Research article

Some new characterizations of boundedness of commutators of $p$-adic maximal-type functions on $p$-adic Morrey spaces in terms of Lipschitz spaces

  • Received: 12 March 2024 Revised: 27 May 2024 Accepted: 28 May 2024 Published: 17 June 2024
  • MSC : 26A51, 26A33, 26D10

  • In this note, we investigate some new characterizations of the $p$-adic version of Lipschitz spaces via the boundedness of commutators of the $p$-adic maximal-type functions, including $p$-adic sharp maximal functions, $p$-adic fractional maximal functions, and $p$-adic fractional maximal commutators on $p$-adic Morrey spaces, when a symbol function $b$ belongs to the Lipschitz spaces.

    Citation: Naqash Sarfraz, Muhammad Bilal Riaz, Qasim Ali Malik. Some new characterizations of boundedness of commutators of $p$-adic maximal-type functions on $p$-adic Morrey spaces in terms of Lipschitz spaces[J]. AIMS Mathematics, 2024, 9(7): 19756-19770. doi: 10.3934/math.2024964

    Related Papers:

  • In this note, we investigate some new characterizations of the $p$-adic version of Lipschitz spaces via the boundedness of commutators of the $p$-adic maximal-type functions, including $p$-adic sharp maximal functions, $p$-adic fractional maximal functions, and $p$-adic fractional maximal commutators on $p$-adic Morrey spaces, when a symbol function $b$ belongs to the Lipschitz spaces.



    加载中


    [1] O. Brinon, B. Conrad, CMI Summer School notes on $p$-adic Hodge theory (preliminary version), course notes, 2009.
    [2] P. Colmez, Integration sur les variétés p-adiques, Société mathématique de France, 1998.
    [3] A. Ogus, P. Berthelot, Notes on crystalline cohomology, Princeton University Press, 1978.
    [4] K. Kedlaya, p-adic differential equations, Cambridge University Press, 2010.
    [5] L. Berger, La correspondance de Langlands locale $p$-adique pour $GL_{2}(Q_{p})$, Astérisque, 339 (2011), 157–180.
    [6] B. Stum, Rigid cohomology, Cambridge University Press, 2007.
    [7] F. Gou${\rm{\hat v}}$a, Arithmetic of $p$-adic modular forms, Lecture Notes in Mathematics, 1988. https://doi.org/10.1007/BFb0082111
    [8] A. Wiles, Modular elliptic curves and Fermat's Last Theorem, Ann. Math., 141 (1995), 443–551. https://doi.org/10.2307/2118559 doi: 10.2307/2118559
    [9] V. S. Vladimirov, I. V. Volovich, E. I. Zelenov, $p$-adic analysis and mathematical physics, Singapore: World Scientific, 1994.
    [10] A. Hussain, A. Ajaib, Some results for the commutators of generalized Hausdorff operator, J. Math. Inequal., 13 (2019), 1129–1146. https://doi.org/10.7153/jmi-2019-13-80 doi: 10.7153/jmi-2019-13-80
    [11] A. Hussain, M. Asim, M, Aslam, F. Jarad, Commutators of the fractional Hardy operator on weighted variable Herz-Morrey spaces, J. Funct. Space., 2021 (2021), 9705250. https://doi.org/10.1155/2021/9705250 doi: 10.1155/2021/9705250
    [12] A. Hussain, I. Khan, A. Mohamed, Variable Herz-Morrey estimates for rough fractional Hausdorff operator, J. Inequal. Appl., 2024 (2024), 33. https://doi.org/10.1186/s13660-024-03110-8 doi: 10.1186/s13660-024-03110-8
    [13] A. Hussain, G. Gao, Multilinear singular integrals and commutators on Herz space with variable exponent, ISRN Math. Anal., 2014 (2014), 626327. https://doi.org/10.1155/2014/626327 doi: 10.1155/2014/626327
    [14] J. Liu, Y. Lu, L. Huang, Dual spaces of anisotropic variable Hardy–Lorentz spaces and their applications, Fract. Calc. Appl. Anal., 26 (2023), 913–942. https://doi.org/10.1007/s13540-023-00145-4 doi: 10.1007/s13540-023-00145-4
    [15] N. Sarfraz, M. Aslam, Some estimates for $p$-adic fractional integral operator and its commutators on $p$-adic Herz spaces with rough kernels, Fract. Calc. Appl. Anal., 25 (2022), 1734–1755. https://doi.org/10.1007/s13540-022-00064-w doi: 10.1007/s13540-022-00064-w
    [16] N. Sarfraz, M. Aslam, Q. A. Malik, Estimates for-adic fractional integral operators and their commutators on-adic mixed central Morrey spaces and generalized mixed Morrey spaces, Fract. Calc. Appl. Anal., 2024. https://doi.org/10.1007/s13540-024-00274-4
    [17] J. Bastero, M. Milman, F. Ruiz, Commutators for the maximal and sharp functions, Proc. Amer. Math. Soc., 128 (2000), 3329–3334.
    [18] G. Fazio, M. Ragusa, Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients, J. Funct. Anal., 112 (1993), 241–256. https://doi.org/10.1006/jfan.1993.1032 doi: 10.1006/jfan.1993.1032
    [19] C. Rios, The $L^p$ Dirichlet problem and nondivergence harmonic measure, Trans. Amer. Math. Soc., 355 (2003), 665–687.
    [20] M. Bramanti, M. C. Cerutti, M. Manfredini, $L^{p}$ estimates for some ultraparabolic operators with discontinuous coefficients, J. Math. Anal. Appl., 200 (1996), 332–354. https://doi.org/10.1006/jmaa.1996.0209 doi: 10.1006/jmaa.1996.0209
    [21] R. Coifman, R, Rochberg, G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. Math., 103 (1976), 611–635. https://doi.org/10.2307/1970954 doi: 10.2307/1970954
    [22] S. Janson, Mean oscillation and commutators of singular integral operators, Ark. Mat., 16 (1978), 263–270. https://doi.org/10.1007/BF02386000 doi: 10.1007/BF02386000
    [23] V. Guliyev, Y. Mannadov, F. Muslumova, Characterization of fractional maximal operator and its commutators on Orlicz spaces in the Dunkl setting, J. Pseudo-Differ. Oper. Appl., 11 (2020), 1699–1717. https://doi.org/10.1007/s11868-020-00364-w doi: 10.1007/s11868-020-00364-w
    [24] M. Milman, T. Schonbek, Second order estimates in interpolation theory and applications, Proc. Amer. Math. Soc., 110 (1990), 961–969. https://doi.org/10.2307/2047743 doi: 10.2307/2047743
    [25] P. Zhang, Characterization of Lipschitz spaces via commutators of Hardy-Littlewood maximal function, CR Math., 355 (2017), 336–344. https://doi.org/10.1016/j.crma.2017.01.022 doi: 10.1016/j.crma.2017.01.022
    [26] Y. Kim, Carleson measures and the $B\dot{M}O$ space on the $p$-adic vector space, Math. Nachr., 282 (2009), 1278–1304. https://doi.org/10.1002/mana.200610806 doi: 10.1002/mana.200610806
    [27] Y. Kim, $L^{q}$-estimates of maximal operators on the $p$-adic vector space, Commun. Korean Math. Soc., 24 (2009), 367–379. https://doi.org/10.4134/CKMS.2009.24.3.367 doi: 10.4134/CKMS.2009.24.3.367
    [28] S. S. Volosivets, Maximal function and Reisz potential on $p$-adic linear spaces, $p$-Adic Num. Ultrametr. Anal. Appl., 5 (2013), 226–234. https://doi.org/10.1134/S2070046613030059 doi: 10.1134/S2070046613030059
    [29] Q. He, X. Li, Necessary and sufficient conditions for boundedness of commutators of maximal function on the $p$-adic vector spaces, AIMS Math., 8 (2023), 14064–14085. https://doi.org/10.3934/math.2023719 doi: 10.3934/math.2023719
    [30] P. Zhang, J. Wu, Commutators of the fractional maximal functions, Acta. Math. Sin. Chinese Ser., 52 (2009), 1235–1238.
    [31] P. Zhang, Characterization of boundedness of some commutators of maximal functions in terms of Lipschitz spaces, Anal. Math. Phys., 9 (2019), 1411–1427. https://doi.org/10.1007/s13324-018-0245-5 doi: 10.1007/s13324-018-0245-5
    [32] X. Yang, Z. Yang, B. Li, Characterization of Lipschitz space via the commutators of fractional maximal functions on variable lebesgue spaces, Potential Anal., 60 (2024), 703–720. https://doi.org/10.1007/s11118-023-10067-8 doi: 10.1007/s11118-023-10067-8
    [33] M. H. Taibleson, Fourier analysis on local fields (MN-15), Princeton University Press, 1975.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(381) PDF downloads(25) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog