Citation: Ran Zhang, Shengqiang Liu. Traveling waves for SVIR epidemic model with nonlocal dispersal[J]. Mathematical Biosciences and Engineering, 2019, 16(3): 1654-1682. doi: 10.3934/mbe.2019079
[1] | W. Kermack and A. McKendrick, A contribution to mathematical theory of epidemics, Proc. R. Soc. Lond. A, 115 (1927), 700–721. |
[2] | X. Liu, Y. Takeuchi and S. Iwami, SVIR epidemic models with vaccination strategies, J. Theor. Biol., 253 (2008), 1–11. |
[3] | T. Kuniya, Global stability of a multi-group SVIR epidemic model, Nonlinear Anal.-Real World Appl., 14 (2013), 1135–1143. |
[4] | J. Xu and Y. Zhou, Global stability of a multi-group model with vaccination age, distributed delay and random perturbation, Math. Biosci. Eng., 12 (2015), 1083–1106. |
[5] | X. Duan, S. Yuan and X. Li, Global stability of an SVIR model with age of vaccination, Appl. Math. Comput., 226 (2014), 528–540. |
[6] | J.Wang, R. Zhang and T. Kuniya, The dynamics of an SVIR epidemiological model with infection age, IMA J. Appl. Math., 81 (2016), 321–343. |
[7] | J.Wang, M. Guo and S. Liu, SVIR epidemic model with age structure in susceptibility, vaccination effects and relapse, IMA J. Appl. Math., 82 (2017), 945–970. |
[8] | G. F. Webb, A reaction-diffusion model for a deterministic diffusive epidemic, J. Math. Anal. Appl., 84 (1981), 150–161. |
[9] | M. Kubo and M. Langlais, Periodic solutions for a population dynamics problem with agedependence and spatial structure, J. Math. Biol., 29 (1991), 393–378. |
[10] | Y. Hosono and B. Ilyas, Traveling waves for a simple diffusive epidemic model, Math. Models Meth. Appl. Sci., 5 (1995), 935–966. |
[11] | R. Peng and S. Liu, Global stability of the steady states of an SIS epidemic reaction-diffusion model, Nonlinear Anal.-Theory Methods Appl., 71 (2008), 239–247. |
[12] | Y. Lou and X. Q. Zhao, A reaction-diffusion malaria model with incubation period in the vector population, J. Math. Biol., 62 (2011), 543–568. |
[13] | A. Ducrot and P. Magal, Travelling wave solutions for an infection-age structured epidemic model with external supplies, Nonlinearity, 24 (2011), 2891–2911. |
[14] | Z. Wang and R. Xu, Traveling waves of an epidemic model with vaccination, Int. J. Biomath., 6 (2013), 1350033, 19 pp. |
[15] | R. Cui and Y. Lou, A spatial SIS model in advective heterogeneous environments, J. Differ. Equ., 261 (2016), 3305–3343. |
[16] | B. Tian and R. Yuan, Traveling waves for a diffusive SEIR epidemic model with standard incidences, Sci. China Math., 60 (2017), 813–832. |
[17] | L. Zhao, Z. C. Wang and S. Ruan, Traveling wave solutions in a two-group SIR epidemic model with constant recruitment, J. Math. Biol., 77 (2018), 1871–1915. |
[18] | G. Alberti and G. Bellettini, A nonlocal anisotropic model for phase transitions Part I: the optimal profile problem, Math. Ann., 310 (1998), 527–560. |
[19] | D. Xu and X. Zhao, Asymptotic speed of spread and traveling waves for a nonlocal epidemic model, Discret. Contin. Dyn. Syst. -Ser. B, 5 (2005), 1043–1056. |
[20] | V. Hutson and M. Grinfeld, Non-local dispersal and bistability, Eur. J. Appl. Math., 17 (2006), 221–232. |
[21] | Z. C.Wang,W. T. Li and S. Ruan, Traveling fronts in monostable equations with nonlocal delayed effects, J. Dyn. Differ. Equ., 20 (2008), 573–607. |
