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1. Introduction

In the contemporary era, p-adic analysis is so significant that there is a lot of research being done
on theories that are only concerned with p-adic objects, a case in point is the p-adic Hodge theory
[1], Coleman’s theory of p-adic integration [2], p-adic geometry [3], the theory of p-adic differential
equations [4], the p-adic Langlands correspondence [5], study of p-adic cohomologies [6], and the
study of p-adic modular forms [7]. In this connection, numerous of these concepts and advancements
are present in the proof of Fermet’s last theorem [8]. Recently, they have been applied in mathematical
physics [9] and harmonic analysis [10–16].

Ostrowski’s theorem states that any nontrivial norm on the field of rational numbers Q is either the
p-adic norm | · |p, or the real norm | · |, where p is a prime number. The former norm is stated as follows,
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if any rational number r is represented as r = pθ m
n , where θ = θ(x) ∈ Z, (p,m, n) = 1 and m, n ∈ Z, then

|0|p = 0, |r|p = p−θ r , 0.

This norm exhibits an ultrametric property

|r + s|p ≤ max{|r|p, |s|p}.

A symbol Qp is the field of p-adic numbers, and is the completion of field of rational numbers Q with
respect to the norm | · |p. Any Qp ∋ r , 0 is uniquely represented as, see [9]

r = pθ
∞∑

k=0

γk pk, (1.1)

where γk, θ ∈ Z, γk ∈
Z

pZp
, γ0 , 0. It is eminent that the series in (1.1) is convergent as |γk pk| = p−k.

The n-dimensional field Qn
p is defined as n-tuples of p-adic numbers, (r1, r2, · · ·, rn), where Qp ∋ rk,

k = 1, 2, · · ·, n. The n-dimensional p-adic numbers inherit many properties from the p-adic numbers.
They form a complete metric space with respect to the n-dimensional p-adic metric d(r, s) = |r − s|p,
which measures the divisibility of n-tuples by powers of p. The n-dimensional p-adic metric induces
a topology on Qn

p, allowing for the study of continuity, convergence, and limit concepts in this space.
The norm on Qn

p is
|r|p = max

1≤k≤n
|rk|p.

The p-adic ball Bθ(x) and p-adic sphere S θ(x) with radius pθ and center x are defined by

Bθ(x) = {r ∈ Qn
p : |r − x|p ≤ pθ}, S θ(x) = {r ∈ Qn

p : |r − x|p = pθ}.

Since Qn
p is a locally compact commutative group, then there exists a Haar measure dy on the additive

group Qn
p, which is normalized by ∫

B0(0)
dy = 1.

From standard analysis, we get |Bθ(x)|h = pnθ and |S θ(x)|h = pnθ(1 − p−n), for any x ∈ Qn
p.

A measurable function b defined on Qn
p is in Lp(Qn

p) (1 ≤ p ≤ ∞), if it satisfies

∥b∥Lp(Qn
p) =

∫
Qn

p

|b(x)|pdx
1/p

< ∞, 1 ≤ p < ∞,

∥b∥L∞(Qn
p) = ess sup

x∈Qn
p

|b(x)| < ∞.

The commutators of harmonic analysis are vital integral operators and play a crucial role in
examining the regularity characteristics of solutions to various partial differential equations, for
instance [17–20]. Suppose T is a classical singular integral operator with an another function b, then
the commutator [b,T ] generated by T is defined as follows:

[b,T ]( f ) = bT ( f ) − T (b f ). (1.2)
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In [21], authors have studied the Lp boundedness of (1.2) with b ∈ BṀO(Rn). These results were
extended with b ∈ Λδ(Rn) in [22]. Since then, a great attention has been paid with studying the
commutators of operators; see for instance, [17, 23–25].

In what follows, for f ∈ L1
loc(Q

n
p), we define the p-adic sharp maximal function Mp,♯ and p-adic

fractional maximal function Mp
α as

Mp,♯ f (x) = sup
θ∈Z

1
|Bθ(x)|h

∫
Bθ(x)
| f (t) − fBθ(x)|dt (1.3)

and
Mp
α f (x) = sup

θ∈Z

1

|Bθ(x)|1−
α
n

h

∫
Bθ(x)
| f (t)|dt, (1.4)

where fBθ(x) =
1

|Bθ(x)|h

∫
Bθ(x)

f (t)dt. When α = 0, we get the Hardy Littlewood maximal function Mp,

which is defined as:
Mp f (x) = sup

θ∈Z

1
|Bθ(x)|h

∫
Bθ(x)
| f (t)|dt.

