Research article

Numerical solutions of multi-term fractional reaction-diffusion equations

  • Received: 08 December 2024 Revised: 03 January 2025 Accepted: 07 January 2025 Published: 14 January 2025
  • MSC : 65M12, 65M06, 35S10

  • In this paper, we have proposed a numerical approach based on generalized alternating numerical fluxes to solve the multi-term fractional reaction-diffusion equation. This type of equation frequently arises in the mathematical modeling of ultra-slow diffusion phenomena observed in various physical problems. These phenomena are characterized by solutions that exhibit logarithmic decay as time $ t $ approaches infinity. For spatial discretization, we employed the discontinuous Galerkin method with generalized alternating numerical fluxes. Temporal discretization was handled using the finite difference method. To ensure the robustness of the proposed scheme, we rigorously established its unconditional stability through mathematical induction. Finally, we conducted a series of comprehensive numerical experiments to validate the accuracy and efficiency of the scheme, demonstrating its potential for practical applications.

    Citation: Leqiang Zou, Yanzi Zhang. Numerical solutions of multi-term fractional reaction-diffusion equations[J]. AIMS Mathematics, 2025, 10(1): 777-792. doi: 10.3934/math.2025036

    Related Papers:

  • In this paper, we have proposed a numerical approach based on generalized alternating numerical fluxes to solve the multi-term fractional reaction-diffusion equation. This type of equation frequently arises in the mathematical modeling of ultra-slow diffusion phenomena observed in various physical problems. These phenomena are characterized by solutions that exhibit logarithmic decay as time $ t $ approaches infinity. For spatial discretization, we employed the discontinuous Galerkin method with generalized alternating numerical fluxes. Temporal discretization was handled using the finite difference method. To ensure the robustness of the proposed scheme, we rigorously established its unconditional stability through mathematical induction. Finally, we conducted a series of comprehensive numerical experiments to validate the accuracy and efficiency of the scheme, demonstrating its potential for practical applications.



    加载中


    [1] A. N. Kochubei, Distributed order calculus and equations of ultraslow diffusion, J. Math. Anal. Appl., 340 (2008), 252–281. https://doi.org/10.1016/j.jmaa.2007.08.024 doi: 10.1016/j.jmaa.2007.08.024
    [2] M. M. Meerschaert, E. Nane, P. Vellaisamy, Distributed-order fractional diffusions on bounded domains, J. Math. Anal. Appl., 379 (2011), 216–228. https://doi.org/10.1016/j.jmaa.2010.12.056 doi: 10.1016/j.jmaa.2010.12.056
    [3] Q. Li, Y. Chen, Y. Huang, Y. Wang, Two-grid methods for nonlinear time fractional diffusion equations by L1-Galerkin FEM, Math. Comput. Simul., 185 (2021), 436–451. https://doi.org/10.1016/j.matcom.2020.12.033 doi: 10.1016/j.matcom.2020.12.033
    [4] X. Zheng, H. Wang, Optimal-order error estimates of finite element approximations to variable-order time-fractional diffusion equations without regularity assumptions of the true solutions, IMA J. Numer. Anal., 41 (2021), 1522–1545. https://doi.org/10.1093/imanum/draa013 doi: 10.1093/imanum/draa013
    [5] L. B. Feng, P. Zhuang, F. Liu, I. Turner, Stability and convergence of a new finite volume method for a two-sided space-fractional diffusion equation, Appl. Math. Comput., 257 (2015), 52–65. https://doi.org/10.1016/j.amc.2014.12.060 doi: 10.1016/j.amc.2014.12.060
    [6] F. Liu, P. Zhuang, I. Turner, K. Burrage, V. Anh, A new fractional finite volume method for solving the fractional diffusion equation, Appl. Math. Model., 38 (2014), 3871–3878. https://doi.org/10.1016/j.apm.2013.10.007 doi: 10.1016/j.apm.2013.10.007
    [7] J. Y. Cao, C. J. Xu, A high order schema for the numerical solution of the fractional ordinary differential equations, J. Comput. Phys., 238 (2013), 154–168. https://doi.org/10.1016/j.jcp.2012.12.013 doi: 10.1016/j.jcp.2012.12.013
    [8] H. F. Ding, C. P. Li, High-order compact difference schemes for the modified anomalous sub-diffusion equation, Numer. Meth. Partial Differ. Equ., 32 (2016), 213–242. https://doi.org/10.1002/num.21992 doi: 10.1002/num.21992
    [9] M. Dehghan, M. Abbaszadeh, W. H. Deng, Fourth-order numerical method for the space-time tempered fractional diffusion-wave equation, Appl. Math. Lett., 73 (2017), 120–127. https://doi.org/10.1016/j.aml.2017.04.011 doi: 10.1016/j.aml.2017.04.011
    [10] X. M. Gu, H. W. Sun, Y. L. Zhao, X. C. Zheng, An implicit difference scheme for time-fractional diffusion equations with a time-invariant type variable order, Appl. Math. Lett., 120 (2021), 107270. https://doi.org/10.1016/j.aml.2021.107270 doi: 10.1016/j.aml.2021.107270
    [11] C. P. Li, H. F. Ding, Higher order finite difference method for the reaction and anomalous- diffusion equation, Appl. Math. Model., 38 (2014), 3802–3821. https://doi.org/10.1016/j.apm.2013.12.002 doi: 10.1016/j.apm.2013.12.002
    [12] R. Lin, F. Liu, V. Anh, I. Turner, Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation, Appl. Math. Comput., 212 (2009), 435–445. https://doi.org/10.1016/j.amc.2009.02.047 doi: 10.1016/j.amc.2009.02.047
    [13] J. C. Ren, Z. Z. Sun, Efficient numerical solution of the multi-term time fractional diffusion-wave equation, East Asian J. Appl. Math., 5 (2015), 1–28. https://doi.org/10.4208/eajam.080714.031114a doi: 10.4208/eajam.080714.031114a
    [14] H. X. Rui, J. Huang, Uniformly stable explicitly solvable finite difference method for fractional diffusion equations, East Asian J. Appl. Math., 5 (2015), 29–47. https://doi.org/10.4208/eajam.030614.051114a doi: 10.4208/eajam.030614.051114a
    [15] X. D. Zhang, Y. L. Feng, Z. Y. Luo, J. Liu, A spatial sixth-order numerical scheme for solving fractional partial differential equation, Appl. Math. Lett., 159 (2025), 109265. https://doi.org/10.1016/j.aml.2024.109265 doi: 10.1016/j.aml.2024.109265
    [16] V. R. Hosseini, E. Shivanian, W. Chen, Local integration of 2-D fractional telegraph equation via local radial point interpolant approximation, Eur. Phys. J. Plus, 130 (2015), 33. https://doi.org/10.1140/epjp/i2015-15033-5 doi: 10.1140/epjp/i2015-15033-5
    [17] X. J. Li, C. J. Xu, A space-time spectral method for the time fractional diffusion equation, SIAM. J. Numer. Anal., 47 (2009), 2108–2131. https://doi.org/10.1137/080718942 doi: 10.1137/080718942
    [18] C. Li, F. Zeng, F. Liu, Spectral approximations to the fractional integral and derivative, Fract. Calc. Appl. Anal., 15 (2012), 383–406. https://doi.org/10.2478/s13540-012-0028-x doi: 10.2478/s13540-012-0028-x
    [19] Y. Lin, C. Xu, Finite dfference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225 (2007), 1533–1552. https://doi.org/10.1016/j.jcp.2007.02.001 doi: 10.1016/j.jcp.2007.02.001
    [20] F. Y. Song, C. J. Xu, Spectral direction splitting methods for two-dimensional space fractional diffusion equations, J. Comput. Phys., 299 (2015), 196–214. https://doi.org/10.1016/j.jcp.2015.07.011 doi: 10.1016/j.jcp.2015.07.011
    [21] M. Ahmadinia, Z. Safari, M. Abbasi, Local discontinuous Galerkin method for time variable order fractional differential equations with sub-diffusion and super-diffusion, Appl. Numer. Math., 157 (2020), 602–618. https://doi.org/10.1016/j.apnum.2020.07.015 doi: 10.1016/j.apnum.2020.07.015
    [22] M. Ahmadinia, Z. Safari, Analysis of local discontinuous Galerkin method for time-space fractional sine-Gordon equations, Appl. Numer. Math., 148 (2020), 1–17. https://doi.org/10.1016/j.apnum.2019.08.003 doi: 10.1016/j.apnum.2019.08.003
    [23] Y. Chen, L. Wang, L. Yi, Exponential convergence of hp-discontinuous Galerkin method for nonlinear Caputo fractional differential equations, J. Sci. Comput., 92 (2022), 99. https://doi.org/10.1007/s10915-022-01947-z doi: 10.1007/s10915-022-01947-z
    [24] Y. Du, Y. Liu, H. Li, Z. Fang, S. He, Local discontinuous Galerkin method for a nonlinear time-fractional fourth-order partial differential equation, J. Comput. Phys., 344 (2017), 108–126. https://doi.org/10.1016/j.jcp.2017.04.078 doi: 10.1016/j.jcp.2017.04.078
    [25] L. Guo, Z. B. Wang, Fully discrete local discontinuous Galerkin methods for some time-fractional fourth-order problems, Int. J. Comput. Math., 93 (2016), 1665–1682. https://doi.org/10.1080/00207160.2015.1070840 doi: 10.1080/00207160.2015.1070840
    [26] Y. Liu, M. Zhang, H. Li, J. Li, High-order local discontinuous Galerkin method combined with WSGD-approximation for a fractional sub-diffusion equation, Comput. Math. Appl., 73 (2017), 1298–1314. https://doi.org/10.1016/j.camwa.2016.08.015 doi: 10.1016/j.camwa.2016.08.015
    [27] L. Wei, Y. F. Yang, Optimal order finite difference/local discontinuous Galerkin method for variable-order time-fractional diffusion equation, J. Comput. Appl. Math., 383 (2021), 113129. https://doi.org/10.1016/j.cam.2020.113129 doi: 10.1016/j.cam.2020.113129
    [28] L. Wei, W. Li, Local discontinuous Galerkin approximations to variable-order time-fractional diffusion model based on the Caputo-Fabrizio fractional derivative, Math. Comput. Simul., 188 (2021), 280–290. https://doi.org/10.1016/j.matcom.2021.04.001 doi: 10.1016/j.matcom.2021.04.001
    [29] Y. Yang, Y. P. Chen, Y. Q. Huang, H. Wei, Spectral collocation method for the time-fractional diffusion-wave equation and convergence analysis, Comput. Math. Appl., 73 (2017), 1218–1232. https://doi.org/10.1016/j.camwa.2016.08.017 doi: 10.1016/j.camwa.2016.08.017
    [30] T. M. Atanackovic, S. Pilipovic, D. Zorica, Time distributed-order diffusion-wave equation. I. Volterra-type equation, Proc. Royal Soc. A., 465 (2009), 1869–1891. https://doi.org/10.1098/rspa.2008.0445 doi: 10.1098/rspa.2008.0445
    [31] Y. Luchko, Boundary value problems for the generalized time-fractional diffusion equation of distributed order, Fract. Calc. Appl. Anal., 12 (2009), 409–422.
    [32] M. Naber, Distributed order fractional sub-diffusion, Fractals, 12 (2004), 23–32. https://doi.org/10.1142/S0218348X04002410 doi: 10.1142/S0218348X04002410
    [33] A. Aghili, A. Ansari, Newmethod for solving system of P.F.D.E. and fractional evolution disturbance equation of distributed order, J. Interdiscip. Math., 13 (2010), 167–183. https://doi.org/10.1080/09720502.2010.10700690 doi: 10.1080/09720502.2010.10700690
    [34] K. Diethelm, N. J. Ford, Numerical analysis for distributed-order differential equations, J. Comput. Appl. Math., 225 (2009), 96–104. https://doi.org/10.1016/j.cam.2008.07.018 doi: 10.1016/j.cam.2008.07.018
    [35] M. L. Morgado, M. Rebelo, Numerical approximation of distributed order reaction-diffusion equations, J. Comput. Appl. Math., 275 (2015), 216–227. https://doi.org/10.1016/j.cam.2014.07.029 doi: 10.1016/j.cam.2014.07.029
    [36] F. W. Liu, P. H. Zhuang, Q. X. Liu, The Applications and Numerical Methods of Fractional Differential Equations, Beijing: Science Press, 2015.
    [37] R. Schumer, D. A. Benson, M. M. Meerschaert, B. Baeumer, Fractal mobile/immobile solute transport, Water Resour. Res., 39 (2003), 129–613. https://doi.org/10.1029/2003WR002141 doi: 10.1029/2003WR002141
    [38] J. F. Kelly, R. J. McGough, M. M. Meerschaert, Analytical time-domain Greens functions for power law media, J. Acoust. Soc. Am., 124 (2008), 2861–2872. https://doi.org/10.1121/1.2977669 doi: 10.1121/1.2977669
    [39] G. H. Gao, H. W. Sun, Z. Z. Sun, Some high-order difference schemes for the distributed-order differential equations, J. Comput. Phys., 298 (2015), 337–359. https://doi.org/10.1016/j.jcp.2015.05.047 doi: 10.1016/j.jcp.2015.05.047
    [40] X. Y. Li, B. Y. Wu, A numerical method for solving distributed order diffusion equations, Appl. Math. Lett., 53 (2016), 92–99. https://doi.org/10.1016/j.aml.2015.10.009 doi: 10.1016/j.aml.2015.10.009
    [41] A. A. Alikhanov, Numerical methods of solutions of boundary value problems for the multi-term variable distributed order diffusion equation, Appl. Math. Comput., 268 (2015), 12–22. https://doi.org/10.1016/j.amc.2015.06.045 doi: 10.1016/j.amc.2015.06.045
    [42] J. T. Katsikadelis, Numerical solution of distributed order fractional differential equations, J. Comput. Phys., 259 (2014), 11–22. https://doi.org/10.1016/j.jcp.2013.11.013 doi: 10.1016/j.jcp.2013.11.013
    [43] W. Bu, X. Liu, Y. Tang, J. Yang, Finite element multigrid method for multi-term time fractional advection diffusion equations, Int. J. Model. Simul. Sci. Comput., 6 (2015), 1540001. https://doi.org/10.1142/S1793962315400012 doi: 10.1142/S1793962315400012
    [44] B. Jin, Y. Liu, Z. Zhou, The Galerkin finite element method for a multi-term time-fractional diffusion equation, J. Comput. Phys., 281 (2015), 825–843. https://doi.org/10.1016/j.jcp.2014.10.051 doi: 10.1016/j.jcp.2014.10.051
    [45] F. Liu, M. M. Meerschaert, R. McGough, P. Zhuang, Q. Liu, Numerical methods for solving the multi-term time fractional wave equations, Fract. Calc. Appl. Anal., 16 (2013), 9–25. https://doi.org/10.2478/s13540-013-0002-2 doi: 10.2478/s13540-013-0002-2
    [46] I. Podlubny, T. Skovranek, B. M. V. Jara, I. Petras, V. Verbitsky, Y. Chen, Matrix approach to discrete fractional calculus III: non-equidistant grids, variable step length and distributed orders, Philos. Trans. Royal Soc. Math. Phys. Eng. Sci., 371 (2013), 0153. https://doi.org/10.1098/rsta.2012.0153 doi: 10.1098/rsta.2012.0153
    [47] L. Wei, Stability and convergence of a fully discrete local discontinuous Galerkin method for multi-term time fractional diffusion equations, Numer. Algor., 76 (2017), 695–707. https://doi.org/10.1007/s11075-017-0277-1 doi: 10.1007/s11075-017-0277-1
    [48] X. Meng, C. W. Shu, B. Wu, Optimal error estimates for discontinuous Galerkin methods based on upwind-biased fluxes for linear hyperbolic equations, Math. Comput., 85 (2016), 1225–1261. https://doi.org/10.1090/mcom/3022 doi: 10.1090/mcom/3022
    [49] Y. Cheng, X. Meng, Q. Zhang, Application of generalized Gauss-Radau projections for the local discontinuous Galerkin method for linear convection-diffusion equations, Math. Comput., 86 (2017), 1233–1267. https://doi.org/10.1090/mcom/3141 doi: 10.1090/mcom/3141
    [50] L. Feng, P. Zhuang, F. Liu, I. Turner, Y. Gu, Finite element method for space-time fractional diffusion equation, Numer. Algor., 72 (2016), 749–767. https://doi.org/10.1007/s11075-015-0065-8 doi: 10.1007/s11075-015-0065-8
    [51] Y. Zhao, Y. Zhang, F. Liu, I. Turner, Y. Tang, V. Anh, Convergence and superconvergence of a fully-discrete scheme for multi-term time fractional diffusion equations, Comput. Math. Appl., 73 (2016), 1087–1099. https://doi.org/10.1016/j.camwa.2016.05.005 doi: 10.1016/j.camwa.2016.05.005
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(79) PDF downloads(24) Cited by(0)

Article outline

Figures and Tables

Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog