. Differential Equations, 1999 (1999): 1-19. |
[5] | [ H. Berestycki,F. Hamel, Front propagation in periodic excitable media, Comm. Pure Appl. Math., 55 (2002): 949-1032. |
[6] | [ Z. H. Bu,Z. C. Wang,N. W. Liu, Asymptotic behavior of pulsating fronts and entire solutions of reaction-advection-diffusion equations in periodic media, Nonlinear Anal. Real World Appl., 28 (2016): 48-71. |
[7] | [ X. Chen,J. S. Guo, Existence and uniqueness of entire solutions for a reaction-diffusion equation, J. Differential Equations, 212 (2005): 62-84. |
[8] | [ C. Conley,R. Gardner, An application of the generalized morse index to travelling wave solutions of a competitive reaction-diffusion model, Indiana Univ. Math. J., 33 (1984): 319-343. |
[9] | [ J. Foldes,P. Poláčik, On cooperative parabolic systems: Harnack inequalities and asymptotic symmetry, Discrete Cont. Dynam. Syst. Ser. A., 25 (2009): 133-157. |
[10] | [ Y. Fukao,Y. Morita,H. Ninomiya, Some entire solutions of the Allen-Cahn equation, Taiwanese J. Math., 8 (2004): 15-32. |
[11] | [ R. A. Gardner, Existence and stability of travelling wave solutions of competition models: A degree theoretic approach, J. Differential Equations., 44 (1982): 343-364. |
[12] | [ J. S. Guo,Y. Morita, Entire solutions of reaction-diffusion equations and an application to discrete diffusive equations, Discrete Contin. Dyn. Syst. Ser. A., 12 (2005): 193-212. |
[13] | [ J. S. Guo,C. H. Wu, Entire solutions for a two-component competition system in a lattice, Tohoku Math. J., 62 (2010): 17-28. |
[14] | [ F. Hamel, Qualitative properties of monostable pulsating fronts: Exponential decayed monotonicity, J. Math. Pures Appl., 89 (2008): 355-399. |
[15] | [ F. Hamel,N. Nadirashvili, Entire solutions of the KPP equation, Comm. Pure Appl. Math., 52 (1999): 1255-1276. |
[16] | [ F. Hamel,N. Nadirashvili, Travelling fronts and entire solutions of the Fisher-KPP equation in $\mathbb R^N$, Arch. Ration. Mech. Anal., 157 (2001): 91-163. |
[17] | [ Y. Hosono, Singular perturbation analysis of travelling waves of diffusive Lotka-Volterra competition models, Numerical and Applied Mathematics, Part Ⅱ (Paris 1988), null (1989): 687-692. |
[18] | [ X. Hou,A. W. Leung, Traveling wave solutions for a competitive reaction-diffusion system and their asymptotics, Nonlinear Anal. Real World Appl., 9 (2008): 2196-2213. |
[19] | [ Y. Kan-On, Parameter dependence of propagation speed of travelling waves for competition-diffusion equations, SIAM J. Math. Anal., 26 (1995): 340-363. |
[20] | [ Y. Kan-On, Fisher wave fronts for the Lotka-Volterra competition model with diffusion, Nonlinear Anal., 28 (1997): 145-164. |
[21] | [ W. T. Li,Y. J. Sun,Z. C. Wang, Entire solutions in the Fisher-KPP equation with nonlocal dispersal, Nonlinear Anal. Real World Appl., 11 (2010): 2302-2313. |
[22] | [ W. T. Li,Z. C. Wang,J. Wu, Entire solutions in monostable reaction-diffusion equations with delayed nonlinearity, J. Differential Equations, 245 (2008): 102-129. |
[23] | [ W. T. Li,J. B. Wang,L. Zhang, Entire solutions of nonlocal dispersal equations with monostable nonlinearity in space periodic habitats, J. Differential Equations, 261 (2016): 2472-2501. |
[24] | [ W. T. Li,L. Zhang,G. B. Zhang, Invasion entire solutions in a competition system with nonlocal dispersal, Discrete Contin. Dyn. Syst. Ser. A., 35 (2015): 1531-1560. |
[25] | [ N. W. Liu,W. T. Li,Z. C. Wang, Pulsating type entire solutions of monostable reaction-advection-diffusion equations in periodic excitable media, Nonlinear Anal., 75 (2012): 1869-1880. |
[26] | [ A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhauser, Boston, 1995. |
[27] | [ G. Lv,M. Wang, Traveling wave front in diffusive and competitive Lotka-Volterra system with delays, Nonlinear Anal. Real World Appl., 11 (2010): 1323-1329. |
[28] | [ Y. Morita,H. Ninomiya, Entire solutions with merging fronts to reaction-diffusion equations, J. Dynam. Differential Equations, 18 (2006): 841-861. |
[29] | [ Y. Morita,K. Tachibana, An entire solution to the Lotka-Volterra competition-diffusion equations, SIAM J. Math. Anal., 40 (2009): 2217-2240. |
[30] | [ G. Nadin, Traveling fronts in space-time periodic media, J. Math. Pures Appl., 92 (2009): 232-262. |
[31] | [ G. Nadin, Existence and uniqueness of the solution of a space-time periodic reaction-diffusion equation, J. Differential Equations, 249 (2010): 1288-1304. |
[32] | [ J. Nolen,M. Rudd,J. Xin, Existence of KPP fronts in spatially-temporally periodic advection and variational principle for propagation speeds, Dyn. Partial Differ. Equ., 2 (2005): 1-24. |
[33] | [ W. Shen, Traveling waves in time periodic lattice differential equations, Nonlinear Anal., 54 (2003): 319-339. |
[34] | [ W. J. Sheng and J. B. Wang, Entire solutions of time periodic bistable reaction-advection-diffusion equations in infinite cylinders J. Math. Phys., 56 (2015), 081501, 17 pp. |
[35] | [ Y. J. Sun,W. T. Li,Z. C. Wang, Entire solutions in nonlocal dispersal equations with bistable nonlinearity, J. Differential Equations, 251 (2011): 551-581. |
[36] | [ M. M. Tang,P. C. Fife, Propagating fronts for competing species equations with diffusion, Arch. Ration. Mech. Anal., 73 (1980): 69-77. |
[37] | [ J. H. Vuuren, The existence of traveling plane waves in a general class of competition-diffusion systems, SIMA J. Appl. Math., 55 (1995): 135-148. |
[38] | [ M. Wang,G. Lv, Entire solutions of a diffusive and competitive Lotka-Volterra type system with nonlocal delays, Nonlinearity, 23 (2010): 1609-1630. |
[39] | [ Z. C. Wang,W. T. Li,S. Ruan, Entire solutions in bistable reaction-diffusion equations with nonlocal delayed nonlinearity, Trans. Amer. Math. Soc., 361 (2009): 2047-2084. |
[40] | [ Z. C. Wang,W. T. Li,J. Wu, Entire solutions in delayed lattice differential equations with monostable nonlinearity, SIAM J. Math. Anal., 40 (2009): 2392-2420. |
[41] | [ H. Yagisita, Backward global solutions characterizing annihilation dynamics of travelling fronts, Publ. Res. Inst. Math. Sci., 39 (2003): 117-164. |
[42] | [ L. Zhang,W. T. Li,S. L. Wu, Multi-type entire solutions in a nonlocal dispersal epidemic model, J. Dynam. Differential Equations, 28 (2016): 189-224. |
[43] | [ G. Zhao,S. Ruan, Existence, uniqueness and asymptotic stability of time periodic traveling waves for a periodic Lotka-Volterra competition system with diffusion, J. Math. Pures Appl., 95 (2011): 627-671. |
[44] | [ G. Zhao,S. Ruan, Time periodic traveling wave solutions for periodic advection-reaction-diffusion systems, J. Differential Equations, 257 (2014): 1078-1147. |
[45] | [ X. Q. Zhao, Dynamical Systems in Population Biology, Springer-Verlag, New York, 2003. |