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Abstract: In this paper, we studied an SVIR epidemic model with nonlocal dispersal and delay, and
we find that the existence of traveling wave is determined by the basic reproduction number R and
minimal wave speed c¢*. By applying Schauder’s fixed point theorem and Lyapunov functional, the
existence and boundary asymptotic behaviour of traveling wave solutions is investigated for Ry > 1
and ¢ > ¢*. The existence of traveling waves is obtained for R, > 1 and ¢ = ¢* by employing a limiting
argument. We also show that the nonexistence of traveling wave solutions by Laplace transform. Our
results imply that (i) the diffusion and infection ability of infected individuals can accelerate the wave
speed; (ii) the latent period and successful rate of vaccination can slow down the wave speed.

Keywords: traveling wave solutions; nonlocal dispersal; Schauder’s fixed point theorem; Lyapunov
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1. Introduction

As one of the most basic models in modeling infectious diseases, the SIR epidemiological model
was introduced by Kermack and McKendrick [1] in 1927. Since then, a lot of differential equations
have been studied as models for the spread of infectious diseases. Considering a continuous vaccination
strategy, let V be a new group of vaccinated individuals, Liu et al. [2] formulated the following system
of ordinary differential equations:

% = A = BSOI1) — aS @) - S (),

% = aS(t) — BVOI(t) — (y1 + u)V(x, 1), (L)
% = BiSOI(0) + BoV(DI(1) = yI(x, 1) — p3l(x, 1), |
RO _ V) +yI0) - R,

dt
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where S (7), V(¢), 1(¢) and R(¢) denote the densities of susceptible, vaccinated, infective and removed
individuals at time ¢, respectively. A denote the recruitment rate of susceptible individuals, y; denote
the natural death rate. (; is the rate of disease transmission between susceptible and infectious in-
dividuals, and S, is the rate of disease transmission between vaccinated and infected individuals. y
denote the recovery rate, « is the vaccination rate and 7; is the rate at which a vaccinated individual
obtains immunity. In [2], the authors shown that the global dynamics of model (1.1) is completely
determined by the basic reproduction number: that is, if the number is less than unity, then the disease-
free equilibrium is globally asymptotically stable, while if the number is greater than unity, then a
positive endemic equilibrium exists and it is globally asymptotically stable. Moreover, it was observed
in Liu et al. [2] that vaccination has an effect of decreasing the basic reproduction number. By using
the classical method of Lyapunov and graph-theoretic approach, Kuniya [3] studied the global stability
of a multi-group SVIR epidemic model. Xu et.al [4] formulated a multi-group epidemic model with
distributed delay and vaccination age, the authors established the global stability of the model, further-
more, the stochastic perturbation of the model is studied and it is proved that the endemic equilibrium
of the stochastic model is stochastically asymptotically stable in the large under certain conditions.
In [5-7], the global stability of different SVIR models with age structure are investigated.

On the other hand, in order to understand the geographic spread of infectious disease, the spatial
effect would give insights into disease spread and control. Due to this fact, many literatures have
studied the spatial effects on epidemics by using reaction-diffusion equations (see, for instance, [8—17]
and the references therein). In the study of reaction-diffusion models, the Laplacian operator describes
the random diffusion of each individual, but it can not describe the long range diffusion. Therefore, a
nonlocal dispersal term has been established, which is by a convolution operator:

T $() — () = fR J(x = )0y — 6(x). (12)

where ¢(x) denote the densities of individuals at position x, J(x — y) is interpreted as the probability of
jumping from position y to position x, the convolution fR J(x=y)¢(y)dy is the rate at which individuals
arrive at position x from all other positions, while — fR J(x—y)p(x)dy = —¢(x) is the rate at which they
leave position x to reach any other position. Problems involving such operators are called nonlocal
diffusion problems and have appeared in various references [18-31].

Recently, Li et al. [23] proposed a nonlocal dispersal SIR model with delay:

o5 (x.0) _ B1S (x,)I(x,t —7)

ot —dl(J*S(x,t)_S(X,t))+A— ]+9[(x,t_7-) —ﬂlS(x,t),
al(x, STt

= H = I+ PR i e, (1)
aR((;tC’ 2 - d3(J * R(x, 1) — R(x, 1)) + yI(x, 1) — 1 R(x, 1),

where S (x, 1), I(x,1) and R(x, t) denote the densities of susceptible, infective and removed individuals
at position x and time #, respectively. 6 measures the saturation level. d;(i = 1,2, 3) describes the
spatial motility of each compartments. The biological meaning of other parameters are the same as
in model (1.1). The authors find that there exists traveling wave solution if the basic reproduction
number R > 1 and the wave speed ¢ > ¢*, where ¢* is the minimal wave speed. They also obtain the
nonexistence of traveling wave solution for Ry > 1 and any 0 < ¢ < ¢* or Ry < 1.
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Motivated by [2] and [23], in this paper, we consider a nonlocal dispersal epidemic model with
vaccination and delay. Precisely, we study the following model.

55((;:’ D - 4y * S( = S (1) + A= S (DI = 7) = @S () = iy S (1 1),

ng’ D = (T 5 V1) = V6, 1) = B2V 06 D6, 1 = 7) + S (1) — (1 + )V, 1),

alg’ D = 0 100 = 10, 0) + B1S (e DI, =) + BV e DG £ = 7) = YICe. 1) = (3.,
aRg;’ D = 0+ RO 1) = RO 1) + B1S (6 06, 1= 1) + 71V 1)+ 715, 1) = R, ),

(1.4)
where S (x,1), V(x,t), I(x,t) and R(x,t) denote the densities of susceptible, vaccinated, infective and
removed individuals at position x and time ¢, respectively. d;(i = 1, 2, 3,4) describes the spatial motility
of each compartments. The biological meaning of other parameters are the same as in model (1.1). J
is the standard convolution operator satisfying the following assumptions.

Assumption 1.1. [23, 24] The kernel function J satisfies
J1) JeC'(R), J(x) =20, J(x)=J(-x), fR J(x)dx = 1 and J is compactly supported.

(J2) There exists a constant Ay, € (0, +00) such that

f J(x)e™¥dx < +oo, for any A€ [0, y)
R

and

lim f J(x)e"¥dx — +oo.
A-Ay—0 R

The organization of this paper is as follows. In section 2, we proved the existence of traveling wave
solutions of (1.4) for ¢ > ¢* by applying Schauder’s fixed point theorem and Lyapunov method. In
section 3, we show that the existence of traveling wave solutions of (1.4) for ¢ = ¢*. Furthermore, we
investigate the nonexistence of traveling wave solutions under some conditions in section 4. At last,
there is a brief discussion.

2. Existence of traveling wave solutions for ¢ > ¢*
In this section, we study the existence of traveling wave solutions of system (1.4). Since we have

assumed that the recovered have gained permanent immunity and R(x, ¢) is decoupled from other equa-
tions, we indeed need to study the following subsystem of (1.4)

55((;;’ 2) =di(J=Sx, ) =S, 0)+ A=-BSx,)l(x,t —7)—aS(x, 1) — 1 S(x, 1),
Wg: D (T V1) = V1) = BV D6 1 = 1)+ aS (1) — iV (6, ), @1
al(a)i, 1) =d3(J =« I(x,1) = [(x,0)) + (B1S (x, 1) + BoV(x, ) (x,t — T) — yI(x, 1) — uz31(x, 1).
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where 1, = y; + ;. Obviously, system (2.1) always has a disease-free equilibrium Ey = (S, Vy,0) =

( ﬁ, - (;/4\|a/+a)’ 0). Denote the basic reproduction number as following:
So+ B2V,
Ro = 'M. (2.2)
Mz +y

Furthermore, there exists another equilibrium E* = (§*, V*, I'") satisfying
A-BST"—aS"— i S* =0,
BV +aS* —upV* =0, (2.3)
B1S" + BV —yI" — usI" = 0.

From [2, Theorem 2.1], system (2.1) has a unique positive equilibrium E* if Rq > 1.
Let & = x + ct and substituting & into system (2.1), then we obtain the wave form equations as

cS'(§) = di(J % §(&) = S@)) + A= BISOI(E — 1) — aS (&) — 1S (),
V(&) = da(J + V(§) = V() + aS (&) = BV — c1) — 1o V), 2.4)
cl'(§) = d3(J 1) — 1)) + B1S (OI(E — c7) + V(O — ¢1) = yI(&) — p3(£).

We want to find traveling wave solutions with the following asymptotic boundary conditions:

étlﬁir_nw(S (£), V(£),1(£)) = (S0, V0,0) (2.5)
and
gliTm(S (&), V&), 1) = (S, V", I). (2.6)
Consider the following linear system of system (2.4) at infection-free equilibrium (S g, Vo, 0),
cl'(§) = dy(J # 1) = 1(©) + B1Sol(§ — 1) + BoVol(§ — cT) = (v + 3)I(§). 2.7)
Let I(¢) = ¢, we have
A(d,¢) 2 d; fR J(x)e ™ dx — (d3 + v + p3) — cd + B1Spe ™ + B, Voe ™ = 0. (2.8)

By some calculations, we obtain

AO,c) =B1So+B2Vo—vy —u3, lim A(d,c) = —oco for 4> 0,
c—+00

0A(A,
LA cr(BiSe+BsVe) < 0 for ¢ >0,
8/1 (O,C)
O0A(A, '
; ) _ —A =1 (B1S o + B2V) < 0 for >0,
c
0’A(A,
FAdo) ds f J(x)x%e Y dx + (cT)*e ™ (B1So + B2 Vo) > 0.
02 R
For any ¢ € R, A(0,c) = Ry — 1, gives us A(0,¢) > 0 if Ry > 1. Then there exist ¢* > 0 and 1* > 0
such that aAa(j"') ey = 0, we have the following lemma.
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Lemma 2.1. Let Ry > 1, we have
(i) If ¢ = ¢*, then A(A, c) = 0 has two same positive real roots A1*;
(@) If0 < c < c¢*, then A(A,c) > 0 for all A € (0, A..), where A € (0, +00];
(iii) If c > c*, then A(A, ¢) = 0 has two positive real roots A,(c), A>(c).
Denote A, = A;(c), from Lemma 2.1, we have
0<A <A <) < Aer
For the followings in this section, we always fix ¢ > ¢* and R > 1. Define the following functions:
S@=So. (S =max(So—Me™,0},

V() =V, V(¢) = max{Vy — M2e™%,0},
1(¢) = e, 1(¢) = max{e'*(1 — M5e°), 0},

where M; and g;(i = 1,2, 3) are some positive constants to be determined in the following lemmas.
Lemma 2.2. The function 1(£) = e satisfies
cl'(€) 2 ds(J = 1(§) — 1(€) + 1S ol(§ — cT) + BaVoI (€ — c7) — yI(€) — p31(€). 2.9)

Lemma 2.3. The functions §(§) =Soand V(f) =V satisfy

(2.10)

{ ¢S 2 di(J*SE) —SE)+A=-BSEIE - c1) —aS(§) — S (&),
cV(§) 2 dr(J + V(§) = V() + aS (&) — V(DI — c1) — 12 V(&).

The proof is trivial, so we omitted the above two lemmas.

Lemma 2.4. For each 0 < & < A. sufficiently small and M, large enough, the function S (&) =
max{S, — M,e®¢, 0} satisfies

cS'(&) < di(J xS () = SE)) + A= BiSEIE - cT) = (w1 + DS (&), (2.11)
with € # ¥, £ Lin 30,

Proof. See Appendix A. O

Lemma 2.5. For each 0 < &, < A. sufficiently small and M, large enough, the function V(&) =
max{Vy — M,e***, 0} satisfies

cV'(€) < do(J * V(E) = V(E) + aS(é) = BV(OU(E - cT) = iV (€), (2.12)

with § # ¥, 2 L3t

The proof is similar with Lemma 2.4.
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Lemma 2.6. Let 0 < &5 < min{e,/2,&,/2} and M5 > max{S, Vy} is large enough, then the function
1(¢) = max{e™4(1 — M;e®%), 0} satisfies

cl'(§) < ds(J = 1) = 1)) + BiS (DI — c1) + B V(I — 1) = vI(§) — ps(§), (2.13)
withé # X3 = ;—31nML3.
Proof. See Appendix B. O

Let X > max{X;, X,, X3}, define

’ S(&) < ¢ < So. $(-X)=5(-X), foré € [-X. X];
Iy = [90 ]eC([—X,X],R3> V(©) < 9(&) < Vo @(=X) = V(X), foré € [-X. X];
v &) < (@) < 1), W(=X) = I(X), for £ € [-X, X].

For given (¢(£), ¢(£), ¥(£)) € T'y, define

o(X), foré > X, o(X), foré > X,
$&) =3 ¢p&), forée[-X-cr,X], @@ =1 @&, forée[-X-crX],
S(), foré<-X-—cr, V), foré<-X-—cr,
and
Y(X), foré > X,
Y& =3 w&), foréel-X—-cr,X],
1¢), foré<-X-ct
We have

S(&) < ¢ < Sy,
V(&) <@ < Vo,
I(¢) < P& < 1(&).

For any ¢ € [-X, X], consider the following initial value problem
cS'() =4, fR JMPE = dy + A = BiISEW(E — 1) = (di + 1 + )S@),

cV'(é) =d, f JMPE — y)dy + ad(§) — BoV(EW(E — 1) — (da + u2)V(E),
R (2.14)

cl'(§) = ds fR JOW(E = )dy +B1dEW(E — cT) + PrpEW(E — c1) = (d3 + ¥ + u)I(E),

S(=X)=8(=X), V(=X) =V(=X), I(=X)=I(-X).

From the standard theory of functional differential equations (see [32]), the initial value problem (2.14)
admits a unique solution (S x(&), Vx(&), Ix(£)) satisfying

(SX7 VX9 IX) € Cl([_X7 X])9
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this defines an operator A = (A;, Ay, A3) : [x — C([-X, X]) as

SX = ﬂl(‘ﬁ, ®, w)’ VX = ﬂ2(¢7 ®, l//)’ IX = ﬂ3(¢’ ¥, ¢)

Next we show the operator A = (A;, A,, Asz) has a fixed point in 'y.
Lemma 2.7. The operator A = (A, Ay, A3) maps 'y into itself.

Proof. Firstly, we show that §(£) < Sx(é) for any € € [-X, X]. If € € (X1,X), S(£) = 0 1is a lower
solution of the first equation of (2.14). If £ € (=X, X), S(€) = So — M, e¢, by Lemma 2.4, we have

eS'(&) — d, fR JO)BE - y)dy — A+ BSEW(E — ) — (d, + 11 + DSE)
<cS"(&) — d, fR JO)S(E = y)dy — A+ BISEIE - ) = (d, + 1 + DS(E)
<0,

which implies that S (&) = S — M,€°'¢ is a lower solution of the first equation of (2.14). Thus S (£) <
Sx(¢) forany ¢ € [-X, X].
Secondly, we show that S x(&) < §(€) = S for any ¢ € [-X, X]. In fact,

d Lﬂﬁ@(f —ydy + A = B1Soy(§ — 1) — (d; + u1 + @)Sp

<d, f TS ody + A — B1Sel(€ — 1) — (dy + 1 + @)So
R
<0,

thus §(§) = S is an upper solution to the first equation of (2.14), which gives us S x(¢) < S for any
£e[-X, X).
Similarly, V(€) < Vx(€) < V(€) and I(€) < Ix(€) < I(€) for any € € [-X, X]. O

Lemma 2.8. The operator ‘A is completely continuous.

Proof. Suppose (¢i(&), i(&), ¥i(§)) € I'x, i =1,2.

Sxi(€) = A(@i(&), 0i(E), Yi(£)),
Vxi(&) = Ax(9i(§), pi(£), ¥i(§)),
Ix (&) = As(¢i(£), 9i(E), Yi()),

We show the operator (A is continuous. By direct calculation, we have

1
Sx(§) =S (=X)exp {_E f(dl +p+a+Big(s — CT))dS}
-X

1 [ 1 [
+ = f exp {—— f(dl +u+ o+ Bg(s - CT))dS} Jo(mdn,
c J_x cJy
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1
V(@) %(—X)exp{—; f (dz+uz+ﬁz!/f(s—CT))dS}
-X

1 ‘ 1 ‘
e f exp{—— f (dz+/lz+ﬁzl//(s—m))d8}f¢(n)dn,
¢ Jy cJ,

and
Ix(&) =I(-X) exp {_ (ds +y+ f3)(§ + X)}
+ 1 f exp {_ (d3 +v+ ,u3)(§ — n)}fw(n)dn_
cJ_x -
where

Jo(n) = d IR J(7 = »)()dy + A,
fo) = ds fR Tt - GOy + adan),
£ = ds fR T = D)y + 190D + Bagi)h(n — c).
For any (¢, s, ) € Ty, i = 1,2, we have
o) = fuoD] =i fR T =Y ) = b1y

<d, +d

f JE = »((X) - @(X»dy\

X

X
f JE=10) = 0y

<2d, max lP1(y) — (V)]

o () = fin )] = fR T = )Ie1 ) = B20)1dy + (i (7) - @(n))‘

<2d, yerggggq lo1(y) — 20| + “ye‘}}%&] [$1(y) — o2V,

|fu, () = fu, (| £2d, + B1S +,32Vo)y€[rf1§(7§ﬂ [1(y) — a2 (y)l

A& _ 3 _
+ pie nax [p1(y) — (V)| + Bae max lo1(y) — @201
Here we use

1B192(EW2 (€ — cT) — B1d1(EW1 (€ — ¢7)
<B192(EWa (€ — cT) = L1 (O 1 (€ — cD)| + [B1d2(EW1(€ — cT) = B1d1(EW1 (€ — cT)
SﬁlSoye[Hl%{] 1 (y) — Yo ()| + Bre* yer[rl%q lp1(y) — p2(V)I.
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and

1B202(EW2 (€ — cT) = Bop1 (EW1 (€ — 7))
<BoVo max_[1(y) — Yol + Bre™* max |pi(y) — g2(y)l-
Ye[-X,X] Ye[-X.X]

Thus, we obtain that the operator A is continuous. Next, we show A is compact. Indeed, since S x, Vx
and Iy are class of C'([-X, X]), note that

c(S5%1(8) = 32 + (di + 1 + @)(Sx1(§) — Sx2(8)
=d, f}; J(€ = )($1() = p2()dy + B2 (Ea(€ — cT) = B1d1(E)i (€ — cT)

AcE _ —
< (241 + pre') max 1610) = p20)] + B0 max Wr() = o)l
Same arguments with V{ and I{, give us S, V§ and I} are bounded. Then A is compact and the
operator (A is completely continuous. This ends the proof. m|

Obviously, I'y is a bounded closed convex set, applying the Schauder’s fixed point theorem ( [33]
Corollary 2.3.10), we have the following theorem.

Theorem 2.1. There exists (Sx, Vx, Ix) € I'x such that
(S x(£), Vx(&), Ix(£)) = A(Sx, Vx, Ix)(&)
for & € [-X, X].

Now we are in position to show the existence of traveling wave solutions, before that we do some
estimates for S x(-), Vx(-) and Ix(-).

Define
C"'([-X, X1) = {u € C'([-X, X])|u, u’are Lipschitz continuous}
with norm
uw(x)—u
lullcti-xxp = max |ul + max [u'|+ sup M
xe[-X,X] xe[-X,X] ryel-X.X] |X _ yl
Xy

Lemma 2.9. There exists a constant C(Y) > 0 such that

IS x|l -vypy < CY), Vxllcnizryy < CY), xller-ryy < CY)

forY < X and X > max{X;, X,, X3}.

Proof. Recall that (S, Ey, Ix) is the fixed point of the operator A, then

cSx(&) =d, f TS x(€ = y)dy + A = BiSx(@)Ix(€ - c1) = (dy + 1 + )Sx(£), (2.15)
cVx(&) =d; f J)Vx(& = y)dy + aSx(&) = B Vx(©Ix(€ = c7) = (dy + p12) Vx (&), (2.16)
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cly(é) = d; f JIx(& = y)dy + BiSx(E)Ix(& = c1) + B Vx(©Ix(€ = c1) = (d3 + p3)Ix (@), (2.17)

o0

where
(S x(X), Vx(X), Ix(X)), for& > X,

S x(@), Vx(&), Ix() =3 (Sx(&), Vx(&), Ix(&)),  foré € [-X —c1, X],
(8(6), Y (&), (%)), foré < —X —ct,
following that S x(&) < So, Vx(&) < Vo, Ix(€) < e’ for any & € [-Y, Y]. Then

A d
P 2 DO o4 Pris @i - e

f TS x(& - y)dy

(8¢

d
1S %) s?l

2dy + uy + A S
< 1T H aS0+—+'Bl Oe,icy’
c c c
2d, + S \%
Vi) <22y 20 Py

dy + i3 +,3150 +ﬂ2V0)e,1L_Y.
c

b

C C

1E263] S(
Thus, there exists some constant C;(Y) > 0 such that
IS xller-vyp < Ci(Y), Vxllevq=yyy < Ci(Y), |xllcrg-vyy < Ci(Y).
Then for any &;,&, € [-Y, Y] such that

IS x(£1) = Sx(&) < Ci(D)E =&, |Vx(€) = Vx(E)l £ Ci(Dé =&, x(x)) — Ix(x)] < Ci(Y)IEr = &l
From (2.15), we have

clS% (&) — Sx(é)l <d, f JS @& —y) = Sx(& - y))dy'
+(dy +py + )lS x(€1) = Sx(E) + Sollx(€r) — Ix(&)l.

Recall (J1) of Assumption 1.1, we know J is Lipschitz continuous and compactly supported on R, let
L be the Lipschitz constant for J and R be the radius of suppJ. Then

di f JOSxE —y) = Sx(& - y))dy‘

(%)

R R
=d, f J)S x(& - y)dy - f J(y)Sx(& - Y)dY‘
—R -

R

£1+R 2+R ~
=d, f: J(& — S x(y)dy — f J(y)Sx(y)dy‘

£1-R

2—R &r+R £1+R o . »+R R
—d, ( f . f " f )J(fl—wsx(y)dy— f J(Y)SX(Y)dY‘
&1-R &H-R &H+R &-R
1+R 2—R
<d, f J& =S x()dy f I —y)Sx<y>dyl
\—R

&H+R
Mathematical Biosciences and Engineering Volume 16, Issue 3, 1654—-1682.
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2+R
+d, f (J(& =) = J(& - S x()dy

&H-R
<d;(2SollJ I~ + 2RLS o)|é) — &l

Thus there exists some constant C,(Y) > 0 such that

1S X&) = Sx(E)l < Cr(Y)IEr - &l
Similarly
V(1) = Vi)l < CD)E1 = &l k(€D — ()] < Co(Y)IEr - &l

From the above discussion, there exists some constant C(Y) > 0 for any Y < X that is independent of
X such that
IS xllcrig-ryy < CY), Vxlleniqoryy < CY), lixllerig-yyy < CY).

O

Now let {X,}'%] be an increasing sequence such that X,, > {X;, X,, X3}, X,, > Y + R for each n and

lim X, = +oo, where R is the radius of suppJ. For every ¢ > ¢*, we have (Sx,, Vx,, Ix,) € I'x, satisfying
Lemma 2.9 and Equations (2.15)-(2.17). For the sequence (S x,, Vx,, Ix,), we can extract a subsequence
denoted by {S Xo, }kelNs {VXnk Jeew and {I Xo e tending to functions (S, V,I) € C'(R) in the following
topologies

SXnk — S, VXnk — V and IX — 1 in C!

loc

(R) as k — +o0.

Since J is compactly supported, applying the dominated convergence theorem, thus

dim [ 018y, €~y = [ 3086 yy =356
-t JR R

dim [ a0, €=y = [ I0VE-ydy =15V

and

dim [ I, € =dy = [ JiE-yy =110,
Moreover, (S, V, ) satisfies system (2.4) and
S@E <SE) <So, V@ <VE) <V, 1) <) < e

Next, we show that /(£) is bounded in R by the method in [34] (see also [35,36]).

Lemma 2.10. There exists some positive constant C such that

1€ - )’) I(§ —c7)
fJ(Y) I(f) <C, W<C and

Proof. Let (&) = 2© from the third equation of (2.4), we have

1$)°
ds I(&E-Yy) Y+ M3
H(S)Z?(f O v _1) c

')

C.
GIN
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d3 J(y)eff 0(s)ds 4 dy — (d3+7’+ﬂ3)'
c c

Set w = (%) and W(¢) = exp {wf + fog 9(s)ds}, thus

d £ e
W) = (@ + 0EWE) = 2 fR ek O gywie),

that is W(€) is non-decreasing. We can take some R, > 0 with 2R, < R, where R is the radius of suppJ.
Then by the same argument in [34, Lemma 2.2], we have

d
we = 2R, fR JO)E™WE - Ro — y)dy

and
W( + Ry) < ogW(¢) for all £ e R,
where
. d;
0o =
cRy f (e dy
Thus

I(€ - y) I(€ - y) e IE-y)
f TP ‘Lo TP +fo AT

0 J—
[ s Dy f e VE=Y 4
—o0 0

W(&) W()
0 W(E -y =Ry f“’"
< J(y)e™—> 2 04 J(y)e™d
70 Lo D e YT, Wed
coy oo -
<R fo J()e™dy.

Again with the third equation of (2.4), we have
I'(€)+@l(€) = d3J « 1(€) + B1S(EI(E — 1) + LV(EI(E —ct) >0 for all £ €R.
Let U(¢) = e®1(£), then U’ (€) > 0, it follows that

1o ~°
Furthermore, re d IE—y) e )
’ 3 y —CT
I(f) f JO) ——— 1 dy + (81So + B2 Vo) @) + @
This completes the proof. O

Lemma 2.11. Choose ¢, € (c*,c* + 1) and let {cy, Sk, Vi, It} be a sequence of traveling waves of (2.1)
with speeds {ci}. If there is a sequence {&;} such that Ii(&) — +o0 as k — +oo, then S (&) — 0 and
V(&) — 0as k — +oo.
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Proof. Assume that there is a subsequence of {&;}iew again denoted by &, such that I;(&;) — +o0 as
k — +oo and S;(&) > €in R for all k € IN with some positive constant £. From the first equation of

(2.4), we have

2d,So+ A
SiE) < =2 2 deltay in R.
C

It follows that

£
Si(&) = R V& € [§ — delta, &],
for all k € IN, where delta = delm By Lemma 2.10, we have < Cy for some Cy > 0. Then
ﬁ ~ exp {f (S) } < eCO(cr+delta) vé‘; e [fk — delta fk]
I (& - c7) é-ct Ls) J~ ’ ’
for all k € IN. Thus
: I _ > —Co(cT+delta) I ,
e W(E—cT)=e k(&)

which give us

min [ (§ —cT) = 400 as k — +oo
£e[éx—delta,dx]

since I;(&;) — +oo0 as k — +oo. Recalling the first equation of (2.4), one can have

€ .
max S (&) < deltay — ’BL min [ (£ —cT) > —00 as k — +oo.
ge[gx—delta,&y] 2 e[é—deltad]

Moreover, there exists some K > O such that

28
~ 220 Wk >K and £ € [& — delta, &].
delta

Si&) <

Note that S, < S in R for each k € IN. Hence S;(&) < —Sy for all kK > K, which reduces to a
contradiction since S (&) > €in R for all k € IN with some positive constant . Similarly, we can show
that V(&) — 0 as k — +oco. This completes the proof. O

Lemma 2.12. Iflim sup I(¢) = oo, then hm 1(¢) =

E—o00

The proof is similar to that of [34, Lemma 2.4], so we omit the details. With the previous lemmas,
we can show that /(¢) is bounded in R.

Theorem 2.2. I(¢) is bounded in R.
Proof. Assume that lim sup /(¢) = oo, then we have hm S =0and hm V(é) = 0 from Lemma 2.11

E—o00

and Lemma 2.12. Set 6(¢) = % from the third equation of (2.4), we have

&) = ds f Jek MO _(dy +y + 1) + B&),
R

where

16 —cr)

B(§) = [B1S (&) +B2V(&)] 5

Mathematical Biosciences and Engineering Volume 16, Issue 3, 1654—-1682.



1667

Since I(f(_;;) < C for some positive constant C from Lemma 2.10. By using [34, Lemma 2.5], we can

get that fliim 0(¢) exists and satisfies the following equation
E—+o0

Fdie) = dy ( f Jye™ - 1) —cd = (y + p13).
R
By some calculations, we obtain

of(4,c)

2
<o, 0°f(4,c)
01

f(0,0) <0, » FYE

> (0 and Alim f(4,¢c) = —c0.
—+00

Thus, 1(¢) is bounded by using the same arguments in [34, Theorem 2.6]. This ends the proof. m|

Since I(£) is bounded in R, we assume that there exists a positive constant p < oo such that I(¢) < p.

. . A . . (I/A . .
Furthermore, it can be verified ey isa lower solution of S and Tiraheia e 18 2 lower solution

of V. Then we have the following proposition.

Proposition 2.1. S (&), V(&) and [(¢) satisfy

al
() < So, <VE) <V, 1) <) <
mraigp S OSSe  Ee g S VOV O =IO <p

foré& € R.

The following lemma is to show that /(£) cannot approach 0.

Lemma 2.13. Assume that R > 1, then for each ¢ > c*, we have

lign inf I(¢) > 0.

Proof. We only need to show that if 1(¢) < g for some small enough constant gy, > 0, then I’(£) > O for
all £ € R. Assume by way of contradiction that there is no such &y, that is there exist some sequence
{&trew such that 1(£;) — 0 as k — +oo and I'(£;) < 0. Denote

Sk@) =S E+8), V@) = V(& +&) and (&) = I(& + &)

Thus we have [,(0) — 0 as k — +4oco and I;(¢) — O locally uniformly in R as k — +o00. As a
consequence, there also holds that 7;(£) — 0 locally uniformly in R as k — +oo by the third equation
of (2.4). From the argument in [25, Theorem 2.9], we can obtain that S, = S and V,, = V.

Let Y (&) = %. By Lemma 2.10, and in the view of

OGN

we have ¥ (§) and ¢ (£) are also locally uniformly in R as k — +oo. Letting kK — +oo, thus

¥ (&) =

/(&) = ds fR JOWa(& = )y + (B1So + BaVoWmlé — 1) — (ds +y + H)rulE).
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One can have ¥,(¢) > 0 in R. In fact, if there exist some &, such that ,(&y) = 0 and ¥ (¢) > O for all
f < .fo, then

0=d fR T = )y + (BrSo + Vo WalE — c7) > 0,

which is a contradiction.

Denote Z(¢) = i:g;, it is easy to verify Z(¢) satisfies

CZ(E) = dy f Jek 9%y 4 (8,80 + BaVoyek 0% _(dy 4y + ), (2.18)
R

Then by similar discussion in [25, Theorem 2.9], for Ry > 1 and ¢ > ¢*, we have

1,(0)
0< 0) = 1 0
w(0) = Jim y(©) = lim JE
Thus, I'(&;) = 1,(0) > 0, which is a contradiction. This completes the proof. O

Remark 2.1. In the proof of Lemma 2. 13, we need to show that Z(+o0) exist in Equation (2.18). In [25],

the authors applying [37, Lemma 3.4] to show that Z(+0) exist. There is a time delay term in Equation
(2.18) which is different from [37, Lemma 3.4], but we can still using the method in [37, Lemma 3.4]
to proof Z(+00) exist. The proof is trivial, so we omitted it.

Now, we can give the main result in this section.

Theorem 2.3. Suppose R > 1, then for every ¢ > c*, system (2.1) admits a nontrivial traveling wave
solution (S (x + ct), V(x + ct), [(x + ct)) satisfying the asymptotic boundary condition (2.5) and (2.6).

Proof. First, it is easy to verify that S(—o0) = S, V(=) = V), [(—c0) = 0 by Lemmas 2.4, 2.5 and
2.6.

Next, we will show (S (), V(¢),I(&)) = (S*, V™, ") as ¢ — +oo by using Lyapunov function. From
Proposition 2.1 and Lemma 2.13, we have S (&) > 0, V(¢) > 0 and I(¢) > 0.

Letg(x) =x—-1-Inx, a*(y) = fy T (x)dx, a=(y) = f 7 (x)dx. Since J is compactly supported,
and recall that R is the radius of suppJ, hence

a*(y)=0 and o (y) =0 for |y| >R. (2.19)
Define the following Lyapunov functional
L(S,V,D)(§) = ¢STLi(§) + ¢V La(&) + cI"L3(£) + diS"U(&) + bV Ua(€) + d3 I Us(§)

where

V*
L(6) =g ( (f))+(ﬂ3+ )I*f ( 1€ - 9))d9
0

oo S - 0 S
U@ = fo a*(y)g(%)dy— f o )g( €- y))dy,
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+00 V _ 0 V _
0= [ (P52 oy~ [ (Y2 ay
0 —00

oo 0
U3<§>=f0 <)g((ér y)) f %y)g((f y)) y.

Thanks to [38, Theorem 1] and S (£) > 0, V(&) > 0, I(£) > 0, we can get that L,(£), L,(€) and L3(€) are
bounded from below. Furthermore, by using (2.19), Proposition 2.1 and Lemma 2.13, we can claim
that U,(¢), U, (&) and Us(€) is bounded from below. Thus L(S, V, I)(¢) is well defined and bounded
from below. Note that * = 1, =5 dor” (y ) = J(y) an da_(y ) = _J(y), we have

dul(f)_df o (S(f—y)) f _ ((é y))

=— g (y)g

dé  dé Jy * dé
(4 (SE-Y) Vo 4 (SE-D)
- [ e orge(N52)ar- [ wongs(M52)
(L d (SE=-Y) 0 d (SE-y)
_ fo a(y)dyg(—S* )dy+La(y)dyg( - )

_(S©\ SE-y)
“s(52)- [ (2o

Similarly,
dU Vv oo Vv
dzf):g( v(f))‘f o ( ¢ - y)) ,:
dus _ (1O\ ™ I(&-Y)
aé ‘g(l*) L"(”( )

By some calculations, it can be shown that

&[T (IE-0)\ . (Td (IE-0)\ . (T d (KE-0)
d_ffo g( I )de‘fo dfg( I )dg‘ fodeg( r )dg

&) I(E-c7) I(£ - c7)
= — +In .
I I 1(§)
Thus
dL s*
d(ff) :( S(f))(dl( TS =SE)+A-BSEIE - ct) = (@ + u)S (&)
v
( V(f)) (dr(J = V() = V(&) + aS (&) — BV(OI( — c1) — iE(§))
(1 _ @) (dy(J 1)~ 1(©) + BiIS @I — 1) + BVOIE — c1) — (3 + p)(©)
+ (uz + I (If) - I(gl_*CT) +1In I(fl(—g)c T))
+d,S g (Ss(f)) 4,s* fm J(¥)g (S(‘f Y)) y
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AV (‘Ef)) dvf“"’J()(V(E y))y

Fdilg (;f)) e f+ J0)g ((f y))

=B + By,
where
s O\ o [ (SE-y)
( S(g))dlu*S(f) @) +d.S g(S ) S L J(y)( )y
v ve\ . VE-y)
+(1—Wf))dz(J*V(f)—V(ﬁ)Hszg( V- ) drV Lo JO)g ( ) y
+( Iig))a%(f 16) - 1) + dsT'g (f)) ‘“*L, IO ((5 y)) y
and
Bzz(l Ss@)m BiS(@I(E - 1) — (@ + u)S )
\%
( - g))mS(f) _BVOIE - c7) - 1 EE))

(1 _ @) (B OI(E - ) + BVEIE - ) = (y + p)I(E)
(1@) e I cr)) |

+ (w3 +I°

Ir 1(%)
For By, using In S@ =In S(gjy) —In Séf(g)y) thus
S* ) e &=y
(1—5(5))611(]*5(5) S(&) +diS” g( 5 ) d\S Ioo J(»)g (T)dy
_ Qe SE-y) SE-y S e -y
=d,S IOO J(y )[ S@ In 3 ] d,S” Iw JOy)g ( )dy

+00 S(&— S(&— +00
o L2 o 2

+00 S(&—

—+00 S _ —+00 V _
Bi=-dS" f J(y)g( f@y))dy_dzv* f J(y)g( (Vg@”)dy

+00 (& —
N I J(y)g( (f@y))dy. (2.20)

Then
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For B,, by some calculation yields

oy S@ ST\ (S@IE=cD)
By =uiS (2 S S(f)) B1SI g(—S*I(f) )
[ (VOIE-cn\  (S@V
RV [g ( V1) )+g (S*V(f))]

(V(f))+ (S@V*)
v T8\ sve

. S*
—(@S"+p1SI")g (%) ,

here we use (uz + y)I* = 1S I" + B,V*I" and aS (¢)
B,, we obtain L(¢) is decreasing in &.
Consider an increasing sequence {&,},>0 with &, > 0 such that &, — +co when n — +00 and denote

{$1(8) = SE + &Elnz0, {Val&) = V(€ + EDlnzo, and {1,(&) = I(£ + En)lnso-

We can assume that S, V, and I, converge to some nonnegative functions S, V. and /.. Further-
more, since L(S, V, I)(¢) is non-increasing on &, then there exists a constant C and large n such that

— V"

v _ % Tk -\ S (E)V* s
e = BV + 1V )S*V(.f)' Combining B; and

C < LSy Vo 1)) = L(S, V, (€ + &) < L(S, V, D(&).

Therefore there exists some delta € R such that lim,_,e L(S ,, V,,, I,)(&) = delta for any ¢ € R. By
Lebegue dominated convergence theorem, gives us

Hm LSy, Vi, 1)(6) = L(S w0, Ve, 10)(£), & € R.

Thus

Note that ‘31—2; = 0if and only if S(¢) = S*, V(&) = V* and I(¢) = I, it follows that
(S cos Veoor Ioo) = (87, V7, ).
This completes the proof. O
3. Existence of traveling wave solutions for ¢ = ¢*
In this section, we investigate the existence of traveling wave solutions for the case ¢ = ¢* by a

limiting argument(see [23, 39]).

Theorem 3.1. Suppose R > 1, then for every ¢ = c¢*, system (2.1) admits a nontrivial traveling wave
solution (S (x + c*t), V(x + c*t), [(x + c*t)) satisfying

Jim ($@). V(©).16) = (8°.V".I").

Furthermore, if we assume that S (—oo0) and V(—o0) exist, then (S (x + c*t), V(x + c*t), [(x + c*1)) also
satisfying
fl_i)r_nm(S (&), V(£),1(£)) = (S0, Vo, 0).
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Proof. Let {c,} C (c*,c* + 1) be a decreasing sequence such that lim ¢, = ¢*. Then for each c,, there

n—oo

exists a traveling wave solution (S (), V,,(+), I,(-)) of system (2.4) with asymptotic boundary condition
(2.5) and (2.6). Since (S ,(- + a), V(- + a), I,(- + a)) are also solutions of (2.4) for any a € R, we can
assume that

1,(0) = delta®, I,(¢) < delta®, £ <0

with 0 < delta < I" is small enough.
Similar to [23,39], we can find a subsequence of (S,, V,,I,), again denoted by (S,, V,,I,), such
that (S, V,,I,) and (S, V', I') converge uniformly on every bounded interval to function (S, V, /) and

n> "n>°n

(§’, V', I'), respectively. Applying the Lebesgue dominated convergence theorem, it then follows that

IimJ=*S,=J=S, imJ=«V,=J%V, and limJ =1, =J =1

n—oo n—00 n—oo

on every bounded interval. Then we get that (S, V, /) satisfies system (2.4). From the proof of Theorem
2.3, the Lyapunov functional is independent of c¢. By the same argument in the proof of Theorem 2.3,
we claim that /(¢) > 0 for any € € R. Hence, we can still get that

lim S(¢)=S*, lim V(&) =V, lim I(&) = I".
E—+o0 E—+o0 E—+o0

Moreover, we have
1(0) = delta®, I(¢) < delta”, & <0.

Let
Sup =limsup S (&), Vi, =limsup V(§), Iy, = limsupI(§)

E——00 -0 -0

and
Sing = lifm inf §(&), Viyy = lifm inf V(§), Ly = lifm inf I(¢).

Next, we show that I(—o0) exists. By way of contradiction, assume that [;,s < I,,. Then there exist
sequences {x,} and {y,} satisfying x,, y, — —oo as n — +oo such that

lim I(x,) = L,y lim I(y,) = Ly,.
n—-+oo n—+oo

Since we assumed that S (—oc0) and V(—o0) exist, then S ;,, = S;,r = S(—00) and V,, = Vi,p = V(—00).

From [40, Lemma 2.3], we can obtain that S’'(—c0) = 0 and V’(—o0) = 0. For any sequence {&,},

&, — —oo as n — +oo, using Fatou Lemma, one have that

S(—o0) < liminf J % S(&,) < limsupJ * S(&,) < S(—).

and
V(—o0) < liminf J = V(&,) < limsup J * V(£,) < V(—00).

n—oo

Thus, we have
lim[J % S(£,) - S()] =0 and Lim[J * V(&) - V()] =0
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Taking ¢ = x, and ¢ = y, in the first equation of system 2.4, and letting n — oo, we obtain that
Lins = Iy, which is a contradiction. Hence, I(—o0) exists and I(—co0) < delta”. From system (2.4)
and [40, Lemma 2.3], we obtain

A = 1S (=00)[(—00) — @S (=0) — ;S (=00 = 0),

@S (—00) = BrV(=00)I(=00) — 1y V(—00) = 0, (3.1

B1S (=00)I(—00) + BV (—00)[(=00)) — yI(—00) — p3l(—o0) = 0.

In the view of delta* < I*, it follows that
Jim §(@) =S, lim V@) =Vy, lim 1) =0.
This completes the proof. O

Remark 3.1. For the case ¢ = ¢, there is a priori condition assuming S (—oo) and V(—oo) exist. This
condition is only necessary for the difficulty in mathematics. In [34], the authors have given some
results for the case ¢ = c¢* in a nonlocal diffusive SIR model without constant recruitment, but some
estimates is much more difficult for our model with constant recruitment and time delay as in [34,
Section 3]. Thus, how to extend the methods in [34] to our model, it will be an interesting problem for
further investigation.

4. Nonexistence of traveling wave solutions

In this section, we show the nonexistence of traveling waves when Rg > 1 with 0 < ¢ < ¢*.

Theorem 4.1. If Ry > 1 and 0 < ¢ < ¢*, then there exists no nontrivial positive solutions of (2.4) with
(2.5) and (2.6).

Proof. Since Ry > 1 gives us B1S¢ + B2V > uz + y. Assume there exists nontrivial positive solution
(S, V, ) of (2.4) with (2.5) and (2.6). Then there exists a positive constant K > 0 large enough such
that, for any ¢ < —K, we have

BiSo +B2Vo — (y + u3)

cl'(§) = ds(J = 1(§) - 1(§)) + 5

1§ —ct)+ (y + a)U(E —cT) = 1)) (4.1)

holds. Let K(¢) = f_ 'io I(n)dn. By Fubini theorem, thus

d3f J = I(s)ds :d3f f](y)l(s—y)dyds 4.2)
—00 —o0o JR
—d; f f JO)(s - y)dsdy
R J—-

~d; [ 90 [ 165 -y
R —o0
—ds * K().
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Integrating the both sides of (4.1) from —co to ¢ with ¢ < —K, we have

cl(€) 2d5(J = K(&) — K(&)) + (y + u3)[K (€ — cT) — K(6)]
N BiSo +B2Vo — (y + u3)
2

K(& - c7). (4.3)

Furthermore, the following two equations hold.

» " OK(n -
f [K(q - c7) — K(n)ldy = f (=c7) fo %dsdn

=—cT ﬁ 1 K(& - cts)ds (4.4)
and
ds f; [J * K(17) — K(m)]dn =d3 f; I :o(—X)J(X) fo | wdsdxdn
=d, f +m(—x)J(x) j; 1 K (& — xs)dsdx. (4.5)

Integrating both sides of inequality (4.3) from —oco to &, and combining Equations (4.4) and (4.5) yield

BiSo+BVo—(y+u3) [*
2 oo

1
<cK()+ (y + ,u3)c7'f K(& — cts)ds
0

K(n —ct)dn

+00 1
+ds f xJ(x) f K(& — xs)dsdx
—00 O
< (c + ds f xJ(x)dx + (y + ,ug)cr) K(¢), 4.6)
R

Here we use xK(£ — sx) as a non-increasing function with s € (0, 1). By (J1) of Assumption 1.1, we
have fR xJ(x)dx = 0. Then for ¢ < —K, we have

BiSo +,32V§ - (y + 13) f+oo K( —n—ct)dp
0

<(¢c + (y + u3)en)K (), 4.7)

For the non-decreasing function K(¢), there exists some 77 with 77 + ¢t > 0 such that

BiSo +'82V§_(y+#3)(f7+c7')l((§—f7—m)

<(c + (¥ + u3)en)K (), (4.8)

Thus there exists a sufficiently large constant 6 > —ct and some constant € € (0, 1), such that

K —-0—-ct)<eK(é), E<—-M.
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Let
p) = K&e™,
where
O<vz lnl <A,
+cTt €

By some simple calculation, we have

p&—0-ct) < pd).
Using L’Hospital’s rule yields

Jim p(@ = tim =8 = tim 28 -

E—+00 erf N

0,

Note that p(¢) > 0, thus there exists a constant p, such that

P& = K@e™ < py, £€R. (4.9)

On the other hand, since S(£) < Sy and V(&) < V| for & € R, recall the third equation of (2.4), we have

cl' (&) =d3(J = 1(£) = 1)) + B1S (O — c1) + BV — 1) = yI(&) — p31(§)
<ds(J # I(§) = 1(§)) + B1S ol (¢ — c1) + B2 Vol (& = cT) = yI(£) — 3 (£). (4.10)

Integrating the both sides of (4.10) from —co to & yields
cl(§) < d3J + K(&) = (y + ps + d3)K(§) + (B1S o + B2 Vo) K (£ — c7). (4.11)

From (4.9), using J is compactly supported, for & € R, there exists a positive constant M; such that
(@ad K@) =d: [ J0)eK(E - )y
R
=d, f Je K (& - y)e "¢ dy (4.12)
R
<d;po f J(y)edy
R
<M,.
Thus there exists a constant M, > 0 such that
(&)™ <My, é€R, (4.13)
since (4.9), (4.11) and (4.12) hold. Then

sup{I(£)e™*} < +oo. (4.14)
&R

By the same procedure in (4.12), there exists a positive constant M, such that

(d5J * 1(£))e™ <M. (4.15)
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Hence

sup{l’(€)e™ ¢} < +oo. (4.16)
&R

For A € C with 0 < ReA < v, define the following two-side Laplace transform of 1(£),

Li): = f I(§)e " déE.
R
From (2.4), we have

dy(J # 1(€) = 1(£) = cI'(§) + (B1S o + B2 VO)I(§ — cT) = (v + 3)I(§)
=B1(So = SENI(E — c1) + Bo(Vo = VIEDI(£ = c1). (4.17)

Take the two-side Laplace transform to the above equation, thus

A, 0) L) = f e [Bi(So = SENIE — c1) + Ba(Vo = VIEDI(E — cT)]dé (4.18)

R

for 1 € Cwith0 < Red < v. Let L(§) = §¢— S (&), we have 0 < L(§) < S and limg_,_, L(£) = 0. Then
from the first equation of (2.4), we have

cL'(§) = di(J = L&) = L&) + 1S OI(E — cT) + (@ + u)S (§).

Let n € C*(R, [0, 1]) be a nonnegative nondecreasing function, n(x) = 0 in (—oco, 2] and n(x) = 1 in
[-1,4+00). For N € IN, set gy = n(%) Then, taking 0 < vy < v, we have

c f L'(&)e " nydé = d, f (J # L(&) — L(&)e " nndé + f SEBIIE — 1) + a + pyJe " nndé.
R R R

By the argument in [22, Theorem 3.1], there exists a constant = > 0 dependent on v, such that

f L(&)e""dé < E.
R

Thus,
L Bi(So = SENIE — c)e” "0 dé < By sup{l(£)e ™) L L(&)e™dé < co.

&R
Similarly,

fR Bao(Vo = VIE)I(£ — cT)e™ P02 dE < oo.

From the property of Laplace transform [41], £;(1) is well defined with Red > 0. Note that Equation
(4.18) can be rewritten as

fR e [AWLOIE) +Bi(So — SEDIE = c1) + Bo(Vo = VEDIE - c1)] dé = 0. (4.19)

Recall (J2) of Assumption 1.1, then A(4,¢) — +o0 as & — +oo for ¢ € (0, ¢*) which is a contradiction
of (4.19). This completes the proof. O
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5. Discussion

As traveling wave solutions describe the transition from disease-free equilibrium to endemic equi-
librium when the wave speed is larger than the minimal wave speed. Now, we focus on how the
parameters in system (2.1) can affect the wave speed. Suppose (1, &) be a zero root of A(4, ¢), recall
that Vo = —22%— and p, = p; + 1, we have

Ho(H1+a)
A ] A _erd BaAa —eri
A(/l,c):dfj(x)e Adx — (d3 + ¥ + 3) — €41+ B1Soe ™ + e ™ =
* g STV FrSo (i + ) + )
By some calculations, we obtain
d  fJ@let - 11dx o & BiSo+BVo
dd; A1+ [BiSo +BVolre i)~ dr et BSor+BoVor
de S ge~t de Ve et

o

—_—= — >0, — = = — >
dBr A1 + [B1So + B Volre i) dB> A1+ [B1So + B2 Volre i)
and
dc _ ,32‘/0676”1 <0
dyt  u + DA+ [BiSo + B2 Volre i)

that is, ¢ is a decreasing function on y; and 7, while ¢ is an increasing function on d3, 8; and 8,. From
the biological point of view, this indicates the following four scenarios:

I. The more successful the vaccination, the slower the disease spreads;
II. The longer the latent period, the slower the disease spreads;

III. The faster infected individuals move, the faster the disease spreads;
IV. The more effective the infections are, the faster the disease spreads.

Now, we are in a position to make the following summary:

Mathematically, we investigated a nonlocal dispersal epidemic model with vaccination and delay;
The existence of traveling wave solutions is studied by applying Schauder fixed point theorem with
upper-lower solutions, that is there exists traveling wave solutions when R > 1 with ¢ > ¢*. Further-
more, the boundary asymptotic behaviour of traveling wave solutions at +oco was established by the
methods of constructing suitable Lyapunov like function. We also showed that there exists traveling
wave solutions when Ry > 1 with ¢ = ¢*. Finally, we proved the nonexistence of traveling wave
solutions under the assumptions Ry > 1 and 0 < ¢ < ¢*.

Biologically, our results imply that the nonlocal dispersal and infection ability of infected individ-
uals can accelerate the spreading of infectious disease, while the latent period and successful rate of
vaccination can slow down the disease spreads.

Mathematical Biosciences and Engineering Volume 16, Issue 3, 1654—-1682.



1678

Acknowledgments

The authors are very grateful to the editors and three reviewers for their valuable comments and
suggestions that have helped us improving the presentation of this paper. We would also very grateful
to Prof.Shigui Ruan, Dr. Sanhong Liu and Dr.Wen-Bing Xu for their valuable comments and helpful
advice. This work is supported by Natural Science Foundation of China (No.11871179; No.11771374),
and the first author was also partially supported by China Scholarship Council (No.201706120216). R.
Zhang acknowledges the kind hospitality received from the Department of Mathematics at the Univer-
sity of Miami, where part of the work was completed.

Conflict of interest

All authors declare no conflicts of interest in this paper.

References

1. W. Kermack and A. McKendrick, A contribution to mathematical theory of epidemics, Proc. R.
Soc. Lond. A, 115 (1927), 700-721.

2. X. Liu, Y. Takeuchi and S. Iwami, SVIR epidemic models with vaccination strategies, J. Theor.
Biol., 253 (2008), 1-11.

3. T. Kuniya, Global stability of a multi-group SVIR epidemic model, Nonlinear Anal.-Real World
Appl., 14 (2013), 1135-1143.

4. J. Xuand Y. Zhou, Global stability of a multi-group model with vaccination age, distributed delay
and random perturbation, Math. Biosci. Eng., 12 (2015), 1083-1106.

5. X.Duan, S. Yuan and X. Li, Global stability of an SVIR model with age of vaccination, Appl.
Math. Comput., 226 (2014), 528-540.

6. J. Wang, R. Zhang and T. Kuniya, The dynamics of an SVIR epidemiological model with infection
age, IMA J. Appl. Math., 81 (2016), 321-343.

7. J. Wang, M. Guo and S. Liu, SVIR epidemic model with age structure in susceptibility, vaccination
effects and relapse, IMA J. Appl. Math., 82 (2017), 945-970.

8. G. F. Webb, A reaction-diffusion model for a deterministic diffusive epidemic, J. Math. Anal.
Appl., 84 (1981), 150-161.

9. M. Kubo and M. Langlais, Periodic solutions for a population dynamics problem with age-
dependence and spatial structure, J. Math. Biol., 29 (1991), 393-378.

10. Y. Hosono and B. Ilyas, Traveling waves for a simple diffusive epidemic model, Math. Models
Meth. Appl. Sci., 5 (1995), 935-966.

11. R. Peng and S. Liu, Global stability of the steady states of an SIS epidemic reaction-diffusion
model, Nonlinear Anal.-Theory Methods Appl., 71 (2008), 239-247.

12. Y. Lou and X. Q. Zhao, A reaction-diffusion malaria model with incubation period in the vector
population, J. Math. Biol., 62 (2011), 543-568.

Mathematical Biosciences and Engineering Volume 16, Issue 3, 1654—-1682.



1679

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

A. Ducrot and P. Magal, Travelling wave solutions for an infection-age structured epidemic model
with external supplies, Nonlinearity, 24 (2011), 2891-2911.

Z. Wang and R. Xu, Traveling waves of an epidemic model with vaccination, Int. J. Biomath., 6
(2013), 1350033, 19 pp.

R. Cui and Y. Lou, A spatial SIS model in advective heterogeneous environments, J. Differ. Equ.,
261 (2016), 3305-3343.

B. Tian and R. Yuan, Traveling waves for a diffusive SEIR epidemic model with standard inci-
dences, Sci. China Math., 60 (2017), 813-832.

L. Zhao, Z. C. Wang and S. Ruan, Traveling wave solutions in a two-group SIR epidemic model
with constant recruitment, J. Math. Biol., 77 (2018), 1871-1915.

G. Alberti and G. Bellettini, A nonlocal anisotropic model for phase transitions Part I: the optimal
profile problem, Math. Ann., 310 (1998), 527-560.

D. Xu and X. Zhao, Asymptotic speed of spread and traveling waves for a nonlocal epidemic
model, Discret. Contin. Dyn. Syst. -Ser. B, § (2005), 1043-1056.

V. Hutson and M. Grinfeld, Non-local dispersal and bistability, Eur. J. Appl. Math., 17 (2006),
221-232.

Z.C. Wang, W. T. Li and S. Ruan, Traveling fronts in monostable equations with nonlocal delayed
effects, J. Dyn. Differ. Equ., 20 (2008), 573-607.

F. Y. Yang, Y. Li, W. T. Li and Z. C. Wang, Traveling waves in a nonlocal dispersal Kermack-
McKendrick epidemic model, Discret. Contin. Dyn. Syst. -Ser. B, 18 (2013), 1969—1993.

Y.Li, W.T. Liand E Y. Yang, Traveling waves for a nonlocal dispersal SIR model with delay and
external supplies, Appl. Math. Comput., 247 (2014), 723-740.

H. Cheng and R. Yuan, Traveling waves of a nonlocal dispersal Kermack-Mckendrick epidemic
model with delayed transmission, J. Evol. Equ., 17 (2017), 979-1002.

C.C.Zhu, W.T. Li and F. Y. Yang, Traveling waves in a nonlocal dispersal SIRH model with
relapse, Comput. Math. Appl., 73 (2017), 1707-1723.

W. T. Li, W. B. Xu and L. Zhang, Traveling waves and entire solutions for an epidemic model
with asymmetric dispersal, Discret. Contin. Dyn. Syst., 37 (2017), 2483-2512.

T. Kuniya and J. Wang, Global dynamics of an SIR epidemic model with nonlocal diffusion,
Nonlinear Anal.-Real World Appl., 43 (2018), 262-282.

G. Zhao and S. Ruan, Spatial and temporal dynamics of a nonlocal viral infection model, SIAM
J. Appl. Math., 78 (2018), 1954-1980.

S. L. Wu, G. S. Chen and C. H. Hsu, Entire solutions originating from multiple fronts of an
epidemic model with nonlocal dispersal and bistable nonlinearity, J. Differ. Equ., 265 (2018),
5520-5574.

W. Wang and W. Ma, Travelling wave solutions for a nonlocal dispersal HIV infection dynamical
model, J. Math. Anal. Appl., 457 (2018), 868—889.

Mathematical Biosciences and Engineering Volume 16, Issue 3, 1654—-1682.



1680

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

W. Wang and W. Ma, Global dynamics and travelling wave solutions for a class of non-cooperative
reaction-diffusion systems with nonlocal infections, Discret. Contin. Dyn. Syst. -Ser. B, 23 (2018),
3213-3235.

J. Wu, Theory and Applications of Partial Functional Differential Equations, Applied Mathemat-
ical Sciences Vol. 119, Springer-Verlag, New York, 1996.

K. C. Chang, Methods in Nonlinear Analysis, Springer Monographs in Mathematics, Springer-
Verlag, Berlin, 2005.

F. Y. Yang and W. T. Li, Traveling waves in a nonlocal dispersal SIR model with critical wave
speed, J. Math. Anal. Appl., 458 (2018), 1131-1146.

C. C. Wu, Existence of traveling waves with the critical speed for a discrete diffusive epidemic
model, J. Differ. Equ., 262 (2017), 272-282.

Y. Chen, J. Guo and F. Hamel, Traveling waves for a lattice dynamical system arising in a diffusive
endemic model, Nonlinearity, 30 (2017), 2334-2359.

G. B.Zhang, W. T. Li and Z. C. Wang, Spreading speeds and traveling waves for nonlocal dispersal
equations with degenerate monostable nonlinearity, J. Differ. Equ., 252 (2012), 5096-5124.

G. Huang, Y. Takeuchi, W. Ma and D. Wei, Global stability for delay SIR and SEIR epidemic
models with nonlinear incidence rate, Bull. Math. Biol., 72 (2010), 1192—-1207.

K. Brown and J. Carr, Deterministic epidemic waves of critical velocity, Math. Proc. Camb.
Philos. Soc., 81 (1977), 431-433.

J. Wu and X. Zou, Traveling wave fronts of reaction-diffusion systems with delay, J. Dyn. Differ.
Equ., 13 (2001), 651-687.

D. V. Widder, The Laplace Transform, Princeton Mathematical Series 6, Princeton University
Press, Princeton, 1941.

Appendix A: Proof of Lemma 2.4

Proof. 1f ¢ > X, then S(€) = 0, equation (2.11) holds. If £ < X, then S (&) = Sy — M, e”'¢, we have

cS'(€) = di(J * SE) = S@) = A+ BISEOIE — 1) + (1 + )S ()

= —ce Me”* + dlMle‘Slff J(x)e " dx — d;M;e¢ - A
R

+B1(So — Mie”*)e" T + (uy + a)(So — Mie”'%)

ey
B
Sesl‘f —C81M1€81§ + dlMleSI‘ff J(x)e_‘g‘xdx — dlMleﬁlf +ﬁ1$0 (—) ] .
R

Here we use

Ac—&q

e < (&) ’ for &< X,.
M

1

Keeping £; M, = 1, letting M; — +oo for some M; > S large enough and &; small enough, we have

cS' (&) —di(J * S(&) = S@) ~ A+ BiISEIE ~ c1) + (1 + @)S(€) < 0.
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This completes the proof. O
Appendix B: Proof of Lemma 2.6

Proof. If & > ln 3> the Equation (2.13) holds since 1(§) = 0. If & < - Ln M%, then I1(¢) = e'4(1 -
M;e®%), we have the followmg four cases.

Case I: ¢ > max{X,, X,}.

In this case, S (&) = V(&) = 0. Thus, Equation (2.13) is equivalent to

cl'(&) < d3(J * 1(§) = 1(£)) = yL(&) — psL(£),

that is
cl, — dj f J(y)e_ﬂ“ydy +d;+y+u3
R

SM3€83§

(A + &) — ds f J()e Ny + ds +y + s .
R

From A(A.,c) = 0 and A(A, + &3,¢) < 0, we have
ﬁ]S()e_CT/lC -|-ﬁ2V()€_cmr < M3€83§ [—A(/lc + &3, C) +ﬂ150€_CT(/lC+£3) +ﬁ2VO€_CTu“+€3)] y
Because 7 > 0, 4. > 0, it suffices to prove

BiSo +BaVo < Mae™ |[~Ad. + £3,¢) + fi1S e ") + By Ve Tty

Since £ > max{¥;, X,}, M5 > max{S, Vo} and 0 < &3 < min{e; /2, £2/2}, note that ¢ > (3¢)7 (32)*
then we only need to ensure

So Vo 2
-A M — .
Bi1So + 62V < —A(A. + &3,¢) 3(M1) (Mz)

Thus, Equation (2.13) holds for sufficiently large M3 > 0 with

,3150 + B2 Vo /So / Vo
—A(/l + &3,C)
CaseII: X; > & > X,.

In this case, S (&) = So — Me®¢ and V(€) = 0. Hence, Equation (2.13) is equivalent to

cl'(&) < ds(J + 1(&) = 1(£)) = v1(&) — p3L(&) + B1S(OI(£ — c7),

that is
cdc — ds f Je ' dy +ds +y + p3 — BiSoe ™ + BiM e
R

§M3e’s3§

c(d+ &) —ds f J(e Ay + dz +y + pz — B1See” KT 4 g M et
R
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we need to prove
BVo < —A(A, + &3, ) M3e™.

Choose M; large enough with

B NVVoM,

M3 > —— = Hz.
—A(A, + &3,0)

Case III: X, > € > X;.
In this case, V(&) = Vo— M,e®* and S (&) = 0. Similar to Case II, Equation (2.13) holds if we choose

M > BiVSoM,
3

T =A(A. + &3,0) -

large enough.
Case VI: ¢ < min{X,, X,}.
In this case, S (&) = So — Me¢ and V(€) = Vy — M,e®*, Equation (2.13) is equivalent to

cl'(€) < ds(J = 1(§) — (&) — yI(§) — usl(§) + Bi1S (O£ — c7) + Lo V(I - c7),
that is

C/lc - d3 f J(y)e_”‘ydy + d3 +Y+ U —ﬁlsoe_/lCCT —ﬁQVOC_/lCCT +,81M16€1§_/1CCT +ﬁ2M2682§_1°CT
R

< Mse™ (c(/l +&3)—ds f J(y)e Ut dy 4 ds + y + 3 — B1Spe” T
R
+ B Mleslf—(aﬁ/lc)cr _ﬁzvoe—(sswlp)c‘r +ﬁ2M2651§—(a3+/lc)cr)

we only need to ensure

M > B]Ml ele1—e3)é—dcet ﬁzMze(ez—sg)g—/lcc-r
3= —A(A. + &3,C) + Bi M s+ T 4 By M, ee2é~(Es+de)et

Since ¢ < min{X;, X,},0 <S¢ < M3,0 <V, < M3, &5 < min{e,/2, &,/2} and T > 0, we have

BiM, ele1—e3)E—Acct +ﬁ2M26(62—83)§—/lccT . Bi VS oM, +5, VoM,
—A(A, + &3,0) + ﬁlMle‘gl‘f_(‘%Hlf)CT +ﬁ2M2€82§_(£3+’1‘)CT —A(A; + &3,0) '

Then Equation (2.13) holds if we choose M3 large enough with

S BiVSoM + B> VVoM, N
- —A(A, + &3,0)

M; I1y.

Through the above discussion, Equation (2.13) holds if we choose M3 > max{Il;, Il,, 15,114} large

enough for all £ € R. Here we completes the proof. O
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