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Abstract: In this paper, we studied an SVIR epidemic model with nonlocal dispersal and delay, and
we find that the existence of traveling wave is determined by the basic reproduction number <0 and
minimal wave speed c∗. By applying Schauder’s fixed point theorem and Lyapunov functional, the
existence and boundary asymptotic behaviour of traveling wave solutions is investigated for <0 > 1
and c > c∗. The existence of traveling waves is obtained for<0 > 1 and c = c∗ by employing a limiting
argument. We also show that the nonexistence of traveling wave solutions by Laplace transform. Our
results imply that (i) the diffusion and infection ability of infected individuals can accelerate the wave
speed; (ii) the latent period and successful rate of vaccination can slow down the wave speed.
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1. Introduction

As one of the most basic models in modeling infectious diseases, the SIR epidemiological model
was introduced by Kermack and McKendrick [1] in 1927. Since then, a lot of differential equations
have been studied as models for the spread of infectious diseases. Considering a continuous vaccination
strategy, let V be a new group of vaccinated individuals, Liu et al. [2] formulated the following system
of ordinary differential equations:

dS(t)
dt

= Λ − β1S (t)I(t) − αS (t) − µ1S (t),

dV(t)
dt

= αS (t) − β2V(t)I(t) − (γ1 + µ1)V(x, t),

dI(t)
dt

= β1S (t)I(t) + β2V(t)I(t) − γI(x, t) − µ3I(x, t),

dR(t)
dt

= γ1V(t) + γI(t) − µ1R(t),

(1.1)
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where S (t), V(t), I(t) and R(t) denote the densities of susceptible, vaccinated, infective and removed
individuals at time t, respectively. Λ denote the recruitment rate of susceptible individuals, µ1 denote
the natural death rate. β1 is the rate of disease transmission between susceptible and infectious in-
dividuals, and β2 is the rate of disease transmission between vaccinated and infected individuals. γ
denote the recovery rate, α is the vaccination rate and γ1 is the rate at which a vaccinated individual
obtains immunity. In [2], the authors shown that the global dynamics of model (1.1) is completely
determined by the basic reproduction number: that is, if the number is less than unity, then the disease-
free equilibrium is globally asymptotically stable, while if the number is greater than unity, then a
positive endemic equilibrium exists and it is globally asymptotically stable. Moreover, it was observed
in Liu et al. [2] that vaccination has an effect of decreasing the basic reproduction number. By using
the classical method of Lyapunov and graph-theoretic approach, Kuniya [3] studied the global stability
of a multi-group SVIR epidemic model. Xu et.al [4] formulated a multi-group epidemic model with
distributed delay and vaccination age, the authors established the global stability of the model, further-
more, the stochastic perturbation of the model is studied and it is proved that the endemic equilibrium
of the stochastic model is stochastically asymptotically stable in the large under certain conditions.
In [5–7], the global stability of different SVIR models with age structure are investigated.

On the other hand, in order to understand the geographic spread of infectious disease, the spatial
effect would give insights into disease spread and control. Due to this fact, many literatures have
studied the spatial effects on epidemics by using reaction-diffusion equations (see, for instance, [8–17]
and the references therein). In the study of reaction-diffusion models, the Laplacian operator describes
the random diffusion of each individual, but it can not describe the long range diffusion. Therefore, a
nonlocal dispersal term has been established, which is by a convolution operator:

J ∗ φ(x) − φ(x) =

∫
R

J(x − y)φ(y)dy − φ(x), (1.2)

where φ(x) denote the densities of individuals at position x, J(x − y) is interpreted as the probability of
jumping from position y to position x, the convolution

∫
R

J(x−y)φ(y)dy is the rate at which individuals
arrive at position x from all other positions, while −

∫
R

J(x− y)φ(x)dy = −φ(x) is the rate at which they
leave position x to reach any other position. Problems involving such operators are called nonlocal
diffusion problems and have appeared in various references [18–31].

Recently, Li et al. [23] proposed a nonlocal dispersal SIR model with delay:

∂S (x, t)
∂t

= d1(J ∗ S (x, t) − S (x, t)) + Λ −
β1S (x, t)I(x, t − τ)

1 + θI(x, t − τ)
− µ1S (x, t),

∂I(x, t)
∂t

= d2(J ∗ I(x, t) − I(x, t)) +
β1S (x, t)I(x, t − τ)

1 + θI(x, t − τ)
− γI(x, t) − µ3I(x, t),

∂R(x, t)
∂t

= d3(J ∗ R(x, t) − R(x, t)) + γI(x, t) − µ1R(x, t),

(1.3)

where S (x, t), I(x, t) and R(x, t) denote the densities of susceptible, infective and removed individuals
at position x and time t, respectively. θ measures the saturation level. di(i = 1, 2, 3) describes the
spatial motility of each compartments. The biological meaning of other parameters are the same as
in model (1.1). The authors find that there exists traveling wave solution if the basic reproduction
number<0 > 1 and the wave speed c ≥ c∗, where c∗ is the minimal wave speed. They also obtain the
nonexistence of traveling wave solution for<0 > 1 and any 0 < c < c∗ or<0 < 1.
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Motivated by [2] and [23], in this paper, we consider a nonlocal dispersal epidemic model with
vaccination and delay. Precisely, we study the following model.

∂S (x, t)
∂t

= d1(J ∗ S (x, t) − S (x, t)) + Λ − β1S (x, t)I(x, t − τ) − αS (x, t) − µ1S (x, t),

∂V(x, t)
∂t

= d2(J ∗ V(x, t) − V(x, t)) − β2V(x, t)I(x, t − τ) + αS (x, t) − (γ1 + µ1)V(x, t),

∂I(x, t)
∂t

= d3(J ∗ I(x, t) − I(x, t)) + β1S (x, t)I(x, t − τ) + β2V(x, t)I(x, t − τ) − γI(x, t) − µ3I(x, t),

∂R(x, t)
∂t

= d4(J ∗ R(x, t) − R(x, t)) + β1S (x, t)I(x, t − τ) + γ1V(x, t) + γI(x, t) − µ4R(x, t),
(1.4)

where S (x, t), V(x, t), I(x, t) and R(x, t) denote the densities of susceptible, vaccinated, infective and
removed individuals at position x and time t, respectively. di(i = 1, 2, 3, 4) describes the spatial motility
of each compartments. The biological meaning of other parameters are the same as in model (1.1). J
is the standard convolution operator satisfying the following assumptions.

Assumption 1.1. [23, 24] The kernel function J satisfies

(J1) J ∈ C1(R), J(x) ≥ 0, J(x) = J(−x),
∫
R

J(x)dx = 1 and J is compactly supported.

(J2) There exists a constant λM ∈ (0,+∞) such that∫
R

J(x)e−λxdx < +∞, for any λ ∈ [0, λM)

and
lim

λ→λM−0

∫
R

J(x)e−λxdx→ +∞.

The organization of this paper is as follows. In section 2, we proved the existence of traveling wave
solutions of (1.4) for c > c∗ by applying Schauder’s fixed point theorem and Lyapunov method. In
section 3, we show that the existence of traveling wave solutions of (1.4) for c = c∗. Furthermore, we
investigate the nonexistence of traveling wave solutions under some conditions in section 4. At last,
there is a brief discussion.

2. Existence of traveling wave solutions for c > c∗

In this section, we study the existence of traveling wave solutions of system (1.4). Since we have
assumed that the recovered have gained permanent immunity and R(x, t) is decoupled from other equa-
tions, we indeed need to study the following subsystem of (1.4)

∂S (x, t)
∂t

= d1(J ∗ S (x, t) − S (x, t)) + Λ − β1S (x, t)I(x, t − τ) − αS (x, t) − µ1S (x, t),

∂V(x, t)
∂t

= d2(J ∗ V(x, t) − V(x, t)) − β2V(x, t)I(x, t − τ) + αS (x, t) − µ2V(x, t),

∂I(x, t)
∂t

= d3(J ∗ I(x, t) − I(x, t)) + (β1S (x, t) + β2V(x, t))I(x, t − τ) − γI(x, t) − µ3I(x, t).

(2.1)

Mathematical Biosciences and Engineering Volume 16, Issue 3, 1654–1682.



1657

where µ2 = γ1 + µ1. Obviously, system (2.1) always has a disease-free equilibrium E0 = (S 0,V0, 0) =(
Λ

µ1+α
, Λα
µ2(µ1+α) , 0

)
. Denote the basic reproduction number as following:

<0 =
β1S 0 + β2V0

µ3 + γ
. (2.2)

Furthermore, there exists another equilibrium E∗ = (S ∗,V∗, I∗) satisfying
Λ − β1S ∗I∗ − αS ∗ − µ1S ∗ = 0,

β2V∗I∗ + αS ∗ − µ2V∗ = 0,

(β1S ∗ + β2V∗)I∗ − γI∗ − µ3I∗ = 0.

(2.3)

From [2, Theorem 2.1], system (2.1) has a unique positive equilibrium E∗ if<0 > 1.
Let ξ = x + ct and substituting ξ into system (2.1), then we obtain the wave form equations as

cS ′(ξ) = d1(J ∗ S (ξ) − S (ξ)) + Λ − β1S (ξ)I(ξ − cτ) − αS (ξ) − µ1S (ξ),

cV ′(ξ) = d2(J ∗ V(ξ) − V(ξ)) + αS (ξ) − β2V(ξ)I(ξ − cτ) − µ2V(ξ),

cI′(ξ) = d3(J ∗ I(ξ) − I(ξ)) + β1S (ξ)I(ξ − cτ) + β2V(ξ)I(ξ − cτ) − γI(ξ) − µ3I(ξ).