[22] | F. Y. Yang, Y. Li, W. T. Li and Z. C. Wang, Traveling waves in a nonlocal dispersal Kermack- McKendrick epidemic model, Discret. Contin. Dyn. Syst. -Ser. B, 18 (2013), 1969–1993. |
[23] | Y. Li, W. T. Li and F. Y. Yang, Traveling waves for a nonlocal dispersal SIR model with delay and external supplies, Appl. Math. Comput., 247 (2014), 723–740. |
[24] | H. Cheng and R. Yuan, Traveling waves of a nonlocal dispersal Kermack-Mckendrick epidemic model with delayed transmission, J. Evol. Equ., 17 (2017), 979–1002. |
[25] | C. C. Zhu, W. T. Li and F. Y. Yang, Traveling waves in a nonlocal dispersal SIRH model with relapse, Comput. Math. Appl., 73 (2017), 1707–1723. |
[26] | W. T. Li, W. B. Xu and L. Zhang, Traveling waves and entire solutions for an epidemic model with asymmetric dispersal, Discret. Contin. Dyn. Syst., 37 (2017), 2483–2512. |
[27] | T. Kuniya and J. Wang, Global dynamics of an SIR epidemic model with nonlocal diffusion, Nonlinear Anal.-Real World Appl., 43 (2018), 262–282. |
[28] | G. Zhao and S. Ruan, Spatial and temporal dynamics of a nonlocal viral infection model, SIAM J. Appl. Math., 78 (2018), 1954–1980. |
[29] | S. L. Wu, G. S. Chen and C. H. Hsu, Entire solutions originating from multiple fronts of an epidemic model with nonlocal dispersal and bistable nonlinearity, J. Differ. Equ., 265 (2018), 5520–5574. |
[30] | W. Wang and W. Ma, Travelling wave solutions for a nonlocal dispersal HIV infection dynamical model, J. Math. Anal. Appl., 457 (2018), 868–889. |
[31] | W.Wang andW. Ma, Global dynamics and travelling wave solutions for a class of non-cooperative reaction-diffusion systems with nonlocal infections, Discret. Contin. Dyn. Syst. -Ser. B, 23 (2018), 3213–3235. |
[32] | J. Wu, Theory and Applications of Partial Functional Differential Equations, Applied Mathematical Sciences Vol. 119, Springer-Verlag, New York, 1996. |
[33] | K. C. Chang, Methods in Nonlinear Analysis, Springer Monographs in Mathematics, Springer- Verlag, Berlin, 2005. |
[34] | F. Y. Yang and W. T. Li, Traveling waves in a nonlocal dispersal SIR model with critical wave speed, J. Math. Anal. Appl., 458 (2018), 1131–1146. |
[35] | C. C. Wu, Existence of traveling waves with the critical speed for a discrete diffusive epidemic model, J. Differ. Equ., 262 (2017), 272–282. |
[36] | Y. Chen, J. Guo and F. Hamel, Traveling waves for a lattice dynamical system arising in a diffusive endemic model, Nonlinearity, 30 (2017), 2334–2359. |
[37] | G. B. Zhang,W. T. Li and Z. C.Wang, Spreading speeds and traveling waves for nonlocal dispersal equations with degenerate monostable nonlinearity, J. Differ. Equ., 252 (2012), 5096–5124. |
[38] | G. Huang, Y. Takeuchi, W. Ma and D. Wei, Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate, Bull. Math. Biol., 72 (2010), 1192–1207. |
[39] | K. Brown and J. Carr, Deterministic epidemic waves of critical velocity, Math. Proc. Camb. Philos. Soc., 81 (1977), 431–433. |
[40] | J. Wu and X. Zou, Traveling wave fronts of reaction-diffusion systems with delay, J. Dyn. Differ. Equ., 13 (2001), 651–687. |
[41] | D. V. Widder, The Laplace Transform, Princeton Mathematical Series 6, Princeton University Press, Princeton, 1941. |