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Abstract: In this paper, we have proposed a numerical approach based on generalized alternating
numerical fluxes to solve the multi-term fractional reaction-diffusion equation. This type of equation
frequently arises in the mathematical modeling of ultra-slow diffusion phenomena observed in various
physical problems. These phenomena are characterized by solutions that exhibit logarithmic decay
as time ¢ approaches infinity. For spatial discretization, we employed the discontinuous Galerkin
method with generalized alternating numerical fluxes. Temporal discretization was handled using
the finite difference method. To ensure the robustness of the proposed scheme, we rigorously
established its unconditional stability through mathematical induction. Finally, we conducted a
series of comprehensive numerical experiments to validate the accuracy and efficiency of the scheme,
demonstrating its potential for practical applications.
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1. Introduction

Fractional calculus, often regarded as a natural extension of classical calculus, has garnered
significant attention over the past few decades. Its versatility has led to the widespread application of
fractional-order partial differential equations (FPDEs) in addressing diverse scientific challenges
across fields such as quantitative finance, engineering, biology, chemistry, and hydrology, among
others [1,2]. These equations offer powerful tools for modeling complex phenomena where classical
models fall short. Fractional partial differential equations (FPDEs) have proven to be powerful tools
for describing anomalous physical phenomena with greater accuracy than traditional integer-order
equations. This unique capability has sparked significant interest in their investigation. Nevertheless,
deriving analytical solutions for FPDEs poses considerable difficulties, particularly due to the
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complexity introduced by fractional derivatives. As a result, the focus has shifted toward the
development and application of efficient numerical methods. These methods include finite volume (or
element) approaches [3-6], finite difference schemes [7-15], meshless strategies [16], spectral
techniques [17-20], discontinuous Galerkin methods [21-28], and collocation methods [29], among
others.

The multi-term, time-fractional diffusion equation was introduced as an enhancement over the
single-term model to improve the accuracy of describing anomalous diffusion processes. Its
exceptional ability to capture anomalous diffusion in highly heterogeneous aquifers and intricate
viscoelastic materials has made it a subject of extensive research from various perspectives [30]. This
equation serves as a fractional extension of the classical diffusion equation: when o = 1, it reduces to
the classical model, inheriting some of its analytical characteristics. However, the inclusion of
nonlocal fractional derivative terms introduces notable differences. Specifically, these terms result in
limited spatial smoothing properties and slower asymptotic decay over time [31, 32], significantly
influencing numerical analysis [33-35].

The discontinuous Galerkin (DG) method offers several advantages, particularly for
reaction-diffusion equations. One of its key benefits is its flexibility in handling complex boundary
conditions and non-smooth solutions, which are common in reaction-diffusion problems. The DG
method also provides high accuracy even for problems with steep gradients or discontinuities, as it
allows for discontinuities between elements while maintaining high-order accuracy within each
element. Additionally, the method’s inherent ability to handle local refinement and adaptivity makes it
well-suited for capturing sharp interfaces or localized phenomena in reaction-diffusion models. The
method also enjoys optimal stability properties, which are crucial for ensuring accurate solutions in
stiff reaction-diffusion problems, particularly when dealing with highly varying reaction terms. In this
paper, we investigate the numerical method based on generalized alternating numerical fluxes for the
following multi-term, time-fractional reaction-diffusion equation:

2
% + pu(x, f) = £(x, 1),

xe(ab),ie©T] (1.1)
u(x,0) =0, X € [a,b],

Pa/,aq,m ,a;(Dt)u(x’ t) -

where z
Pooro a(Du(x, 1) = (Df ) diD;”’) u(x, ).
i=1
Here, 0 < a1 < -+ < a; < a < 1 represents the fractional orders of the derivatives, and d;
(i =1,2,...,1) are constant coefficients. p > 0 is the constant reaction rate. The Caputo fractional

derivative D! for 0 < n < 1 is defined as in [36]:

1 "Ou(x,s) ds
D'u(x,t) = ’ , t>0, 0<np<l,
e r(l—n)fo ds sy !
where I'(-) denotes the Gamma function.
This work focuses exclusively on the mathematical formulation of the problem and does not impose
specific boundary conditions. Consequently, the solution is assumed to be either periodic or compactly
supported.
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Model (1.1) was designed to refine the single-term model (1.3) for more accurately describing
anomalous diffusion. For instance, in [37], a two-term fractional diffusion model was developed to
capture solute transport dynamics by explicitly distinguishing between mobile and immobile solute
states through fractional-order dynamics. Similarly, kinetic equations incorporating fractional
derivatives of varying orders arise naturally when modeling subdiffusive motion in velocity fields.
Discussions on their application to wave-type phenomena can also be found in [38]. Although several
numerical schemes, such as finite difference methods [39—42], finite element methods [43—45], the
matrix approach [46], and the discontinuous Galerkin method [47], have been proposed for problems
involving multi-term fractional derivatives. The development of efficient and higher-order numerical
methods remains a significant challenge in handling multi-term fractional derivative problems.

This paper is organized as follows: Section 2 introduces basic notations and theoretical
preliminaries. In Section 3, we present a discontinuous Galerkin method based on generalized
alternating numerical fluxes for the multi-term, time-fractional reaction-diffusion equation. Stability
and convergence are rigorously proven using the mathematical induction approach in Section 4.
Numerical experiments validating the proposed method are provided in Section 5, and the conclusions
are given in Section 6.

2. Notations and auxiliary results

Consider a computational domain covered by the following mesh:
<o <Xy =b

Each cell is represented as I; = [x;_
defined by Ax; = x;,1 —x;_ 1 for 1
length in the mesh.

At the cell interfaces, the values of u are denoted by u;

,‘xj %] for j = 1,2,..., N, with the corresponding cell lengths

j+
J < N. We further define 4 = max, <<y Ax; as the largest cell

IA i

, and W i corresponding to the values from
2 J*3

the right side of /;,; and the left side of I}, respectively.
To approximate solutions, we define the piecewise polynomial space V¥, consisting of polynomials
of degree at most k within each cell /;:

Vi={v:ve PU)),xel;,j=1,2,...,N}.

For any periodic function w defined on [a, b], the generalized Gauss-Radau projection [48, 49],
denoted by P;sw, is the unique element in V). Let w® = Psw — w represent the projection error. When
0+ % it satisfies the following for j = 1,2,...,N:

f wvdx =0, VYveP(I), and (we);?l = 0. (2.1)
1 2

We then have the subsequent result [49].

Lemma 2.1. Let 6 # % If w € H*"'[a, b], the following inequality holds:
| + A2 0f |2,y < CR™™ Dl (2.2)
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where the constant C > 0 is independent of h and w. Here, 'y, denotes the set of boundary points for
all elements 1;, and

1

3

1 N
o Mlzzry = | 5 Z[((w"f)f_% + ((we)_),.i%]
i=1

In this paper, C denotes a generic positive constant whose value may vary in different contexts. The
scalar inner product on L2(D) is denoted by (-, -)p, with the associated norm represented as ||-||p. When
D = Q, the subscript D is omitted for simplicity.

3. The schemes

In this section, we present a detailed construction of the numerical scheme aimed at solving Eq (1.1).
The process begins with the uniform division of the time interval [0, T'], where the time step size is
denoted by At = T/M, with M € IN. The mesh points are defined as #, = nAt forn =0,1,..., M.

IMv(x, 1,) f " ov(x,s) ds
ot F(l -n) os (t,— s

"zll ft'“ ov(x,s) ds
F(l - = J, as  (t, — s)

_ L ftiﬂ v(x, tiv) = V(X 1) ds +R"
_ r(l — rl) 2 At (tn - S)TI
(AN

T T2- )Zb" (X, 1) = v(x, 1)) + R”

3.1)

_ (Ap™
TQ2-n)

n—1
05 1) + D (B = bl (6, 1) = by v(x, 10)] + R,
i=1

where b! = (i + 1)'™7 — ', and has the following properties:

n—1
D bl=nm, (3.2)
k=0

The truncation error is denoted as R", and we have the following result from [50]:
IR"| < C(Ar)*™,

where C is a constant independent of At.
From this, we express:

AP~ Lr
Pooy o a(Dulx, 1) :r(( 2? 5 ((1 + Z r((z - ))d(At)" “u(x, 1,)

—_

e
(04 (03

+ (bn—k —by o+

1

-T2 - a) o (Ao "
- (b2, Z P LAY Nux, zo))+Rm o
=1

I'e-a

) Tea T o) i = B (A0 “Nu(x,)  (3.3)

>~
Il
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To reformulate Eq (1.1), we introduce the following first-order system:

P =y, Pogyo(DIulx, 1) + pu(x,1) = px + f(x,1). (3.4)

Letu;, p; € V,’Z‘ denote the approximate solutions for u(-, #,) and p(-, t,), respectively, and let f"(x) =
f(x,t,). The fully discrete local discontinuous Galerkin (LDG) scheme is formulated as follows:
Find uf, p} € V such that for all test functions v, ¢ € V7,

N

Bo +p) f u,vdx +,81( f ppvydx — Z ((;Zv_)],r% - (@,W)J’—;))
Q Q =
n—1 l o — ‘
(b::—k—l — by + Z F( @ A bZ’_k)(At)““’") f v dx
k=1 (2 - l) Q
o (3.5)
@ (¢4} a—q; n
+(b;f_1+ ) Fa T3 oy b (A0 t)fgugvdij;fvdx,
N —_ —_
f Phé dox + f igdx = ) (€)1 = WD) 1) = 0,
o Q =
where 1
_ F(z ) a—q;
Bo=1+ T l)d(At)
and (A
Pr=ra oy

The initial condition u} is determined by the L* projection of u(-,0), given by:

f ugv dx = f?’u(x, Owdx = fuo(x)v dx, VYve V,f.
Q Q Q

The terms marked with a “hat” in (3.5) are numerical fluxes, representing single-valued functions
at cell boundaries, which are designed to ensure stability. For this system, we choose the fluxes as:

= 60"+ (1= 8)w)*,  pj =1 =8)pp~ + (P}, (3.6)

with a given parameter ¢ # % Choosing 6 = 0 or 6 = 1 results in purely alternating numerical fluxes.
4. Stability

To streamline the notation and without any loss of generality, we focus on the numerical analysis
for the case where f = 0.

Theorem 4.1. Under the assumption of periodic or compactly supported boundary conditions, the
fully discrete LDG scheme given in (3.5) is unconditionally stable. Specifically, there exists a constant
C > 0, depending on u and T, such that
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0
lugll < llgll, n=1,2,....M

Proof. We begin by selecting the test functions v = u} and & = S p) in the scheme (3.5). Using the
chosen numerical fluxes as specified in (3.6), we derive:

Bo + I +BillpyIE + B, Z(T(u,pph)ﬁ, WG, p)-s + O, p)1)

k=1 @i
N e - a) o o—a
+ (b, +Z 2o dib." (At) ')fuhuh 4.1)
n—1
r 2 a (0% , a—a
< (b by Z r((z_ a0y = BBl
k=1 @i

I'2-a«a o oo
+ (b +Z¥ dib? (AT luflll,

where the terms W(u;, p;) and ©(u}, p}) are defined as:
Wiy, i) = (P )™ = )™ — ()
Oy, py) = (p)" )™ = ()" ()" = pr@up)™ + pr@up)™ — uy(pp)™ + uy(pj)*
Through straightforward computation, we observe that
®(u Ph) =

From Eq (4.1), we can simplify further to obtain:

n—1 l
n (03 r(z a) Q, a—q
(Bo + P)llull < Z B = by + T2 - )a’(bn 1~ DA uy |
= 4.2)
a F( ) ; a—q;
+(by_, + mdb LAY .
We proceed by induction to confirm the theorem. For n = 1, Eq (4.2) simplifies to:
(03 ) (e a—a;
(Bo + P)llll < b + Z T2 —ay’ dibg (A ) lupl.
Since b = by’ = 1, it follows that:

(AR (4.3)

Assume that form = 1,2,...,n — 1, the inequality
0
e, || < ey
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holds. Substituting this into (4.2), we deduce:

Bo +P)llujll < Bolleyll < Bo + Pyl (4.4)

Thus,
0
gzl < o]l

This completes the proof of stability. O
Lemma 4.1. [51] For eacht € (0,T), if uy € L*(D), the following holds:

IR,

a,aq,

-l £ CAD™.

We also provide the following lemma for analysis:

Lemma4.2. [51]Ify" >0forn=1,2,...,N and y° = 0, then under the inequality:

n—1 l
n @ a F2-a) , o
olﬁ < Z [bn—k—l - bn—k F(z _ l)d (bn k-1

l
a/ (2 a) ; a—q;
(n Z} ooy 0 ]w X,

— b, (AN “’] Yt

we can conclude:

y" < C(AD‘y,
where C is a positive constant independent of h and At.

Theorem 4.2. Let u(x, t,) denote the exact solution of problem (1.1), assumed to be sufficiently smooth
such that u € H™' with0 <m < k+ 1. Let uy represent the numerical solution obtained from the fully
discrete LDG scheme (3.5). Then, the following error estimate holds:

lluCx, 1) =l < CH + (A ), n=1,--- | M, (4.5)

where C is a constant depending on u, T, and «.

Proof. Let us define

= u(x, t,) — uy, = Pse, — (Psu(x, t,) — u(x, 1)),

(4.6)
= p(x’ tn) - ph - Pl—&ep - (Pl—6p(x’ tn) - p(x’ tn))

Incorporating the fluxes from (3.6), by applying (4.6), the resulting error equation can be expressed
as follows:

N
6o+ p) f Prelvdx + i ( f Prservidx— 3 (Pr-se)'v) s = (Prosel) V), p)
Q Q i=1
. J
v f Pseédx + f Pacigdi— S (Pael)€)yuy - (Poely €),p)
Q Q j=1

AIMS Mathematics Volume 10, Issue 1, 777-792.



784

n—1
a a r(z a/) o e
PILEERLAES WM = BT fQ Prevdx
. rQ-a) . o
+ (b, 1+ZF(2 db (A )f?)(se vdx — ﬁlvadx

+(Bo +p) fQ (Psu(x, t,) — u(x, t,))vdx + B ( fg (Pr-sp(x, 1,) — p(x, 1,))v,dx

N
- Z(((Pl—ap(x, t) = PO, 1))V 1 = (Pr-sp(x, 1) = p(X, 1)) V) 1))
Jj=1 4.7)
+ fg (Pr-sp(x, ;) = p(x, 1,))édx + fg (Psu(x, 1) — u(x, 1,))éxdx

N
- Z(((Pau(x, tn) = u(X, 1)) 1 = (Poulx, 1a) = u(x, 1,))"67) ;1)

j—l

l F(2 - ) @, a
- Z(bn w1 — Do+ 2 1“(2——3,-)(1 (b — b (AN f(?’gu(x t) — u(x, t))vdx

5T
- (b, + F((2 l))d b (AT L (Psu(x, ty) — u(x, ty))vdx.

By substitutmg the test functions v = $Pse, and & = B1P1s¢, into (4.7) and utilizing the
properties (2.1), the following equality is derived:

(Bo +p)llﬂse |IPdx +,31||501 sepllPdx

'@ - Q) a; a—a; n
_Z(bn = b+ Z r((z — b = BB fg PsekPseldx

re-a (4.8)

+ (b, + m dib)’ | (A" a’)fpaeo7)5e”dx ﬁlfR Pseldx
i=1

+ﬁl f(pl—ép(x’ tn) - P(X, tn))Pl_(sede + H.
Q
Define
H = (B + p) f(?)(su(x, ty) — u(x, t,))Pseldx
Q

N .
- Z(bn k-1 bZ—k %d (bn k—1 b:l_k)(At)a_ai) L(P(SM(X, tk) - I/l()C, tk))SD5ede

rQ
— (b, + Z %d b (ADT) f (Pou(x, to) — u(x, 10))Psedx.

After performing some manual calculations, we arrive at the result:

re-
= —AtZ(b" + Z F((Z oz) bZ’(At)"_“" j; O(Psu(x, ty—i) — u(x, t,—))Pse,dx),
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where
o(x, 1) — o(x, ir_1)

At

al“p(-x’ tk) =

We know that
10,(Psu(x, ti) — u(x, )| < CH'.

By using the property (3.2), we have

S (3 r(z CZ) a; a—q; - l r(z a/) l —a; a—q;
;(bk mdb (AD*) = n'™ + TG o=yl a0",

and then we get

@)

H< hk+1 llyA
[H| < CH*'(n Zm— -

din' = A)||Psel
4.9)
@)

ST Pl

< hk+1 AN Tl g
CH (An°( +Zr<2—

Notice

1
ab < —ad* +'80 ,
2B 2

and applying the Cauchy-Schwarz inequality and Lemma 4.1, we obtain
n I'2 - Cv) a @ a-a
By + PlIPsell < ZU’n e~ b+ Z T~ oy bt = @0 DIPsel]

e N TC@ a0
+(bn—l + L 1"(2—_@) b I(At) )||5D(ge ” +C(At) (410)

!

_ I'2-a
k+1 A 1% k+1 A a Tl @

+ Ch (A + Ch™ (ADY( + i; —r(z—ai)

diT'™").
By applying Lemma 4.2, we can conclude the result:
1Pselll < C(H" + (AD*).

Therefore, Theorem 4.2 follows from the triangle inequality and the interpolation property (2.1). O
5. Numerical examples
In this section, we will perform numerical experiments to illustrate the efficiency and numerical

accuracy of the proposed fully discrete local discontinuous Galerkin method.

Example 5.1. Consider the original fractional diffusion equation (1.1) in Q = [0, 1], and take | = 2:

0*u(x, 1)

Pa,al,ag(Dt)u(xa t) - 0x2

+ pu(x,t) = f(x,1), x € (a,b),t€(0,T]. 5.1
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For the numerical experiments, we consider the periodic boundary condition and take the following
initial condition:
u(x,0) =sin2xx, xe€[0,1].

Then the exact solution is
u(x, 1) = (t + 1)* sin 27x.

First, the numerical convergence orders of the scheme (3.5) in space for computing this example
are tested. With the fixed and sufficiently small step sizes At = 1/10,000, and the varying
h =1/5,1/10,1/15,1/20, respectively, the numerical errors and convergence orders in L*-norm and
L>-norm for different values of fractional order are recorded in Tables 1 and 2. From these tables, we
can see that the errors attain (k + 1)-th order of accuracy for piecewise P* polynomials.

We then test the time convergence rate using the presented scheme. For « = 0.7, a; = 0.4, and
@, = 0.5, the numerical errors and convergence orders in the L*-norm and L*-norm are presented in
Table 3. As observed, the accuracy order is 2 — a, which is consistent with the theoretical analysis.

Table 1. Spatial accuracy test using piecewise P* polynomials when & = 0.8, a; = 0.3, =
0.7,At= —— and 6 = 0.8.

10,000°

N L*-error order L*-error order
5 5.456655447655487¢-02 - 3.684655468765437e-01 -
P! 10 1.545439256065108e-02 1.82 1.036363224572394¢-01 1.83
15 7.418682089199397¢e-03 1.81 4.934748111840253e-02 1.83
20 4.197087875971981e-03 1.98 2.898199831180425¢e-02 1.85
5 5.516456123131424¢-03 - 6.511456361527128e-02 -
P? 10 7.545778986029944¢-04 2.87 9.480139901367918e-03 2.78
15 2.454320602848064¢-04 2.77 2.901538048669126e-03 2.92
20 1.084189710075339¢-04 2.84 1.267081962360050e-03 2.88

Table 2. Spatial accuracy test using piecewise P* polynomials when @ = 0.9, a; = 0.4, @, =

0.5, At = {5555, and 6 = 0.3.

N L*-error order L>-error order
5 4.684541651565467e-02 - 1.989864651665547¢-01 -
P! 10 1.373548542522102e-02 1.77 6.082221675704989¢-02 1.71
15 6.866381974648757¢-03 1.71 3.028205047660128e-02 1.72
20 3.998003174324391e-03 1.88 1.799062146393744¢-02 1.81
5 4.984516546165546e-03 - 5.984145715685175e-02 -
P? 10 7.009840790419134¢e-04 2.83 8.474177810702038e-03 2.82
15 2.298567129699161e-04 2.75 2.657520182860610e-03 2.86
20 9.951429447030076e-05 2.91 1.180726564442627¢-03 2.82
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Table 3. Temporal errors and convergence rates for piecewise P? basis functions when @ =
0.7, =04,a, =0.5,N =600,6 =0.6,and T = 1.
M L*-error order L>-error order
5 2.614564766548656e-03 - 1.925546155361646¢-03 -
10 1.114634573373263e-03 1.23 8.266036876295551e-04 1.22
20 4.495553965778067e-04 1.31 3.403916859859762e-04 1.28
40 1.877091403979780e-04 1.26 1.411467392104509¢-04 1.27

Example 5.2. Now we consider the following time fractional, reaction-diffusion equation with initial
singularities:

0*u(x, 1)

Pa,m (Dt)u(-x’ t) - 7

+pu(x,0) = f(x,1), x€(0,1),1€(0,T], (5.2)
where P, o (D) is the multi-term Caputo fractional derivative operator defined as:
Pa/,aq (D[)M(.x, t) = D?M(X, t) + (I]D;Y] I/t(x, t)’

with 0 < a,a; < 1, and p > 0 is the reaction coefficient.
Let the exact solution be:

u(x, 1) = t2x%(1 — x)%, B> 0.

Then the initial and boundary conditions are
u@,)=ul,n=0, t>0,
and the source term f(x,t) is

roen= | LB e, TU=B)

—B-a1 | 201 _ 12
) Ta-p=ay |FU~¥

2172 — 6x + 6x%) + pt Px*(1 — x)°.

We solve the problem using the proposed numerical scheme, which combines the local discontinuous
Galerkin method for spatial discretization and the finite difference method for temporal discretization.
The computational parameters are set as follows: the temporal step size is At = m, the reaction
coefficient is p = 1, the fractional orders are @ = 0.8 and a; = 0.6, and the singularity parameter is

B =05.

The numerical solution is compared with the exact solution, and the results are presented in Table 4.
The numerical method effectively handles the singularity at t = 0 introduced by the initial condition,
while the observed convergence rates are consistent with theoretical predictions, demonstrating the
robustness and accuracy of the proposed approach for multi-term fractional equations.
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Table 4. Accuracy test using piecewise P* polynomials when @ = 0.8,a; = 0.6,Ar =
m,d =0.3,and 8 = 0.5.
L?-error order L>-error order
5 7.759837594594854e-02 - 1.937598459345438e-01 -

P! 10 2.687056130819109¢e-02 1.53 5.881555343372386¢-02 1.72
15 1.398845698040959¢-02 1.61 2.976177799048298e-02 1.68
20 8.430971770294258e-03 1.76 1.788616813492260e-02 1.77
5 8.723894482394492¢-03 - 3.652198385546779¢-02 -

P? 10 1.510443605795659¢-03 2.53 5.543100745658434e-03 2.72
15 4.756028262196357e-04 2.85 1.810259757096130e-03 2.76
20 2.156070219803091e-04 2.75 8.277659034441626¢e-04 2.72

6. Conslusions

This paper presented a numerical method for solving the multi-term fractional reaction-diffusion
equation, which involves logarithmic decay of solutions as time progresses. The proposed method
employed the discontinuous Galerkin method with generalized alternating numerical fluxes for spatial
discretization and the finite difference method for temporal discretization. The authors rigorously
established the unconditional stability of the scheme through mathematical induction. To validate its
accuracy and efficiency, a series of comprehensive numerical experiments were conducted,
demonstrating the potential of the proposed method for practical applications in modeling complex
diffusion processes. In the future we plan to extend the proposed method to high-dimensional
problems, where the complexity of the equations and computational cost increase significantly.
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