(2.4)

We want to find traveling wave solutions with the following asymptotic boundary conditions:

lim
ξ→−∞

(S (ξ),V(ξ), I(ξ)) = (S 0,V0, 0) (2.5)

and
lim
ξ→+∞

(S (ξ),V(ξ), I(ξ)) = (S ∗,V∗, I∗). (2.6)

Consider the following linear system of system (2.4) at infection-free equilibrium (S 0,V0, 0),

cI′(ξ) = d3(J ∗ I(ξ) − I(ξ)) + β1S 0I(ξ − cτ) + β2V0I(ξ − cτ) − (γ + µ3)I(ξ). (2.7)

Let I(ξ) = eλξ, we have

∆(λ, c) , d3

∫
R

J(x)e−λxdx − (d3 + γ + µ3) − cλ + β1S0e−cτλ + β2V0e−cτλ = 0. (2.8)

By some calculations, we obtain

∆(0, c) = β1S 0 + β2V0 − γ − µ3, lim
c→+∞

∆(λ, c) = −∞ for λ > 0,

∂∆(λ, c)
∂λ

∣∣∣∣∣
(0,c)

= −c − cτ(β1S 0 + β2V0) < 0 for c > 0,

∂∆(λ, c)
∂c

= −λ − τλe−cτλ(β1S 0 + β2V0) < 0 for λ > 0,

∂2∆(λ, c)
∂λ2 = d3

∫
R

J(x)x2e−λxdx + (cτ)2e−cτλ(β1S0 + β2V0) > 0.

For any c ∈ R, ∆(0, c) = <0 − 1, gives us ∆(0, c) > 0 if <0 > 1. Then there exist c∗ > 0 and λ∗ > 0
such that ∂∆(λ,c)

∂λ

∣∣∣
(λ∗,c∗)

= 0, we have the following lemma.

Mathematical Biosciences and Engineering Volume 16, Issue 3, 1654–1682.



1658

Lemma 2.1. Let<0 > 1, we have

(i) If c = c∗, then ∆(λ, c) = 0 has two same positive real roots λ∗;

(ii) If 0 < c < c∗, then ∆(λ, c) > 0 for all λ ∈ (0, λc,τ), where λc,τ ∈ (0,+∞];

(iii) If c > c∗, then ∆(λ, c) = 0 has two positive real roots λ1(c), λ2(c).

Denote λc = λ1(c), from Lemma 2.1, we have

0 < λc < λ
∗ < λ2(c) < λc,τ.

For the followings in this section, we always fix c > c∗ and<0 > 1. Define the following functions:
S (ξ) = S 0,

V(ξ) = V0,

I(ξ) = eλcξ,


S (ξ) = max{S 0 − M1eε1ξ, 0},

V(ξ) = max{V0 − M2eε2ξ, 0},

I(ξ) = max{eλcξ(1 − M3eε3ξ), 0},

where Mi and εi(i = 1, 2, 3) are some positive constants to be determined in the following lemmas.

Lemma 2.2. The function I(ξ) = eλcξ satisfies

cI′(ξ) ≥ d3(J ∗ I(ξ) − I(ξ)) + β1S 0I(ξ − cτ) + β2V0I(ξ − cτ) − γI(ξ) − µ3I(ξ). (2.9)

Lemma 2.3. The functions S (ξ) = S 0 and V(ξ) = V0 satisfy cS ′(ξ) ≥ d1(J ∗ S (ξ) − S (ξ)) + Λ − β1S (ξ)I(ξ − cτ) − αS (ξ) − µ1S (ξ),

cV ′(ξ) ≥ d2(J ∗ V(ξ) − V(ξ)) + αS (ξ) − β2V(ξ)I(ξ − cτ) − µ2V(ξ).
(2.10)

The proof is trivial, so we omitted the above two lemmas.

Lemma 2.4. For each 0 < ε1 < λc sufficiently small and M1 large enough, the function S (ξ) =

max{S 0 − M1eε1ξ, 0} satisfies

cS ′(ξ) ≤ d1(J ∗ S (ξ) − S (ξ)) + Λ − β1S (ξ)I(ξ − cτ) − (µ1 + α)S (ξ), (2.11)

with ξ , X1 ,
1
ε1

ln S 0
M1

.

Proof. See Appendix A. �

Lemma 2.5. For each 0 < ε2 < λc sufficiently small and M2 large enough, the function V(ξ) =

max{V0 − M2eε2ξ, 0} satisfies

cV ′(ξ) ≤ d2(J ∗ V(ξ) − V(ξ)) + αS (ξ) − β2V(ξ)I(ξ − cτ) − µ2V(ξ), (2.12)

with ξ , X2 ,
1
ε2

ln V0
M2

.

The proof is similar with Lemma 2.4.
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Lemma 2.6. Let 0 < ε3 < min{ε1/2, ε2/2} and M3 > max{S 0,V0} is large enough, then the function
I(ξ) = max{eλcξ(1 − M3eε3ξ), 0} satisfies

cI′(ξ) ≤ d3(J ∗ I(ξ) − I(ξ)) + β1S (ξ)I(ξ − cτ) + β2V(ξ)I(ξ − cτ) − γI(ξ) − µ3I(ξ), (2.13)

with ξ , X3 ,
1
ε3

ln 1
M3

.

Proof. See Appendix B. �

Let X > max{X1,X2,X3}, define

ΓX =



φ

ϕ

ψ

 ∈ C([−X, X],R3)

∣∣∣∣∣∣∣∣∣∣∣
S (ξ) ≤ φ(ξ) ≤ S 0, φ(−X) = S (−X), for ξ ∈ [−X, X];

V(ξ) ≤ ϕ(ξ) ≤ V0, ϕ(−X) = V(X), for ξ ∈ [−X, X];

I(ξ) ≤ ψ(ξ) ≤ I(ξ), ψ(−X) = I(X), for ξ ∈ [−X, X].

 .
For given (φ(ξ), ϕ(ξ), ψ(ξ)) ∈ ΓX, define

φ̂(ξ) =


φ(X), for ξ > X,

φ(ξ), for ξ ∈ [−X − cτ, X],

S (ξ), for ξ ≤ −X − cτ,

ϕ̂(ξ) =


ϕ(X), for ξ > X,

ϕ(ξ), for ξ ∈ [−X − cτ, X],

V(ξ), for ξ ≤ −X − cτ,

and

ψ̂(ξ) =


ψ(X), for ξ > X,

ψ(ξ), for ξ ∈ [−X − cτ, X],

I(ξ), for ξ ≤ −X − cτ.

We have 
S (ξ) ≤ φ̂(ξ) ≤ S 0,

V(ξ) ≤ ϕ̂(ξ) ≤ V0,

I(ξ) ≤ ψ̂(ξ) ≤ I(ξ).

For any ξ ∈ [−X, X], consider the following initial value problem

cS ′(ξ) = d1

∫
R

J(y)φ̂(ξ − y)dy + Λ − β1S(ξ)ψ(ξ − cτ) − (d1 + µ1 + α)S(ξ),

cV ′(ξ) = d2

∫
R

J(y)ϕ̂(ξ − y)dy + αφ(ξ) − β2V(ξ)ψ(ξ − cτ) − (d2 + µ2)V(ξ),

cI′(ξ) = d3

∫
R

J(y)ψ̂(ξ − y)dy + β1φ(ξ)ψ(ξ − cτ) + β2ϕ(ξ)ψ(ξ − cτ) − (d3 + γ + µ3)I(ξ),

S (−X) = S (−X), V(−X) = V(−X), I(−X) = I(−X).

(2.14)

From the standard theory of functional differential equations (see [32]), the initial value problem (2.14)
admits a unique solution (S X(ξ),VX(ξ), IX(ξ)) satisfying

(S X,VX, IX) ∈ C1([−X, X]),
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this defines an operatorA = (A1,A2,A3) : ΓX → C1([−X, X]) as

S X = A1(φ, ϕ, ψ), VX = A2(φ, ϕ, ψ), IX = A3(φ, ϕ, ψ).

Next we show the operatorA = (A1,A2,A3) has a fixed point in ΓX.

Lemma 2.7. The operatorA = (A1,A2,A3) maps ΓX into itself.

Proof. Firstly, we show that S (ξ) ≤ S X(ξ) for any ξ ∈ [−X, X]. If ξ ∈ (X1, X), S (ξ) = 0 is a lower
solution of the first equation of (2.14). If ξ ∈ (−X,X1), S (ξ) = S 0 − M1eε1ξ, by Lemma 2.4, we have

cS ′(ξ) − d1

∫
R

J(y)φ̂(ξ − y)dy − Λ + β1S(ξ)ψ(ξ − cτ) − (d1 + µ1 + α)S(ξ)

≤cS ′(ξ) − d1

∫
R

J(y)S (ξ − y)dy − Λ + β1S(ξ)I(ξ − cτ) − (d1 + µ1 + α)S(ξ))

≤0,

which implies that S (ξ) = S 0 − M1eε1ξ is a lower solution of the first equation of (2.14). Thus S (ξ) ≤
S X(ξ) for any ξ ∈ [−X, X].

Secondly, we show that S X(ξ) ≤ S (ξ) = S 0 for any ξ ∈ [−X, X]. In fact,

d1

∫
R

J(y)φ̂(ξ − y)dy + Λ − β1S0ψ(ξ − cτ) − (d1 + µ1 + α)S0

≤d1

∫
R

J(y)S 0dy + Λ − β1S0I(ξ − cτ) − (d1 + µ1 + α)S0

≤0,

thus S (ξ) = S 0 is an upper solution to the first equation of (2.14), which gives us S X(ξ) ≤ S 0 for any
ξ ∈ [−X, X].

Similarly, V(ξ) ≤ VX(ξ) ≤ V(ξ) and I(ξ) ≤ IX(ξ) ≤ I(ξ) for any ξ ∈ [−X, X]. �

Lemma 2.8. The operatorA is completely continuous.

Proof. Suppose (φi(ξ), ϕi(ξ), ψi(ξ)) ∈ ΓX, i = 1, 2.

S X,i(ξ) = A1(φi(ξ), ϕi(ξ), ψi(ξ)),
VX,i(ξ) = A2(φi(ξ), ϕi(ξ), ψi(ξ)),
IX,i(ξ) = A3(φi(ξ), ϕi(ξ), ψi(ξ)),

We show the operatorA is continuous. By direct calculation, we have

S X(ξ) =S (−X) exp
{
−

1
c

∫ ξ

−X
(d1 + µ1 + α + β1ψ(s − cτ))ds

}
+

1
c

∫ ξ

−X
exp

{
−

1
c

∫ ξ

η

(d1 + µ1 + α + β1ψ(s − cτ))ds
}

fφ(η)dη,
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VX(ξ) =V(−X) exp
{
−

1
c

∫ ξ

−X
(d2 + µ2 + β2ψ(s − cτ))ds

}
+

1
c

∫ ξ

−X
exp

{
−

1
c

∫ ξ

η

(d2 + µ2 + β2ψ(s − cτ))ds
}

fϕ(η)dη,

and

IX(ξ) =I(−X) exp
{
−

(d3 + γ + µ3)(ξ + X)
c

}
+

1
c

∫ ξ

−X
exp

{
−

(d3 + γ + µ3)(ξ − η)
c

}
fψ(η)dη.

where

fφ(η) = d1

∫
R

J(η − y)φ̂(y)dy + Λ,

fϕ(η) = d2

∫
R

J(η − y)ϕ̂(y)dy + αφ(η),

fψ(η) = d3

∫
R

J(η − y)ψ̂(y)dy + (β1φ(η) + β2ϕ(η))ψ(η − cτ).

For any (φi, ϕi, ψi) ∈ ΓX, i = 1, 2, we have

| fφ1(η) − fφ2(η)| =d1

∣∣∣∣∣∫
R

J(η − y)[φ̂1(y) − φ̂2(y)]dy
∣∣∣∣∣

≤d1

∣∣∣∣∣∣
∫ X

−X
J(ξ − y)(φ1(y) − φ2(y))dy

∣∣∣∣∣∣ + d1

∣∣∣∣∣∫ ∞

X
J(ξ − y)(φ1(X) − φ2(X))dy

∣∣∣∣∣
≤2d1 max

y∈[−X,X]
|φ1(y) − φ2(y)|,

| fϕ1(η) − fϕ2(η)| =d2

∣∣∣∣∣∫
R

J(η − y)[ϕ̂1(y) − ϕ̂2(y)]dy + α(φ1(η) − φ2(η))
∣∣∣∣∣

≤2d2 max
y∈[−X,X]

|ϕ1(y) − ϕ2(y)| + α max
y∈[−X,X]

|φ1(y) − φ2(y)|,

| fψ1(η) − fψ2(η)| ≤(2d2 + β1S 0 + β2V0) max
y∈[−X,X]

|ψ1(y) − ψ2(y)|

+ β1eλcξ max
y∈[−X,X]

|φ1(y) − φ2(y)| + β2eλcξ max
y∈[−X,X]

|ϕ1(y) − ϕ2(y)|.

Here we use

|β1φ2(ξ)ψ2(ξ − cτ) − β1φ1(ξ)ψ1(ξ − cτ)|
≤ |β1φ2(ξ)ψ2(ξ − cτ) − β1φ2(ξ)ψ1(ξ − cτ)| + |β1φ2(ξ)ψ1(ξ − cτ) − β1φ1(ξ)ψ1(ξ − cτ)|
≤β1S 0 max

y∈[−X,X]
|ψ1(y) − ψ2(y)| + β1eλcξ max

y∈[−X,X]
|φ1(y) − φ2(y)|.

Mathematical Biosciences and Engineering Volume 16, Issue 3, 1654–1682.



1662

and

|β2ϕ2(ξ)ψ2(ξ − cτ) − β2ϕ1(ξ)ψ1(ξ − cτ)|
≤β2V0 max

y∈[−X,X]
|ψ1(y) − ψ2(y)| + β2eλcξ max

y∈[−X,X]
|ϕ1(y) − ϕ2(y)|.

Thus, we obtain that the operatorA is continuous. Next, we showA is compact. Indeed, since S X, VX

and IX are class of C1([−X, X]), note that

c(S ′X,1(ξ) − S ′X,2(ξ)) + (d1 + µ1 + α)(S X,1(ξ) − S X,2(ξ))

=d1

∫
R

J(ξ − y)(φ̂1(y) − φ̂2(y))dy + β1φ2(ξ)ψ2(ξ − cτ) − β1φ1(ξ)ψ1(ξ − cτ)

≤
(
2d1 + β1eλcξ

)
max

y∈[−X,X]
|φ1(y) − φ2(y)| + β1S 0 max

y∈[−X,X]
|ψ1(y) − ψ2(y)|.

Same arguments with V ′X and I′X, give us S ′X, V ′X and I′X are bounded. Then A is compact and the
operatorA is completely continuous. This ends the proof. �

Obviously, ΓX is a bounded closed convex set, applying the Schauder’s fixed point theorem ( [33]
Corollary 2.3.10), we have the following theorem.

Theorem 2.1. There exists (S X,VX, IX) ∈ ΓX such that

(S X(ξ),VX(ξ), IX(ξ)) = A(S X,VX, IX)(ξ)

for ξ ∈ [−X, X].

Now we are in position to show the existence of traveling wave solutions, before that we do some
estimates for S X(·), VX(·) and IX(·).

Define
C1,1([−X, X]) = {u ∈ C1([−X, X])|u, u′are Lipschitz continuous}

with norm

‖u‖C1,1([−X,X]) = max
x∈[−X,X]

|u| + max
x∈[−X,X]

|u′| + sup
x,y∈[−X,X]

x,y

|u′(x) − u′(y)|
|x − y|

.

Lemma 2.9. There exists a constant C(Y) > 0 such that

‖S X‖C1,1([−Y,Y]) ≤ C(Y), ‖VX‖C1,1([−Y,Y]) ≤ C(Y), ‖IX‖C1,1([−Y,Y]) ≤ C(Y)

for Y < X and X > max{X1,X2,X3}.

Proof. Recall that (S X, EX, IX) is the fixed point of the operatorA, then

cS ′X(ξ) = d1

∫ +∞

−∞

J(y)Ŝ X(ξ − y)dy + Λ − β1SX(ξ)IX(ξ − cτ) − (d1 + µ1 + α)SX(ξ), (2.15)

cV ′X(ξ) = d2

∫ +∞

−∞

J(y)V̂X(ξ − y)dy + αSX(ξ) − β2VX(ξ)IX(ξ − cτ) − (d2 + µ2)VX(ξ), (2.16)
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cI′X(ξ) = d3

∫ +∞

−∞

J(y)ÎX(ξ − y)dy + β1SX(ξ)IX(ξ − cτ) + β2VX(ξ)IX(ξ − cτ) − (d3 + µ3)IX(ξ), (2.17)

where

(Ŝ X(ξ), V̂X(ξ), ÎX(ξ)) =


(S X(X),VX(X), IX(X)), for ξ > X,

(S X(ξ),VX(ξ), IX(ξ)), for ξ ∈ [−X − cτ, X],

(S (ξ),V(ξ), I(ξ)), for ξ ≤ −X − cτ,

following that S X(ξ) ≤ S 0, VX(ξ) ≤ V0, IX(ξ) ≤ eλcY for any ξ ∈ [−Y,Y]. Then

|S ′X(ξ)| ≤
d1

c

∣∣∣∣∣∣
∫ +∞

−∞

J(y)Ŝ X(ξ − y)dy

∣∣∣∣∣∣ +
Λ

c
+

d1 + µ1 + α

c
|S X(ξ)| +

β1

c
|S X(ξ)||IX(ξ − cτ)|

≤
2d1 + µ1 + α

c
S 0 +

Λ

c
+
β1S 0

c
eλcY ,

|V ′X(ξ)| ≤
2d2 + µ2

c
V0 +

αS 0

c
+
β2V0

c
eλcY ,

|I′X(ξ)| ≤
(
d3 + µ3

c
+
β1S 0

c
+
β2V0

c

)
eλcY .

Thus, there exists some constant C1(Y) > 0 such that

‖S X‖C1([−Y,Y]) ≤ C1(Y), ‖VX‖C1([−Y,Y]) ≤ C1(Y), ‖IX‖C1([−Y,Y]) ≤ C1(Y).

Then for any ξ1, ξ2 ∈ [−Y,Y] such that

|S X(ξ1)− S X(ξ2)| ≤ C1(Y)|ξ1 − ξ2|, |VX(ξ1)−VX(ξ2)| ≤ C1(Y)|ξ1 − ξ2|, |IX(x1)− IX(x2)| ≤ C1(Y)|ξ1 − ξ2|.

From (2.15), we have

c|S ′X(ξ1) − S ′X(ξ2)| ≤d1

∣∣∣∣∣∣
∫ +∞

−∞

J(y)(Ŝ X(ξ1 − y) − Ŝ X(ξ2 − y))dy

∣∣∣∣∣∣
+ (d1 + µ1 + α)|S X(ξ1) − S X(ξ2)| + S 0|IX(ξ1) − IX(ξ2)|.

Recall (J1) of Assumption 1.1, we know J is Lipschitz continuous and compactly supported on R, let
L be the Lipschitz constant for J and R be the radius of suppJ. Then

d1

∣∣∣∣∣∣
∫ +∞

−∞

J(y)(Ŝ X(ξ1 − y) − Ŝ X(ξ2 − y))dy

∣∣∣∣∣∣
=d1

∣∣∣∣∣∣
∫ R

−R
J(y)Ŝ X(ξ1 − y)dy −

∫ R

−R
J(y)ŜX(ξ2 − y)dy

∣∣∣∣∣∣
=d1

∣∣∣∣∣∣
∫ ξ1+R

ξ1−R
J(ξ1 − y)Ŝ X(y)dy −

∫ ξ2+R

ξ2−R
J(y)ŜX(y)dy

∣∣∣∣∣∣
=d1

∣∣∣∣∣∣
(∫ ξ2−R

ξ1−R
+

∫ ξ2+R

ξ2−R
+

∫ ξ1+R

ξ2+R

)
J(ξ1 − y)Ŝ X(y)dy −

∫ ξ2+R

ξ2−R
J(y)ŜX(y)dy

∣∣∣∣∣∣
≤d1

∣∣∣∣∣∣
∫ ξ1+R

ξ2+R
J(ξ1 − y)Ŝ X(y)dy

∣∣∣∣∣∣ + d1

∣∣∣∣∣∣
∫ ξ2−R

ξ1−R
J(ξ1 − y)Ŝ X(y)dy

∣∣∣∣∣∣
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+ d1

∣∣∣∣∣∣
∫ ξ2+R

ξ2−R
(J(ξ1 − y) − J(ξ2 − y))Ŝ X(y)dy

∣∣∣∣∣∣
≤d1(2S 0‖J‖L∞ + 2RLS 0)|ξ1 − ξ2|.

Thus there exists some constant C2(Y) > 0 such that

|S ′X(ξ1) − S ′X(ξ2)| ≤ C2(Y)|ξ1 − ξ2|.

Similarly
|V ′X(ξ1) − V ′X(ξ2)| ≤ C2(Y)|ξ1 − ξ2|, |I′X(ξ1) − I′X(ξ2)| ≤ C2(Y)|ξ1 − ξ2|.

From the above discussion, there exists some constant C(Y) > 0 for any Y < X that is independent of
X such that

‖S X‖C1,1([−Y,Y]) ≤ C(Y), ‖VX‖C1,1([−Y,Y]) ≤ C(Y), ‖IX‖C1,1([−Y,Y]) ≤ C(Y).

�

Now let {Xn}
+∞
n=1 be an increasing sequence such that Xn ≥ {X1,X2,X3}, Xn > Y + R for each n and

lim Xn = +∞, where R is the radius of suppJ. For every c > c∗, we have (S Xn ,VXn , IXn) ∈ ΓXn satisfying
Lemma 2.9 and Equations (2.15)-(2.17). For the sequence (S Xn ,VXn , IXn), we can extract a subsequence
denoted by {S Xnk

}k∈N, {VXnk
}k∈N and {IXnk

}k∈N tending to functions (S ,V, I) ∈ C1(R) in the following
topologies

S Xnk
→ S , VXnk

→ V and IXnk
→ I in C1

loc(R) as k → +∞.

Since J is compactly supported, applying the dominated convergence theorem, thus

lim
k→+∞

∫
R

J(y)Ŝ Xnk
(ξ − y)dy =

∫
R

J(y)S(ξ − y)dy = J ∗ S(ξ),

lim
k→+∞

∫
R

J(y)V̂Xnk
(ξ − y)dy =

∫
R

J(y)V(ξ − y)dy = J ∗ V(ξ)

and
lim

k→+∞

∫
R

J(y)ÎXnk
(ξ − y)dy =

∫
R

J(y)I(ξ − y)dy = J ∗ I(ξ).

Moreover, (S ,V, I) satisfies system (2.4) and

S (ξ) ≤ S (ξ) ≤ S 0, V(ξ) ≤ V(ξ) ≤ V0, I(ξ) ≤ I(ξ) ≤ eλcξ.

Next, we show that I(ξ) is bounded in R by the method in [34] (see also [35, 36]).

Lemma 2.10. There exists some positive constant C such that∫
R

J(y)
I(ξ − y)

I(ξ)
dy < C,

I(ξ − cτ)
I(ξ)

< C and
∣∣∣∣∣ I′(ξ)I(ξ)

∣∣∣∣∣ < C.

Proof. Let θ(ξ) =
I′(ξ)
I(ξ) , from the third equation of (2.4), we have

θ(ξ) ≥
d3

c

(∫
R

J(y)
I(ξ − y)

I(ξ)
dy − 1

)
−
γ + µ3

c
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=
d3

c

∫
R

J(y)e
∫ ξ−y
ξ

θ(s)dsdy −
(
d3 + γ + µ3

c

)
.

Set $ =
(

d3+γ+µ3
c

)
and W(ξ) = exp

{
$ξ +

∫ ξ

0
θ(s)ds

}
, thus

W ′(ξ) = ($ + θ(ξ))W(ξ) ≥
d3

c

∫
R

J(y)e
∫ ξ−y
ξ

θ(s)dsdyW(ξ),

that is W(ξ) is non-decreasing. We can take some R0 > 0 with 2R0 < R, where R is the radius of suppJ.
Then by the same argument in [34, Lemma 2.2], we have

W(ξ) ≥
d3

c
R0

∫
R

J(y)e$yW(ξ − R0 − y)dy

and
W(ξ + R0) ≤ σ0W(ξ) for all ξ ∈ R,

where
σ0 ,

d3

cR0

∫ −2R0

−∞
J(y)e$ydy

.

Thus ∫
R

J(y)
I(ξ − y)

I(ξ)
dy =

∫ 0

−∞

J(y)
I(ξ − y)

I(ξ)
dy +

∫ +∞

0
J(y)

I(ξ − y)
I(ξ)

dy

=

∫ 0

−∞

J(y)e$y W(ξ − y)
W(ξ)

dy +

∫ +∞

0
J(y)e$y W(ξ − y)

W(ξ)
dy

≤σ0

∫ 0

−∞

J(y)e$y W(ξ − y − R0)
W(ξ)

dy +

∫ +∞

0
J(y)e$ydy

≤
cσ0

d3R0
+

∫ +∞

0
J(y)e$ydy.

Again with the third equation of (2.4), we have

I′(ξ) +$I(ξ) = d3J ∗ I(ξ) + β1S (ξ)I(ξ − cτ) + β2V(ξ)I(ξ − cτ) > 0 for all ξ ∈ R.

Let U(ξ) = e$ξI(ξ), then U′(ξ) ≥ 0, it follows that

I(ξ − cτ)
I(ξ)

≤ e$cτ.

Furthermore, ∣∣∣∣∣ I′(ξ)I(ξ)

∣∣∣∣∣ ≤ d3

c

∫
R

J(y)
I(ξ − y)

I(ξ)
dy + (β1S0 + β2V0)

I(ξ − cτ)
I(ξ)

+$.

This completes the proof. �

Lemma 2.11. Choose ck ∈ (c∗, c∗ + 1) and let {ck, S k,Vk, Ik} be a sequence of traveling waves of (2.1)
with speeds {ck}. If there is a sequence {ξk} such that Ik(ξk) → +∞ as k → +∞, then S k(ξk) → 0 and
Vk(ξk)→ 0 as k → +∞.
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Proof. Assume that there is a subsequence of {ξk}k∈N again denoted by ξk, such that Ik(ξk) → +∞ as
k → +∞ and S k(ξk) ≥ ε in R for all k ∈ N with some positive constant ε. From the first equation of
(2.4), we have

S ′k(ξ) ≤
2d1S 0 + Λ

c∗
, delta0 in R.

It follows that
S k(ξ) ≥

ε

2
, ∀ξ ∈ [ξk − delta, ξk],

for all k ∈ N, where delta = ε
delta0

. By Lemma 2.10, we have
∣∣∣∣∣ I′k

Ik

∣∣∣∣∣ < C0 for some C0 > 0. Then

Ik(ξk)
Ik(ξ − cτ)

= exp
{∫ ξk

ξ−cτ

I′k(s)
Ik(s)

ds
}
≤ eC0(cτ+delta), ∀ξ ∈ [ξk − delta, ξk]

for all k ∈ N. Thus
min

ξ∈[ξk−delta,ξk]
Ik(ξ − cτ) ≥ e−C0(cτ+delta)Ik(ξk),

which give us
min

ξ∈[ξk−delta,ξk]
Ik(ξ − cτ)→ +∞ as k → +∞

since Ik(ξk)→ +∞ as k → +∞. Recalling the first equation of (2.4), one can have

max
ξ∈[ξk−delta,ξk]

S ′k(ξ) ≤ delta0 −
β1ε

2
min

ξ∈[ξk−delta,ξk]
Ik(ξ − cτ)→ −∞ as k→ +∞.

Moreover, there exists some K > 0 such that

S ′k(ξ) ≤ −
2S 0

delta
, ∀k ≥ K and ξ ∈ [ξk − delta, ξk].

Note that S k < S 0 in R for each k ∈ N. Hence S k(ξk) ≤ −S 0 for all k ≥ K, which reduces to a
contradiction since S k(ξk) ≥ ε inR for all k ∈ N with some positive constant ε. Similarly, we can show
that Vk(ξk)→ 0 as k → +∞. This completes the proof. �

Lemma 2.12. If lim sup
ξ→∞

I(ξ) = ∞, then lim
ξ→∞

I(ξ) = ∞.

The proof is similar to that of [34, Lemma 2.4], so we omit the details. With the previous lemmas,
we can show that I(ξ) is bounded in R.

Theorem 2.2. I(ξ) is bounded in R.

Proof. Assume that lim sup
ξ→∞

I(ξ) = ∞, then we have lim
ξ→∞

S (ξ) = 0 and lim
ξ→∞

V(ξ) = 0 from Lemma 2.11

and Lemma 2.12. Set θ(ξ) =
I′(ξ)
I(ξ) , from the third equation of (2.4), we have

cθ(ξ) = d3

∫
R

J(y)e
∫ ξ−y
ξ

θ(s)ds
− (d3 + γ + µ3) + B(ξ),

where
B(ξ) = [β1S (ξ) + β2V(ξ)]

I(ξ − cτ)
I(ξ)

.
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Since I(ξ−cτ)
I(ξ) < C for some positive constant C from Lemma 2.10. By using [34, Lemma 2.5], we can

get that lim
ξ→+∞

θ(ξ) exists and satisfies the following equation

f (λ, c) , d3

(∫
R

J(y)e−λy − 1
)
− cλ − (γ + µ3).

By some calculations, we obtain

f (0, c) < 0,
∂ f (λ, c)
∂λ

∣∣∣∣∣
λ=0

< 0,
∂2 f (λ, c)
∂λ2 > 0 and lim

λ→+∞
f (λ, c) = −∞.

Thus, I(ξ) is bounded by using the same arguments in [34, Theorem 2.6]. This ends the proof. �

Since I(ξ) is bounded inR, we assume that there exists a positive constant ρ < ∞ such that I(ξ) < ρ.
Furthermore, it can be verified Λ

µ1+α+β1ρ
is a lower solution of S and αΛ

(µ1+α+β1ρ)(µ2+β2ρ) is a lower solution
of V . Then we have the following proposition.

Proposition 2.1. S (ξ),V(ξ) and I(ξ) satisfy

Λ

µ1 + α + β1ρ
≤ S (ξ) ≤ S 0,

αΛ

(µ1 + α + β1ρ)(µ2 + β2ρ)
≤ V(ξ) ≤ V0, I(ξ) ≤ I(ξ) ≤ ρ

for ξ ∈ R.

The following lemma is to show that I(ξ) cannot approach 0.

Lemma 2.13. Assume that<0 > 1, then for each c > c∗, we have

lim inf
ξ→∞

I(ξ) > 0.

Proof. We only need to show that if I(ξ) ≤ ε0 for some small enough constant ε0 > 0, then I′(ξ) > 0 for
all ξ ∈ R. Assume by way of contradiction that there is no such ε0, that is there exist some sequence
{ξk}k∈N such that I(ξk)→ 0 as k → +∞ and I′(ξk) ≤ 0. Denote

S k(ξ) , S (ξk + ξ), Vk(ξ) , V(ξk + ξ) and Ik(ξ) , I(ξk + ξ).

Thus we have Ik(0) → 0 as k → +∞ and Ik(ξ) → 0 locally uniformly in R as k → +∞. As a
consequence, there also holds that I′k(ξ) → 0 locally uniformly in R as k → +∞ by the third equation
of (2.4). From the argument in [25, Theorem 2.9], we can obtain that S∞ = S 0 and V∞ = V0.

Let ψk(ξ) ,
Ik(ξ)
Ik(0) . By Lemma 2.10, and in the view of

ψ′k(ξ) =
I′k(ξ)
Ik(0)

=
I′k(ξ)
Ik(ξ)

ψk(ξ),

we have ψk(ξ) and ψ′k(ξ) are also locally uniformly in R as k → +∞. Letting k → +∞, thus

cψ′∞(ξ) = d3

∫
R

J(y)ψ∞(ξ − y)dy + (β1S0 + β2V0)ψ∞(ξ − cτ) − (d3 + γ + µ3)ψ∞(ξ).
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One can have ψ∞(ξ) > 0 in R. In fact, if there exist some ξ0 such that ψ∞(ξ0) = 0 and ψ∞(ξ) > 0 for all
ξ < ξ0, then

0 = d3

∫
R

J(y)ψ∞(ξ0 − y)dy + (β1S0 + β2V0)ψ∞(ξ0 − cτ) > 0,

which is a contradiction.
Denote Z(ξ) , ψ′∞(ξ)

ψ∞(ξ) , it is easy to verify Z(ξ) satisfies

cZ(ξ) = d3

∫
R

J(y)e
∫ ξ−y
ξ

Z(s)dsdy + (β1S0 + β2V0)e
∫ ξ−cτ
ξ

Z(s)ds
− (d3 + γ + µ3). (2.18)

Then by similar discussion in [25, Theorem 2.9], for<0 > 1 and c > c∗, we have

0 < ψ′∞(0) = lim
k→+∞

ψ′n(0) = lim
k→+∞

I′n(0)
In(0)

.

Thus, I′(ξk) = I′n(0) > 0, which is a contradiction. This completes the proof. �

Remark 2.1. In the proof of Lemma 2.13, we need to show that Z(±∞) exist in Equation (2.18). In [25],
the authors applying [37, Lemma 3.4] to show that Z(±∞) exist. There is a time delay term in Equation
(2.18) which is different from [37, Lemma 3.4], but we can still using the method in [37, Lemma 3.4]
to proof Z(±∞) exist. The proof is trivial, so we omitted it.

Now, we can give the main result in this section.

Theorem 2.3. Suppose<0 > 1, then for every c > c∗, system (2.1) admits a nontrivial traveling wave
solution (S (x + ct),V(x + ct), I(x + ct)) satisfying the asymptotic boundary condition (2.5) and (2.6).

Proof. First, it is easy to verify that S (−∞) = S 0,V(−∞) = V0, I(−∞) = 0 by Lemmas 2.4, 2.5 and
2.6.

Next, we will show (S (ξ),V(ξ), I(ξ)) = (S ∗,V∗, I∗) as ξ → +∞ by using Lyapunov function. From
Proposition 2.1 and Lemma 2.13, we have S (ξ) > 0, V(ξ) > 0 and I(ξ) > 0.

Let g(x) = x − 1 − ln x, α+(y) =
∫ +∞

y
J(x)dx, α−(y) =

∫ y

−∞
J(x)dx. Since J is compactly supported,

and recall that R is the radius of suppJ, hence

α+(y) ≡ 0 and α−(y) ≡ 0 for |y| ≥ R. (2.19)

Define the following Lyapunov functional

L(S ,V, I)(ξ) = cS ∗L1(ξ) + cV∗L2(ξ) + cI∗L3(ξ) + d1S ∗U1(ξ) + d2V∗U2(ξ) + d3I∗U3(ξ)

where

L1(ξ) =g
(
S (ξ)
S ∗

)
; L2(ξ) = g

(
V(ξ)
V∗

)
;

L3(ξ) =g
(

I(ξ)
I∗

)
+ (µ3 + γ)I∗

∫ cτ

0
g
(

I(ξ − θ)
I∗

)
dθ;

U1(ξ) =

∫ +∞

0
α+(y)g

(
S (ξ − y)

S ∗

)
dy −

∫ 0

−∞

α−(y)g
(
S(ξ − y)

S∗

)
dy;
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U2(ξ) =

∫ +∞

0
α+(y)g

(
V(ξ − y)

V∗

)
dy −

∫ 0

−∞

α−(y)g
(
V(ξ − y)

V∗

)
dy;

U3(ξ) =

∫ +∞

0
α+(y)g

(
I(ξ − y)

I∗

)
dy −

∫ 0

−∞

α−(y)g
(
I(ξ − y)

I∗

)
dy.

Thanks to [38, Theorem 1] and S (ξ) > 0, V(ξ) > 0, I(ξ) > 0, we can get that L1(ξ), L2(ξ) and L3(ξ) are
bounded from below. Furthermore, by using (2.19), Proposition 2.1 and Lemma 2.13, we can claim
that U1(ξ), U2(ξ) and U3(ξ) is bounded from below. Thus L(S ,V, I)(ξ) is well defined and bounded
from below. Note that α± = 1

2 ,
dα+(y)

dy = J(y) and dα−(y)
dy = −J(y), we have

dU1(ξ)
dξ

=
d
dξ

∫ +∞

0
α+(y)g

(
S (ξ − y)

S ∗

)
dy −

d
dξ

∫ 0

−∞

α−(y)g
(
S(ξ − y)

S∗

)
dy

=

∫ +∞

0
α+(y)

d
dξ

g
(
S (ξ − y)

S ∗

)
dy −

∫ 0

−∞

α−(y)
d
dξ

g
(
S(ξ − y)

S∗

)
dy

= −

∫ +∞

0
α+(y)

d
dy

g
(
S (ξ − y)

S ∗

)
dy +

∫ 0

−∞

α−(y)
d

dy
g
(
S(ξ − y)

S∗

)
dy

=g
(
S (ξ)
S ∗

)
−

∫ +∞

−∞

J(y)g
(
S (ξ − y)

S ∗

)
dy.

Similarly,

dU2(ξ)
dξ

= g
(
V(ξ)
V∗

)
−

∫ +∞

−∞

J(y)g
(
V(ξ − y)

V∗

)
dy;

dU3(ξ)
dξ

= g
(

I(ξ)
I∗

)
−

∫ +∞

−∞

J(y)g
(

I(ξ − y)
I∗

)
dy.

By some calculations, it can be shown that

d
dξ

∫ cτ

0
g
(

I(ξ − θ)
I∗

)
dθ =

∫ cτ

0

d
dξ

g
(

I(ξ − θ)
I∗

)
dθ = −

∫ cτ

0

d
dθ

g
(
I(ξ − θ)

I∗

)
dθ

=
I(ξ)
I∗
−

I(ξ − cτ)
I∗

+ ln
I(ξ − cτ)

I(ξ)
.

Thus

dL(ξ)
dξ

=

(
1 −

S ∗

S (ξ)

)
(d1(J ∗ S (ξ) − S (ξ)) + Λ − β1S (ξ)I(ξ − cτ) − (α + µ1)S (ξ))

+

(
1 −

V∗

V(ξ)

)
(d2(J ∗ V(ξ) − V(ξ)) + αS (ξ) − β2V(ξ)I(ξ − cτ) − µ2E(ξ))

+

(
1 −

I∗

I(ξ)

)
(d3(J ∗ I(ξ) − I(ξ)) + β1S (ξ)I(ξ − cτ) + β2V(ξ)I(ξ − cτ) − (γ + µ3)I(ξ))

+ (µ3 + γ)I∗
(

I(ξ)
I∗
−

I(ξ − cτ)
I∗

+ ln
I(ξ − cτ)

I(ξ)

)
+ d1S ∗g

(
S (ξ)
S ∗

)
− d1S ∗

∫ +∞

−∞

J(y)g
(
S (ξ − y)

S ∗

)
dy
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+ d2V∗g
(
V(ξ)
V∗

)
− d2V∗

∫ +∞

−∞

J(y)g
(
V(ξ − y)

V∗

)
dy

+ d3I∗g
(

I(ξ)
I∗

)
− d3I∗

∫ +∞

−∞

J(y)g
(

I(ξ − y)
I∗

)
dy

,B1 + B2,

where

B1 =

(
1 −

S ∗

S (ξ)

)
d1(J ∗ S (ξ) − S (ξ)) + d1S ∗g

(
S (ξ)
S ∗

)
− d1S ∗

∫ +∞

−∞

J(y)g
(
S (ξ − y)

S ∗

)
dy

+

(
1 −

V∗

V(ξ)

)
d2(J ∗ V(ξ) − V(ξ)) + d2V∗g

(
V(ξ)
V∗

)
− d2V∗

∫ +∞

−∞

J(y)g
(
V(ξ − y)

V∗

)
dy

+

(
1 −

I∗

I(ξ)

)
d3(J ∗ I(ξ) − I(ξ)) + d3I∗g

(
I(ξ)
I∗

)
− d3I∗

∫ +∞

−∞

J(y)g
(

I(ξ − y)
I∗

)
dy,

and

B2 =

(
1 −

S ∗

S (ξ)

)
(Λ − β1S (ξ)I(ξ − cτ) − (α + µ1)S (ξ))

+

(
1 −

V∗

V(ξ)

)
(αS (ξ) − β2V(ξ)I(ξ − cτ) − µ2E(ξ))

+

(
1 −

I∗

I(ξ)

)
(β1S (ξ)I(ξ − cτ) + β2V(ξ)I(ξ − cτ) − (γ + µ3)I(ξ))

+ (µ3 + γ)I∗
(

I(ξ)
I∗
−

I(ξ − cτ)
I∗

+ ln
I(ξ − cτ)

I(ξ)

)
.

For B1, using ln S (ξ)
S ∗ = ln S (ξ−y)

S ∗ − ln S (ξ−y)
S (ξ) , thus(

1 −
S ∗

S (ξ)

)
d1(J ∗ S (ξ) − S (ξ)) + d1S ∗g

(
S (ξ)
S ∗

)
− d1S ∗

∫ +∞

−∞

J(y)g
(
S (ξ − y)

S ∗

)
dy

=d1S ∗
∫ +∞

−∞

J(y)
[
S (ξ − y)

S ∗
−

S (ξ − y)
S (ξ)

− ln
S (ξ)
S ∗

]
− d1S ∗

∫ +∞

−∞

J(y)g
(
S (ξ − y)

S ∗

)
dy

=d1S ∗
∫ +∞

−∞

J(y)
[
g
(
S (ξ − y)

S ∗

)
− g

(
S (ξ − y)

S (ξ)

)]
− d1S ∗

∫ +∞

−∞

J(y)g
(
S (ξ − y)

S ∗

)
dy

= − d1S ∗
∫ +∞

−∞

J(y)g
(
S (ξ − y)

S (ξ)

)
dy.

Then

B1 = − d1S ∗
∫ +∞

−∞

J(y)g
(
S (ξ − y)

S (ξ)

)
dy − d2V∗

∫ +∞

−∞

J(y)g
(
V(ξ − y)

V(ξ)

)
dy

− d3I∗
∫ +∞

−∞

J(y)g
(

I(ξ − y)
I(ξ)

)
dy. (2.20)
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For B2, by some calculation yields

B2 =µ1S ∗
(
2 −

S (ξ)
S ∗
−

S ∗

S (ξ)

)
− β1S ∗I∗g

(
S (ξ)I(ξ − cτ)

S ∗I(ξ)

)
− β2V∗I∗

[
g
(
V(ξ)I(ξ − cτ)

V∗I(ξ)

)
+ g

(
S (ξ)V∗

S ∗V(ξ)

)]
− µ2V∗

[
g
(
V(ξ)
V∗

)
+ g

(
S (ξ)V∗

S ∗V(ξ)

)]
− (αS ∗ + β1S ∗I∗)g

(
S ∗

S (ξ)

)
,

here we use (µ3 + γ)I∗ = β1S ∗I∗ + β2V∗I∗ and αS (ξ) V∗
V(ξ) = (β2V∗I∗ + µ2V∗) S (ξ)V∗

S ∗V(ξ) . Combining B1 and
B2, we obtain L(ξ) is decreasing in ξ.

Consider an increasing sequence {ξn}n≥0 with ξn > 0 such that ξn → +∞ when n→ +∞ and denote

{S n(ξ) = S (ξ + ξn)}n≥0, {Vn(ξ) = V(ξ + ξn)}n≥0, and {In(ξ) = I(ξ + ξn)}n≥0.

We can assume that S n, Vn and In converge to some nonnegative functions S∞, V∞ and I∞. Further-
more, since L(S ,V, I)(ξ) is non-increasing on ξ, then there exists a constant Ĉ and large n such that

Ĉ ≤ L(S n,Vn, In)(ξ) = L(S ,V, I)(ξ + ξn) ≤ L(S ,V, I)(ξ).

Therefore there exists some ˜delta ∈ R such that limn→∞ L(S n,Vn, In)(ξ) = ˜delta for any ξ ∈ R. By
Lebegue dominated convergence theorem, gives us

lim
n→+∞

L(S n,Vn, In)(ξ) = L(S∞,V∞, I∞)(ξ), ξ ∈ R.

Thus
L(S∞,V∞, I∞)(ξ) = ˜delta.

Note that dL
dξ = 0 if and only if S (ξ) ≡ S ∗, V(ξ) ≡ V∗ and I(ξ) ≡ I∗, it follows that

(S∞,V∞, I∞) ≡ (S ∗,V∗, I∗).

This completes the proof. �

3. Existence of traveling wave solutions for c = c∗

In this section, we investigate the existence of traveling wave solutions for the case c = c∗ by a
limiting argument(see [23, 39]).

Theorem 3.1. Suppose<0 > 1, then for every c = c∗, system (2.1) admits a nontrivial traveling wave
solution (S (x + c∗t),V(x + c∗t), I(x + c∗t)) satisfying

lim
ξ→+∞

(S (ξ),V(ξ), I(ξ)) = (S ∗,V∗, I∗).

Furthermore, if we assume that S (−∞) and V(−∞) exist, then (S (x + c∗t),V(x + c∗t), I(x + c∗t)) also
satisfying

lim
ξ→−∞

(S (ξ),V(ξ), I(ξ)) = (S 0,V0, 0).
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Proof. Let {cn} ⊂ (c∗, c∗ + 1) be a decreasing sequence such that lim
n→∞

cn = c∗. Then for each cn, there
exists a traveling wave solution (S n(·),Vn(·), In(·)) of system (2.4) with asymptotic boundary condition
(2.5) and (2.6). Since (S n(· + a),Vn(· + a), In(· + a)) are also solutions of (2.4) for any a ∈ R, we can
assume that

In(0) = delta∗, In(ξ) ≤ delta∗, ξ < 0

with 0 < delta < I∗ is small enough.
Similar to [23, 39], we can find a subsequence of (S n,Vn, In), again denoted by (S n,Vn, In), such

that (S n,Vn, In) and (S ′n,V
′
n, I
′
n) converge uniformly on every bounded interval to function (S ,V, I) and

(S ′,V ′, I′), respectively. Applying the Lebesgue dominated convergence theorem, it then follows that

lim
n→∞

J ∗ S n = J ∗ S , lim
n→∞

J ∗ Vn = J ∗ V, and lim
n→∞

J ∗ In = J ∗ I

on every bounded interval. Then we get that (S ,V, I) satisfies system (2.4). From the proof of Theorem
2.3, the Lyapunov functional is independent of c. By the same argument in the proof of Theorem 2.3,
we claim that I(ξ) > 0 for any ξ ∈ R. Hence, we can still get that

lim
ξ→+∞

S (ξ) = S ∗, lim
ξ→+∞

V(ξ) = V∗, lim
ξ→+∞

I(ξ) = I∗.

Moreover, we have
I(0) = delta∗, I(ξ) ≤ delta∗, ξ < 0.

Let
S sup = lim sup

ξ→−∞

S (ξ), Vsup = lim sup
ξ→−∞

V(ξ), Isup = lim sup
ξ→−∞

I(ξ)

and
S in f = lim inf

ξ→−∞
S (ξ), Vin f = lim inf

ξ→−∞
V(ξ), Iin f = lim inf

ξ→−∞
I(ξ).

Next, we show that I(−∞) exists. By way of contradiction, assume that Iin f < Isup. Then there exist
sequences {xn} and {yn} satisfying xn, yn → −∞ as n→ +∞ such that

lim
n→+∞

I(xn) = Iin f lim
n→+∞

I(yn) = Isup.

Since we assumed that S (−∞) and V(−∞) exist, then S sup = S in f = S (−∞) and Vsup = Vin f = V(−∞).
From [40, Lemma 2.3], we can obtain that S ′(−∞) = 0 and V ′(−∞) = 0. For any sequence {ξn},
ξn → −∞ as n→ +∞, using Fatou Lemma, one have that

S (−∞) ≤ lim inf
n→∞

J ∗ S (ξn) ≤ lim sup
n→∞

J ∗ S (ξn) ≤ S (−∞).

and
V(−∞) ≤ lim inf

n→∞
J ∗ V(ξn) ≤ lim sup

n→∞
J ∗ V(ξn) ≤ V(−∞).

Thus, we have
lim
n→∞

[J ∗ S (ξn) − S (ξn)] = 0 and lim
n→∞

[J ∗ V(ξn) − V(ξn)] = 0

Mathematical Biosciences and Engineering Volume 16, Issue 3, 1654–1682.



1673

Taking ξ = xn and ξ = yn in the first equation of system 2.4, and letting n → ∞, we obtain that
Iin f = Isup, which is a contradiction. Hence, I(−∞) exists and I(−∞) < delta∗. From system (2.4)
and [40, Lemma 2.3], we obtain

Λ − β1S (−∞)I(−∞) − αS (−∞) − µ1S (−∞ = 0),

αS (−∞) − β2V(−∞)I(−∞) − µ2V(−∞) = 0,

β1S (−∞)I(−∞) + β2V(−∞)I(−∞)) − γI(−∞) − µ3I(−∞) = 0.

(3.1)

In the view of delta∗ < I∗, it follows that

lim
ξ→−∞

S (ξ) = S 0, lim
ξ→−∞

V(ξ) = V0, lim
ξ→−∞

I(ξ) = 0.

This completes the proof. �

Remark 3.1. For the case c = c∗, there is a priori condition assuming S (−∞) and V(−∞) exist. This
condition is only necessary for the difficulty in mathematics. In [34], the authors have given some
results for the case c = c∗ in a nonlocal diffusive SIR model without constant recruitment, but some
estimates is much more difficult for our model with constant recruitment and time delay as in [34,
Section 3]. Thus, how to extend the methods in [34] to our model, it will be an interesting problem for
further investigation.

4. Nonexistence of traveling wave solutions

In this section, we show the nonexistence of traveling waves when<0 > 1 with 0 < c < c∗.

Theorem 4.1. If<0 > 1 and 0 < c < c∗, then there exists no nontrivial positive solutions of (2.4) with
(2.5) and (2.6).

Proof. Since <0 > 1 gives us β1S 0 + β2V0 > µ3 + γ. Assume there exists nontrivial positive solution
(S ,V, I) of (2.4) with (2.5) and (2.6). Then there exists a positive constant K > 0 large enough such
that, for any ξ < −K, we have

cI′(ξ) ≥ d3(J ∗ I(ξ) − I(ξ)) +
β1S 0 + β2V0 − (γ + µ3)

2
I(ξ − cτ) + (γ + µ3)(I(ξ − cτ) − I(ξ)) (4.1)

holds. Let K(ξ) =
∫ ξ

−∞
I(η)dη. By Fubini theorem, thus

d3

∫ ξ

−∞

J ∗ I(s)ds =d3

∫ ξ

−∞

∫
R

J(y)I(s − y)dyds (4.2)

=d3

∫
R

∫ ξ

−∞

J(y)I(s − y)dsdy

=d3

∫
R

J(y)
∫ ξ

−∞

I(s − y)dsdy

=d3J ∗ K(ξ).
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Integrating the both sides of (4.1) from −∞ to ξ with ξ ≤ −K, we have

cI(ξ) ≥d3(J ∗ K(ξ) − K(ξ)) + (γ + µ3)[K(ξ − cτ) − K(ξ)]

+
β1S 0 + β2V0 − (γ + µ3)

2
K(ξ − cτ). (4.3)

Furthermore, the following two equations hold.∫ ξ

−∞

[K(η − cτ) − K(η)]dη =

∫ ξ

−∞

(−cτ)
∫ 1

0

∂K(η − cτs)
∂s

dsdη

= − cτ
∫ 1

0
K(ξ − cτs)ds (4.4)

and

d3

∫ ξ

−∞

[J ∗ K(η) − K(η)]dη =d3

∫ ξ

−∞

∫ +∞

−∞

(−x)J(x)
∫ 1

0

∂K(η − xs)
∂s

dsdxdη

=d3

∫ +∞

−∞

(−x)J(x)
∫ 1

0
K(ξ − xs)dsdx. (4.5)

Integrating both sides of inequality (4.3) from −∞ to ξ, and combining Equations (4.4) and (4.5) yield

β1S 0 + β2V0 − (γ + µ3)
2

∫ ξ

−∞

K(η − cτ)dη

≤cK(ξ) + (γ + µ3)cτ
∫ 1

0
K(ξ − cτs)ds

+ d3

∫ +∞

−∞

xJ(x)
∫ 1

0
K(ξ − xs)dsdx

≤

(
c + d3

∫
R

xJ(x)dx + (γ + µ3)cτ
)

K(ξ), (4.6)

Here we use xK(ξ − sx) as a non-increasing function with s ∈ (0, 1). By (J1) of Assumption 1.1, we
have

∫
R

xJ(x)dx = 0. Then for ξ < −K, we have

β1S 0 + β2V0 − (γ + µ3)
2

∫ +∞

0
K(ξ − η − cτ)dη

≤(c + (γ + µ3)cτ)K(ξ), (4.7)

For the non-decreasing function K(ξ), there exists some η̃ with η̃ + cτ > 0 such that

β1S 0 + β2V0 − (γ + µ3)
2

(η̃ + cτ)K(ξ − η̃ − cτ)

≤(c + (γ + µ3)cτ)K(ξ), (4.8)

Thus there exists a sufficiently large constant θ > −cτ and some constant ε ∈ (0, 1), such that

K(ξ − θ − cτ) ≤ εK(ξ), ξ ≤ −M.
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Let
p(ξ) = K(ξ)e−νξ,

where
0 < ν ,

1
θ + cτ

ln
1
ε
< λc,

By some simple calculation, we have

p(ξ − θ − cτ) ≤ p(ξ).

Using L’Hospital’s rule yields

lim
ξ→+∞

p(ξ) = lim
ξ→+∞

K(ξ)
eνξ

= lim
ξ→+∞

I(ξ)
νeνξ

= 0,

Note that p(ξ) ≥ 0, thus there exists a constant p0 such that

p(ξ) = K(ξ)e−νξ ≤ p0, ξ ∈ R. (4.9)

On the other hand, since S (ξ) ≤ S 0 and V(ξ) ≤ V0 for ξ ∈ R, recall the third equation of (2.4), we have

cI′(ξ) =d3(J ∗ I(ξ) − I(ξ)) + β1S (ξ)I(ξ − cτ) + β2V(ξ)I(ξ − cτ) − γI(ξ) − µ3I(ξ)
≤d3(J ∗ I(ξ) − I(ξ)) + β1S 0I(ξ − cτ) + β2V0I(ξ − cτ) − γI(ξ) − µ3I(ξ). (4.10)

Integrating the both sides of (4.10) from −∞ to ξ yields

cI(ξ) ≤ d3J ∗ K(ξ) − (γ + µ3 + d3)K(ξ) + (β1S 0 + β2V0)K(ξ − cτ). (4.11)

From (4.9), using J is compactly supported, for ξ ∈ R, there exists a positive constant M1 such that

(d3J ∗ K(ξ))e−νξ =d3

∫
R

J(y)e−νξK(ξ − y)dy

=d3

∫
R

J(y)e−νyK(ξ − y)e−ν(ξ−y)dy (4.12)

≤d3 p0

∫
R

J(y)e−νydy

≤M1.

Thus there exists a constant M2 > 0 such that

I(ξ)e−νξ ≤ M2, ξ ∈ R, (4.13)

since (4.9), (4.11) and (4.12) hold. Then

sup
ξ∈R

{I(ξ)e−νξ} < +∞. (4.14)

By the same procedure in (4.12), there exists a positive constant M2 such that

(d3J ∗ I(ξ))e−νξ ≤M2. (4.15)
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Hence

sup
ξ∈R

{I′(ξ)e−νξ} < +∞. (4.16)

For λ ∈ C with 0 < Reλ < ν, define the following two-side Laplace transform of I(ξ),

LI(λ) : =

∫
R

I(ξ)e−λξdξ.

From (2.4), we have

d3(J ∗ I(ξ) − I(ξ)) − cI′(ξ) + (β1S 0 + β2V0)I(ξ − cτ) − (γ + µ3)I(ξ)
=β1(S 0 − S (ξ))I(ξ − cτ) + β2(V0 − V(ξ))I(ξ − cτ). (4.17)

Take the two-side Laplace transform to the above equation, thus

∆(λ, c)LI(λ) =

∫
R

e−λξ[β1(S 0 − S (ξ))I(ξ − cτ) + β2(V0 − V(ξ))I(ξ − cτ)]dξ (4.18)

for λ ∈ C with 0 < Reλ < ν. Let L(ξ) = S 0 − S (ξ), we have 0 ≤ L(ξ) ≤ S 0 and limξ→−∞ L(ξ) = 0. Then
from the first equation of (2.4), we have

cL′(ξ) = d1(J ∗ L(ξ) − L(ξ)) + β1S (ξ)I(ξ − cτ) + (α + µ1)S (ξ).

Let η ∈ C∞(R, [0, 1]) be a nonnegative nondecreasing function, η(x) ≡ 0 in (−∞,−2] and η(x) ≡ 1 in
[−1,+∞). For N ∈ N, set ηN = η

(
x
N

)
. Then, taking 0 ≤ ν0 ≤ ν, we have

c
∫
R

L′(ξ)e−ν0ξηNdξ = d1

∫
R

(J ∗ L(ξ) − L(ξ))e−ν0ξηNdξ +

∫
R

S(ξ)[β1I(ξ − cτ) + α + µ1]e−ν0ξηNdξ.

By the argument in [22, Theorem 3.1], there exists a constant Ξ > 0 dependent on ν0 such that∫
R

L(ξ)e−ν0ξdξ ≤ Ξ.

Thus, ∫
R

β1(S 0 − S (ξ))I(ξ − cτ)e−(ν+ν0)ξdξ ≤ β1 sup
ξ∈R

{I(ξ)e−νξ}
∫
R

L(ξ)e−ν0ξdξ < ∞.

Similarly, ∫
R

β2(V0 − V(ξ))I(ξ − cτ)e−(ν+ν0)ξdξ < ∞.

From the property of Laplace transform [41], LI(λ) is well defined with Reλ > 0. Note that Equation
(4.18) can be rewritten as∫

R

e−λξ
[
∆(λ, c)I(ξ) + β1(S 0 − S (ξ))I(ξ − cτ) + β2(V0 − V(ξ))I(ξ − cτ)

]
dξ = 0. (4.19)

Recall (J2) of Assumption 1.1, then ∆(λ, c) → +∞ as ξ → +∞ for c ∈ (0, c∗) which is a contradiction
of (4.19). This completes the proof. �
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5. Discussion

As traveling wave solutions describe the transition from disease-free equilibrium to endemic equi-
librium when the wave speed is larger than the minimal wave speed. Now, we focus on how the
parameters in system (2.1) can affect the wave speed. Suppose (λ̂, ĉ) be a zero root of ∆(λ, c), recall
that V0 = Λα

µ2(µ1+α) and µ2 = µ1 + γ1, we have

∆(λ̂, ĉ) = d3

∫
R

J(x)e−λ̂xdx − (d3 + γ + µ3) − ĉλ̂ + β1S0e−ĉτλ̂ +
β2Λα

(µ1 + γ1)(µ1 + α)
e−ĉτλ̂ = 0.

By some calculations, we obtain

dĉ
dd3

=

∫
R

J(x)[e−λ̂x − 1]dx

λ̂(1 + [β1S 0 + β2V0]τe−ĉτλ̂)
> 0,

dĉ
dτ

= −
β1S 0 + β2V0

eĉτλ̂ + β1S 0τ + β2V0τ
< 0,

dĉ
dβ1

=
S 0e−ĉτλ̂

λ̂(1 + [β1S 0 + β2V0]τe−ĉτλ̂)
> 0,

dĉ
dβ2

=
V0e−ĉτλ̂

λ̂(1 + [β1S 0 + β2V0]τe−ĉτλ̂)
> 0,

and
dĉ
dγ1

= −
β2V0e−ĉτλ̂

(µ1 + γ1)λ̂(1 + [β1S 0 + β2V0]τe−ĉτλ̂)
< 0,

that is, ĉ is a decreasing function on γ1 and τ, while ĉ is an increasing function on d3, β1 and β2. From
the biological point of view, this indicates the following four scenarios:

I. The more successful the vaccination, the slower the disease spreads;

II. The longer the latent period, the slower the disease spreads;

III. The faster infected individuals move, the faster the disease spreads;

IV. The more effective the infections are, the faster the disease spreads.

Now, we are in a position to make the following summary:
Mathematically, we investigated a nonlocal dispersal epidemic model with vaccination and delay;

The existence of traveling wave solutions is studied by applying Schauder fixed point theorem with
upper-lower solutions, that is there exists traveling wave solutions when<0 > 1 with c > c∗. Further-
more, the boundary asymptotic behaviour of traveling wave solutions at +∞ was established by the
methods of constructing suitable Lyapunov like function. We also showed that there exists traveling
wave solutions when <0 > 1 with c = c∗. Finally, we proved the nonexistence of traveling wave
solutions under the assumptions<0 > 1 and 0 < c < c∗.

Biologically, our results imply that the nonlocal dispersal and infection ability of infected individ-
uals can accelerate the spreading of infectious disease, while the latent period and successful rate of
vaccination can slow down the disease spreads.
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Appendix A: Proof of Lemma 2.4

Proof. If ξ > X1, then S (ξ) = 0, equation (2.11) holds. If ξ < X1, then S (ξ) = S 0 − M1eε1ξ, we have

cS ′(ξ) − d1(J ∗ S (ξ) − S (ξ)) − Λ + β1S (ξ)I(ξ − cτ) + (µ1 + α)S (ξ)

= − cε1M1eε1ξ + d1M1eε1ξ

∫
R

J(x)e−ε1 xdx − d1M1eε1ξ − Λ

+ β1(S 0 − M1eε1ξ)eλc(ξ−cτ) + (µ1 + α)(S 0 − M1eε1ξ)

≤eε1ξ

−cε1M1eε1ξ + d1M1eε1ξ

∫
R

J(x)e−ε1 xdx − d1M1eε1ξ + β1S0

(
S0

M1

) λ−ε1
ε1

 .
Here we use

e(λc−ε1)ξ <

(
S 0

M1

) λc−ε1
ε1

for ξ < X1.

Keeping ε1M1 = 1, letting M1 → +∞ for some M1 > S 0 large enough and ε1 small enough, we have

cS ′(ξ) − d1(J ∗ S (ξ) − S (ξ)) − Λ + β1S (ξ)I(ξ − cτ) + (µ1 + α)S (ξ) ≤ 0.
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This completes the proof. �

Appendix B: Proof of Lemma 2.6

Proof. If ξ > 1
ε3

ln 1
M3

, the Equation (2.13) holds since I(ξ) = 0. If ξ < 1
ε3

ln 1
M3

, then I(ξ) = eλcξ(1 −
M3eε3ξ), we have the following four cases.

Case I: ξ > max{X1,X2}.
In this case, S (ξ) = V(ξ) = 0. Thus, Equation (2.13) is equivalent to

cI′(ξ) ≤ d3(J ∗ I(ξ) − I(ξ)) − γI(ξ) − µ3I(ξ),

that is

cλc − d3

∫
R

J(y)e−λcydy + d3 + γ + µ3

≤M3eε3ξ

[
c(λ + ε3) − d3

∫
R

J(y)e−(λc+ε3)ydy + d3 + γ + µ3

]
.

From ∆(λc, c) = 0 and ∆(λc + ε3, c) < 0, we have

β1S 0e−cτλc + β2V0e−cτλc ≤ M3eε3ξ
[
−∆(λc + ε3, c) + β1S 0e−cτ(λc+ε3) + β2V0e−cτ(λc+ε3)

]
,

Because τ > 0, λc > 0, it suffices to prove

β1S 0 + β2V0 ≤ M3eε3ξ
[
−∆(λc + ε3, c) + β1S 0e−cτ(λc+ε3) + β2V0e−cτ(λc+ε3)

]
.

Since ξ > max{X1,X2}, M3 > max{S 0,V0} and 0 < ε3 < min{ε1/2, ε2/2}, note that eε3ξ ≥
(

S 0
M1

) 1
2
(

V0
M2

) 1
2
,

then we only need to ensure

β1S 0 + β2V0 ≤ −∆(λc + ε3, c)M3

(
S 0

M1

) 1
2
(

V0

M2

) 1
2

.

Thus, Equation (2.13) holds for sufficiently large M3 > 0 with

M3 ≥
β1S 0 + β2V0

−∆(λc + ε3, c)

√
S 0

M1

√
V0

M2
, Π1.

Case II: X1 > ξ > X2.
In this case, S (ξ) = S 0 − M1eε1ξ and V(ξ) = 0. Hence, Equation (2.13) is equivalent to

cI′(ξ) ≤ d3(J ∗ I(ξ) − I(ξ)) − γI(ξ) − µ3I(ξ) + β1S (ξ)I(ξ − cτ),

that is

cλc − d3

∫
R

J(y)e−λcydy + d3 + γ + µ3 − β1S0e−λccτ + β1M1eε1ξ−λccτ

≤M3eε3ξ

[
c(λ + ε3) − d3

∫
R

J(y)e−(λc+ε3)ydy + d3 + γ + µ3 − β1S0e−(ε3+λc)cτ + β1M1eε1ξ−(ε3+λc)cτ
]
,
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we need to prove
βV0 ≤ −∆(λc + ε3, c)M3eε3ξ.

Choose M3 large enough with

M3 ≥
β2
√

V0M2

−∆(λc + ε3, c)
, Π2.

Case III: X2 > ξ > X1.
In this case, V(ξ) = V0−M2eε2ξ and S (ξ) = 0. Similar to Case II, Equation (2.13) holds if we choose

M3 ≥
β1
√

S 0M1

−∆(λc + ε3, c)
, Π3

large enough.
Case VI: ξ < min{X1,X2}.
In this case, S (ξ) = S 0 − M1eε1ξ and V(ξ) = V0 − M2eε2ξ, Equation (2.13) is equivalent to

cI′(ξ) ≤ d3(J ∗ I(ξ) − I(ξ)) − γI(ξ) − µ3I(ξ) + β1S (ξ)I(ξ − cτ) + β2V(ξ)I(ξ − cτ),

that is

cλc − d3

∫
R

J(y)e−λcydy + d3 + γ + µ3 − β1S0e−λccτ − β2V0e−λccτ + β1M1eε1ξ−λccτ + β2M2eε2ξ−λccτ

≤ M3eε3ξ

(
c(λ + ε3) − d3

∫
R

J(y)e−(λc+ε3)ydy + d3 + γ + µ3 − β1S0e−(ε3+λc)cτ

+ β1M1eε1ξ−(ε3+λc)cτ − β2V0e−(ε3+λc)cτ + β2M2eε1ξ−(ε3+λc)cτ
)

we only need to ensure

M3 ≥
β1M1e(ε1−ε3)ξ−λccτ + β2M2e(ε2−ε3)ξ−λccτ

−∆(λc + ε3, c) + β1M1eε1ξ−(ε3+λc)cτ + β2M2eε2ξ−(ε3+λc)cτ

Since ξ < min{X1,X2}, 0 < S 0 < M3, 0 < V0 < M3, ε3 < min{ε1/2, ε2/2} and τ > 0, we have

β1M1e(ε1−ε3)ξ−λccτ + β2M2e(ε2−ε3)ξ−λccτ

−∆(λc + ε3, c) + β1M1eε1ξ−(ε3+λc)cτ + β2M2eε2ξ−(ε3+λc)cτ <
β1
√

S 0M1 + β2
√

V0M2

−∆(λc + ε3, c)
.

Then Equation (2.13) holds if we choose M3 large enough with

M3 ≥
β1
√

S 0M1 + β2
√

V0M2

−∆(λc + ε3, c)
, Π4.

Through the above discussion, Equation (2.13) holds if we choose M3 ≥ max{Π1,Π2,Π3,Π4} large
enough for all ξ ∈ R. Here we completes the proof. �
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