Significant work has been done intensively in the past on Mp by many researchers; see for
example, [26–28] and the references therein.

The p-adic fractional commutator of Mp
α with b ∈ L1

loc(Q
n
p) is defined by

Mp
α,b f (x) = sup

θ∈Z

1

|Bθ(x)|1−
α
n

h

∫
Bθ(x)
|b(x) − b(t)|| f (t)|dt.

On the other hand, nonlinear commutators of respectively Mp,♯ and Mp
α with a locally integrable

function b are defined by

[b,Mp,♯]( f )(x) = b(x)Mp,♯( f )(x) − Mp,♯(b f )(x) (1.5)

and
[b,Mp

α]( f )(x) = b(x)Mp
α( f )(x) − Mp

α(b f )(x). (1.6)

When α = 0, [b,Mp
α] reduces to [b,Mp], see [29]. In p-adic setting, boundedness of commutators

of p-adic maximal function is a new area, and we only found some work in [29]. In that paper, the
authors acquired the boundedness of commutators of Mp on p-adic function spaces with b ∈ BṀO(Qn

p).
However, in the case of Euclidean, commutators of maximal-type functions have spotlighted many
researchers. For example, in [17], Bastero et al. obtained the boundedness of commutators of maximal
and sharp functions on Lebesgue spaces with b ∈ BṀO(Rn). Furthermore, the results of [17] are
extended in [30]. Zhang [31] further obtained the characterizations of nonlinear commutators of the
Hardy Littlewood maximal function and sharp maximal function in variable exponent Lebesgue spaces
with b ∈ Λδ(Rn). Recently, Xuechun et al. [32] established new characterizations of Lipschitz space in
terms of the boundedness of [b,M♯] and [b,Mα] in the context of variable Lipschitz space.

As we observed in the above work, the characterization of nonlinear commutators of Mp,♯ and Mp
α

remains widely open. Therefore, we obtain some characterizations of p-adic versions of Lipschitz
spaces via the boundedness of Mp,♯ and Mp

α on p-adic Morrey spaces, by considering b from Lipschitz
spaces under certain assumptions. Throughtout this article, a letter C represents a constant with
different or the same values at different places, and χBθ is the characteristic function of Bθ(x).
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Definition 1.1. Let 1 ≤ p < ∞ and 0 ≤ λ ≤ n. The p-adic Morrey space Lp,λ(Qn
p) is defined as follows:

Lp,λ(Qn
p) = {b ∈ Lp

loc(Q
n
p) : ∥b∥Lp,λ(Qn

p) < ∞}, (1.7)

where

∥b∥Lp,λ(Qn
p) = sup

θ∈Z
x∈Qn

p

 1

|Bθ(x)|λ/nh

∫
Bθ(x)
|b(x)|pdx

1/p

.

Remark 1.1. It is evident that Lp,−1/p(Qn
p) = Lp(Qn

p) and Lp,0(Qn
p) = L∞(Qn

p).

Definition 1.2. The Lipschitz space Λδ(Qn
p), (δ ∈ R+) is the space of all measurable functions b on Qn

p

such that

∥b∥Λδ(Qn
p) = sup

t,h∈Qn
p,h,0

|b(t + h) − b(t)|
|h|δp

< ∞.

Next, we have the p-adic version of the Lipschitz space Λ̃δ(Qn
p), which is the space of all measurable

functions b on Qn
p with the following norm:

∥b∥Λ̃δ(Q
n
p) = sup

x∈Qn
p,θ∈Z

1

|Bθ(x)|1+
δ
n

h

∫
Bθ(x)
|b(t) − bBθ(x)|dt < ∞,

where bBθ(x) =
1

|Bθ(x)|h

∫
Bθ(x)

b(t)dt.
In the following section, we state some characterizations of the p-adic version of Lipschitz spaces

via the boundedness of the commutators of [b,Mp,♯], Mαα,b, and [b,Mp
α].

2. Some characterizations of p-adic version of Lipschitz spaces

Theorem 2.1. Suppose b is a locally integrable function, 1 < q < n/δ, 0 < λ < n − qδ, δ ∈ (0, 1), and
1
p +

δ
n−λ =

1
q . Then, [b,Mp,♯] : Lq,λ(Qn

p)→ Lp,λ(Qn
p) if and only if b ∈ Λδ(Qn

p) with b ≥ 0.

Theorem 2.2. Suppose b is a locally integrable function, 1 < q < n/δ, 0 < λ < n − qδ, δ ∈ (0, 1), and
1
p +

δ+α
n−λ =

1
q . Then, Mp

α,b : Lq,λ(Qn
p)→ Lp,λ(Qn

p) if and only if b ∈ Λδ(Qn
p).

Theorem 2.3. Suppose b is a locally integrable function, 1 < q < n/δ, 0 < λ < n − qδ, δ ∈ (0, 1), and
1
p +

δ+α
n−λ =

1
q . Then, [b,Mp

α] :Lq,λ(Qn
p)→ Lp,λ(Qn

p) if and only if b ∈ Λδ(Qn
p) with b ≥ 0.

Since Lp,−1/p(Qn
p) = Lp(Qn

p). So, we have the characterizations in terms of the boundedness of
operators [b,Mp,♯], Mp

b , and [b,Mp] on Lebesgue spaces.

Corollary 2.1. Suppose b is a locally integrable function, 1 < q < n/δ, δ ∈ (0, 1), and 1
p +

δ
n =

1
q .

Then, [b,Mp,♯] : Lq(Qn
p)→ Lp(Qn

p) if and only if b ∈ Λδ(Qn
p) with b ≥ 0.

Corollary 2.2. Suppose b is a locally integrable function, 1 < q < n/δ, 0 < λ < n − qδ, δ ∈ (0, 1), and
1
p +

δ+α
n =

1
q . Then, Mp

α,b : Lq(Qn
p)→ Lp(Qn

p) if and only if b ∈ Λδ(Qn
p).
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Corollary 2.3. Suppose b is a locally integrable function, 1 < q < n/δ, 0 < λ < n − qδ, δ ∈ (0, 1), and
1
p +

δ+α
n =

1
q . Then, [b,Mp

α] :Lq(Qn
p)→ Lp(Qn

p) if and only if b ∈ Λδ(Qn
p) with b ≥ 0.

In order to prove the above results, we need some lemmas and remarks. We begin with a very useful
result.

Lemma 2.1. The p-adic space Λδ(Qn
p) coincides with Λ̃δ(Qn

p), for 0 < δ < 1.

Proof. Consider a ball Bθ(x) and t ∈ Bθ(x), then from the definition (1.2), we have

|b(t) − bBθ(x)| ≤
1

|Bθ(x)|h

∫
Bθ(x)
|b(t) − b(z)|dz

≤∥b∥Λδ(Qn
p)

1
|Bθ(x)|h

∫
Bθ(x)
|t − z|δhdz

≤C∥b∥Λδ(Qn
p)

1
|Bθ(x)|h

|Bθ(x)|
δ
n
h

∫
Bθ(x)

dz

≤C∥b∥Λδ(Qn
p)|Bθ(x)|

δ
n
h .

We further proceed as ∫
Bθ(x)
|b(t) − bBθ(x)|dt ≤ C∥b∥Λδ(Qn

p)

∫
Bθ(x)
|Bθ(x)|

δ
n
h dt

≤C∥b∥Λδ(Qn
p)|Bθ(x)|1+δ/nh ,

which implies that
1

|Bθ(x)|1+δ/nh

∫
Bθ(x)
|b(t) − bBθ(x)|dt ≤ C∥b∥Λδ(Qn

p).

Therefore,
∥b∥Λ̃δ(Qn

p) ≤ C∥b∥Λδ(Qn
p). (2.1)

On the other hand, let b ∈ Λ̃δ(Qn
p). For any t, z ∈ Qn

p with t , z. We set B = B(t, |t − z|p) and
B′ = B′(z, |t − z|p). Then we have

|b(t) − b(z)| ≤ |b(t) − bB| + |b(z) − bB′ | + |bB − bB′ |. (2.2)

Estimates of all terms on the right-hand side of (2.2) are more or less the same. So, we will estimate
the first term. Let B j = B(t, p− j|t − x|p) for j ≥ 1 and B0 = B.We proceed as

|b(t) − bB| ≤ lim
θ→∞

|b(t) − bBθ | +

θ−1∑
j=0

|bB j+1 − bB j |


≤ C

∞∑
j=1

1
|B j|h

∫
B j

|b(z) − bB j |dz

≤ C∥b∥Λ̃δ(Qn
p)

∞∑
j=1

|B j|
δ/n
h

≤ C∥b∥Λ̃δ(Qn
p)

∞∑
j=1

p−δ j+logp |t−z|δp

≤ C|t − z|δp∥b∥Λ̃δ(Qn
p).
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Consequently,

∥b∥Λδ(Qn
p) ≤ C∥b∥Λ̃δ(Qn

p). (2.3)

From (2.1) and (2.3), we have completed the proof. □

In what follows, taking into account the characteristic function χBθ(x), we have the following
property:

Lemma 2.2. Suppose 1 ≤ q < ∞ and 0 < λ < n, then

∥χBθ(x)∥Lq,λ(Qn
p) = |Bθ(x)|

n−λ
nq

h = p
θ(n−λ)

q .

Next, the fractional integral operator on Qn
p is introduced by Taibleson [33] and is defined by

T p
α f (x) =

1 − p−α

1 − pα−n

∫
Qn

p

f (t)
|x − t|α−n

p
dt, 0 < α < n.

The following lemma shows the boundedness of T p
α on p-adic Morrey spaces, which is proved in a

book [33].

Lemma 2.3. Suppose 1 < q < n/α, 0 < α < n, 0 < λ < n − q, and 1
p +

α
n−λ =

1
q , then T p

α is bounded
from Lq,λ(Qn

p) to Lp,λ(Qn
p).

Remark 2.1. From the condition of Lemma 2.3, we get

|T p
α (| f |)(x)| =

∣∣∣∣∣∣
∫
Qn

p

| f (t)|
|x − t|αp

dt
∣∣∣∣∣∣

≥

∫
Bθ(x)

| f (t)|
|x − t|αp

dt

≥
1

pθ(n−α)

∫
Bθ(x)
| f (t)|dt.

Therefore,

|Mp
α( f )(x)| ≤ CT p

α (| f |)(x).

From here, we deduce that Mp
α is bounded from Lq,λ(Qn

p) to Lp,λ(Qn
p).

Proof of Theorem 2.1. Consider any b ∈ Λδ(Qn
p) with b ≥ 0, we prove that [b,Mp,♯] : Lq,λ(Qn

p) →

AIMS Mathematics Volume 9, Issue 7, 19756–19770.
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Lp,λ(Qn
p). Let f ∈ Lq,λ(Qn

p). From definition (1.2), we deduce

|[b,Mp,♯]( f )(x)|

=

∣∣∣∣∣ sup
θ∈Z

b(x)
|Bθ(x)|h

∫
Bθ(x)
| f (t) − fBθ(x)|dt − sup

θ∈Z

1
|Bθ(x)|h

∫
Bθ(x)
|b(t) f (t) − (b f )Bθ(x)|dt

∣∣∣∣∣
≤ sup
θ∈Z

1
|Bθ(x)|h

∫
Bθ(x)

(|b(t) − b(x)|| f (t)| + |b(x) fBθ(x) − (b f )Bθ(x)|)dt

≤∥b∥Λδ(Qn
p) sup
θ∈Z

1
|Bθ(x)|h

∫
Bθ(x)
|t − x|δ(x)

p | f (t)|dt

+ sup
θ∈Z

∣∣∣∣∣ b(x)
|Bθ(x)|h

∫
Bθ(x)

f (y)dy −
1

|Bθ(x)|h

∫
Bθ(x)

b(y) f (y)dy
∣∣∣∣∣

≤∥b∥Λδ(Qn
p) sup
θ∈Z

1
|Bθ(x)|h

∫
Bθ(x)
|t − x|δ(x)

p | f (t)|dt

+ sup
θ∈Z

1
|Bθ(x)|h

∫
Bθ(x)
|b(x) − b(y)|| f (y)|dy

≤∥b∥Λδ(Qn
p) sup
θ∈Z

1
|Bθ(x)|h

∫
Bθ(x)
|t − x|δ(x)

p | f (t)|dt

+ ∥b∥Λδ(Qn
p) sup
θ∈Z

1
|Bθ(x)|h

∫
Bθ(x)
|x − y|δ(x)

p | f (y)|dy

≤C∥b∥Λδ(Qn
p) sup
θ∈Z

1

|Bθ(x)|1−
δ(x)

n
h

∫
Bθ(x)
| f (t)|dt

≤C∥b∥Λδ(Qn
p)Mδ(x) f (x). (2.4)

From Remark 2.1 and equation (2.4), we obtain

∥[b,Mp,♯]( f )∥Lp,λ(Qn
p) ≤ C∥b∥Λδ(Qn

p)∥ f ∥Lq,λ(Qn
p).

Hence, [b,Mp,♯] : Lq,λ(Qn
p)→ Lp,λ(Qn

p).
Conversely, suppose that [b,Mp,♯] : Lq,λ(Qn

p) → Lp,λ(Qn
p).We need to show b ∈ Λδ(Qn

p) and b ≥ 0.
Consider any fixed p-adic ball Bθ(x), and t ∈ Bθ(x).We see in [29] that

Mp,♯(χBθ(x))(t) =
2(p − 1)

p2 .

By above expression, Eq (1.5) and the boundedness of [b,Mp,♯], we reach at∥∥∥∥∥∥
(
b −

p2

2(p − 1)
Mp,♯(bχBθ(x))

)
χBθ(x)

∥∥∥∥∥∥
Lp,λ(Qn

p)

=

∥∥∥∥∥∥ p2

2(p − 1)

(
2(p − 1)

p2 b − Mp,♯(bχBθ(x))
)
χBθ(x)

∥∥∥∥∥∥
Lp,λ(Qn

p)

=

∥∥∥∥∥∥ p2

2(p − 1)

(
bMp,♯(χBθ(x)) − Mp,♯(bχBθ(x))

)
χBθ(x)

∥∥∥∥∥∥
Lp,λ(Qn

p)

AIMS Mathematics Volume 9, Issue 7, 19756–19770.
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=
p2

2(p − 1)
∥[b,Mp,♯](χBθ(x))∥Lp,λ(Qn

p)

≤C∥χBθ(x)∥Lq,λ(Qn
p),

which implies that
∥(b − p2

2(p−1) Mp,♯(bχBθ(x))χBθ(x)∥Lp,λ(Qn
p)

∥χBθ(x))∥Lq,λ(Qn
p)

≤ C. (2.5)

Now, consider a p-adic ball Bθ(x) ⊂ Qn
p. From [29], we see that for any t ∈ Bθ(x),

|bBθ(x)| ≤
p2

2(p − 1)
Mp,♯(bχBθ(x))(t). (2.6)

Now to achieve b ∈ Λδ(Qn
p), we let A = {t ∈ Bθ(x) : b(t) ≤ bBθ(x)}. Moreover, consider any t ∈ A and

we get b(t) ≤ bBθ(x) ≤ |bBθ(x)| ≤ 2Mp,♯(bχBθ(x))(t), then

|b(t) − bBθ(x)| ≤ |b(t) −
p2

2(p − 1)
Mp,♯(bχBθ(x))(t)|. (2.7)

Since 1
p =

1
q −

δ
n−λ , then using (2.7) along with Hölder’s inequality, Lemma 2.2, and (2.5), we ultimately

have
1

|Bθ(x)|1+δ/nh

∫
Bθ(x)
|b(t) − bBθ(x)|dt

=
2

|Bθ(x)|1+δ/nh

∫
A
|b(t) − bBθ(x)|dt

≤
2

|Bθ(x)|1+δ/nh

∫
Bθ(x)
|b(t) −

p2

2(p − 1)
Mp,♯(bχBθ(x))(t)|dt

≤
2

|Bθ(x)|1+δ/nh

(∫
Bθ(x)
|b(t) −

p2

2(p − 1)
Mp,♯(bχBθ(x))(t)|pdt

)1/p

×

(∫
Bθ(x)
χBθ(x)(t)dt

)1/p′

≤
2

|Bθ(x)|1+δ/nh

.|Bθ(x)|λ/np
h

 1

|Bθ(x)|λ/nh

∫
Bθ(x)
|b(t) −

p2

2(p − 1)
Mp,♯(bχBθ(x))(t)|pdt

1/p

×

(∫
Bθ(x)
χBθ(x)(t)dt

)1/p′

≤
2

|Bθ(x)|1+δ/n−λ/np
h

∥(b −
p2

2(p − 1)
Mp,♯(bχBθ(x)))(χBθ(x))∥Lp,λ(Qn

p)

× ∥χBθ(x)∥Lp′ (Qn
p)

=
2

∥χBθ(x)∥Lq,λ(Qn
p)
∥(b −

p2

2(p − 1)
Mp,♯(bχBθ(x)))(χBθ(x))∥Lp,λ(Qn

p)

≤C. (2.8)
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This shows that b ∈ Λ̃δ(Qn
p). This, along with Lemma 2.1, shows b ∈ Λδ(Qn

p).
The final task is to show that b ≥ 0. For this its suffices to show b− = 0, where b− = min{b, 0} and

b+ = |b| − b−. Consider a p-adic ball Bθ(x). Using (2.6), we observe that

p2

2(p − 1)
Mp,♯(bχBθ(x))(t) − b(t) ≥ |bBθ(x)| − b+(t) + b−(t),

for any t ∈ Bθ(x).
Now averaging on a ball Bθ(x), we deduce that

1
|Bθ(x)|h

∫
Bθ(x)
|

p2

2(p − 1)
Mp,♯(bχBθ(x))(t) − b(t)|dt

≥
1

|Bθ(x)|h

∫
Bθ(x)

(|bBθ(x)| − b+(t) + b−(t))dt

=|bBθ(x)| −
1

|Bθ(x)|h

∫
Bθ(x)

b−(t)dt +
1

|Bθ(x)|h

∫
Bθ(x)

b−(t)dt. (2.9)

On the other hand, from (2.8), we have

1

|Bθ(x)|1+δ/nh

∫
Bθ(x)
|

p2

2(p − 1)
Mp,♯(bχBθ(x))(t) − b(t)|dt ≤ C. (2.10)

From this and (2.9), we get(
|bBθ(x)| −

1
|Bθ(x)|h

∫
Bθ(x)

b+(t)dt +
1

|Bθ(x)|h

∫
Bθ(x)

b−(t)dt
)

≤ C|Bθ(x)|δ/nh . (2.11)

By letting θ → ∞ with t ∈ Bθ(x), the Lebesgue differentiation theorem in the p-adic field ensures that

0 = |bBθ(x)| − b+(t) + b−(t) = 2b−(t) = 2|b−(t)|.

Consequently, b− = 0, and hence b ≥ 0 holds true, which complete the proof of theorem.
Proof of Theorem 2.2. Suppose b ∈ Λδ(Qn

p).We show that Mα,b : Lq(Qn
p)→ Lp(Qn

p). From the definition
of (1.2) and Eq (1.4), we deduce

|Mα,b( f )(x)| = sup
θ∈Z

1

|Bθ(x)|1−
α
n

h

∫
Bθ(x)
|b(x) − b(t)|| f (t)|dt

≤∥b∥Λδ(Qn
p) sup
θ∈Z

1

|Bθ(x)|1−
α
n

h

∫
Bθ(x)
|t − x|δ(x)

p | f (t)|dt

≤∥b∥Λδ(Qn
p) sup
θ∈Z

1

|Bθ(x)|1−
α+δ(x)

n
h

∫
Bθ(x)
| f (t)|dt

≤∥b∥Λδ(Qn
p)Mα+δx( f )(x).

By this and boundedness of Mα+δ from Lq,λ(Qn
p) to Lp,λ(Qn

p) (see Remark 2.1), we eventually have

∥Mα,b( f )∥Lp,λ(Qn
p) ≤ C∥b∥Λδ(Qn

p)∥Mα+δ( f )∥Lp,λ(Qn
p) ≤ C∥b∥Λδ(Qn

p)∥ f ∥Lq,λ(Qn
p).
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Conversely, suppose that [Mα,b] : Lq,λ(Qn
p) → Lp,λ(Qn

p), we show that b ∈ Λδ(Qn
p). For this, consider a

p-adic ball Bθ(x), we are down to

|(b(t) − bBθ(x))χBθ(x)(t)| ≤ |Bθ(x)|−
α
n

h Mα,b(χBθ(x))(t). (2.12)

From (2.12) and that [Mα,b] : Lq,λ(Qn
p)→ Lp,λ(Qn

p), we obtain

∥(b(t) − bBθ(x))χBθ(x)∥Lp,λ(Qn
p) ≤ |Bθ(x)|−

α
n

h Mα,b(χBθ(x))∥Lp,λ(Qn
p) ≤ C|Bθ(x)|−

α
n

h ∥χBθ(x)∥Lq,λ(Qn
p),

which implies that
∥(b(t) − bBθ(x))χBθ(x)∥Lp,λ(Qn

p)

∥χBθ(x)∥Lq,λ(Qn
p)

≤ C|Bθ(x)|−
α
n

h . (2.13)

Since 1
p =

1
q −

δ+α
n , making use of Hölder’s inequality, Lemma 2.2, and (2.13), we have

1

|Bθ(x)|1+δ/nh

∫
Bθ(x)
|b(t) − bBθ(x)|dt

≤
1

|Bθ(x)|1+δ/n−λ/np
h

 1

|Bθ(x)|λ/nh

∫
Bθ(x)
|b(t) − bBθ(x)|

pdt
1/p

×

(∫
Bθ(x)
χBθ(x)(t)dt

)1/p′

≤
1

|Bθ(x)|1+δ/n−λ/np
h

∥(b − bBθ(x))χBθ(x)∥Lp,λ(Qn
p)∥χBθ(x)∥Lp′ (Qn

p)

=
1

∥χBθ(x)∥Lq(Qn
p)
∥(b − bBθ(x))χBθ(x)∥Lp,λ(Qn

p)|Bθ(x)|
α
n
h

≤C. (2.14)

This shows that b ∈ Λ̃δ(Qn
p). From this and Lemma 2.1, we have b ∈ Λδ(Qn

p), which finishes the proof.
Before proving Theorem 2.3, we define the p-adic fractional maximal operator Mp

Bθ(x) with respect
to a p-adic ball as follows:

Mp
Bθ(x)( f )(t) = sup

Bθ0 (t)⊆Bθ(x)

1

|Bθ0(t)|
1− θn
h

∫
Bθ0 (t)
| f (t)|dt, θ ≥ 0,

where supremum is taken over all balls Bθ0(t) such that Bθ0(t) ⊆ Bθ(x).
Proof of Theorem 2.3. Assume that b ∈ Λδ(Qn

p) and b ≥ 0.We show that [b,Mα] : Lq,λ(Qn
p)→ Lp,λ(Qn

p).
Let f ∈ Lq,λ(Qn

p). From definitions of (1.2), we reach at

|[b,Mα]( f )(x)| =
∣∣∣∣∣ sup
θ∈Z

1

|Bθ(x)|1−
α
n

h

∫
Bθ(x)

b(x)| f (t)|dt − sup
θ∈Z

1

|Bθ(x)|1−
α
n

h

∫
Bθ(x)
|b(t) f (t)|dt

∣∣∣∣∣
≤ sup
θ∈Z

1

|Bθ(x)|1−
α
n

h

∫
Bθ(x)
|b(x) − b(t)|| f (t)|dt

=Mp
α,b( f )(x). (2.15)
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From (2.15) and Theorem 2.2, we acquire

∥[b,Mp
α]( f )∥Lp,λ(Qn

p) ≤ ∥M
p
α,b( f )∥Lp,λ(Qn

p) ≤ C∥b∥Λδ(Qn
p)∥ f ∥Lq,λ(Qn

p).

Consequently, [b,Mp
α] : Lq,λ(Qn

p)→ Lp,λ(Qn
p).

Conversely, suppose [b,Mp
α] : Lq,λ(Qn

p)→ Lp,λ(Qn
p).We need to show that

b ∈ Λδ(Qn
p) and b ≥ 0. (2.16)

First, we opt for the former one, and in order to do so, we need the following preparation:
Consider a p-adic ball Bθ(x). For all t ∈ Bθ(x), we have

Mα(χBθ(x))(t) = Mα,Bθ(x)(χBθ(x))(t) = |Bθ(x)|
α
n
h

and
Mα(bχBθ(x))(t) = Mα,Bθ(x)(b)(t).

Then, from this and (1.6), we have

b(t) − |Bθ(x)|−
α
n

h Mα,Bθ(x)(b)(t) =|Bθ(x)|−
α
n

h [b(t)|Bθ(x)|
α
n
h − Mα,Bθ(x)(b)(t)]

=|Bθ(x)|−
α
n

h [b(t)Mα(χBθ(x))(t) − Mα(bχBθ(x))(t)]

=|Bθ(x)|−
α
n

h [b,Mα](χBθ(x))(t).

which implies that(
b(t) − |Bθ(x)|−

α
n

h Mα,Bθ(x)(b)(t)
)
χBθ(x)(t) = |Bθ(x)|−

α
n

h [b,Mα](χBθ(x))(t)χBθ(x)(t). (2.17)

From (2.17) and the boundedness of [b,Mp
α], we obtain∥∥∥∥(b − |Bθ(x)|−

α
n

h Mα,Bθ(x)(b))(χBθ(x))
∥∥∥∥

Lp,λ(Qn
p)
≤ C|Bθ(x)|−

α
n

h ∥χBθ(x)∥Lq,λ(Qn
p),

which implies that ∥∥∥∥(b − |Bθ(x)|−
α
n

h Mα,Bθ(x)(b))(χBθ(x))
∥∥∥∥

Lp,λ(Qn
p)

∥χBθ(x)∥Lq,λ(Qn
p)

≤ C|Bθ(x)|−
α
n

h . (2.18)

Furthermore, consider a p-adic ball Bθ(x), suppose A = {t ∈ Bθ(x) : b(t) ≤ Bθ(x)}. Now, for any t ∈ A,
we have

b(t) ≤ bBθ(x) ≤ |bBθ(x)| ≤ |Bθ(x)|−
α
n

h Mα,Bθ(x)(b)(t).

Thus,
|b(t) − bBθ(x)| ≤

∣∣∣∣b(t) − |Bθ(x)|−
α
n

h Mα,Bθ(x)(b)(t)
∣∣∣∣ . (2.19)
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Since 1
p =

1
q −

δ+α
n , from (2.19), Hölder’s inequality, Lemma 2.2, and (2.18), we sum up that

1

|Bθ(x)|1+δ/nh

∫
Bθ(x)
|b(t) − bBθ(x)|dt

=
2

|Bθ(x)|1+δ/nh

∫
A
|b(t) − bBθ(x)|dt

≤
2

|Bθ(x)|1+δ/nh

∫
Bθ(x)

∣∣∣∣∣b(t) − |Bθ(x)|−
α
n

h Mα,Bθ(x)(b)(t)|χBθ(x)(t)
∣∣∣∣∣dt

≤
2

|Bθ(x)|1+δ/n−λ/np
h

∥(b − |Bθ(x)|−
α
n

h Mα,Bθ(x)(b))χBθ∥Lp,λ(Qn
p)∥χBθ∥Lp′ (Qn

p)

≤
C

∥χBθ(x)∥Lq(Qn
p)
∥(b − |Bθ(x)|−

α
n

h Mα,Bθ(x)(b))χBθ∥Lp,λ(Qn
p)|Bθ(x)|

α
n

≤C. (2.20)

which implies that b ∈ Λ̃δ(Qn
p), so, it follows from this and Lemma 2.1 that b ∈ Λδ(Qn

p).
Next, we show the latter one in equation (2.16). For this, its suffices to show b− = 0, where

b− = min{b, 0} and b+ = |b| − b−. Consider any fixed p-adic ball Bθ(x) and for any t ∈ Bθ(x), we have

0 ≤ b+(t) ≤ |b(x)| ≤ Bθ(x)|−
α
n Mα,Bθ(x)(b)(t).

Therefore, for t ∈ Bθ(x), we obtain

0 ≤ b−(t) ≤ |Bθ(x)|−
α
n

h Mα,Bθ(x)(b)(t) − b+(t) + b−(t) = |Bθ(x)|−
α
n

h Mα,Bθ(x)(b)(t) − b(t).

Then, by this and (2.20), we have

1

|Bθ(x)|1+δ/nh

∫
Bθ(x)

b−(t)dt

≤
1

|Bθ(x)|1+δ/nh

∫
Bθ(x)
|Bθ(x)|−

α
n

h Mα,Bθ(x)(b)(t) − b(t)

≤C.

Therefore,
1

|Bθ(x)|h

∫
Bθ(x)

b−(t)dt ≤ C|Bθ(x)|δ/nh .

By letting θ → ∞ together with the Lebesgue differentiation theorem in p-adic field, we have b− = 0.
Hence b ≥ 0, which finishes the proof of theorem.

3. Conclusions

Necessary and sufficient conditions for the boundedness of commutators of p-adic sharp maximal
functions, p-adic fractional maximal functions, and p-adic fractional maximal commutators on p-
adic Morrey spaces are studied by considering the symbol function as a Lipschitz spaces. Wavelet
characterization of p-adic Lebesgue spaces can be obtained as a future prospect.

AIMS Mathematics Volume 9, Issue 7, 19756–19770.



19768

Author contributions

Naqash Sarfraz: Conceptualization, data curation, investigation, methodology, writing-original
draft; Muhammad Bilal Riaz: Formal analysis, methodology, writing-original draft; project
management, funding acquisition, supervision; Qasim Ali Malik: Validation, visualization,
writing-review & editing. All authors have read and approved the final version of the manuscript for
publication.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

The Author Muhammad Bilal Riaz thankful to Ministry of Education, Youth and Sports of the
Czech Republic for their support through the e-INFRA CZ (ID:90254).

Conflict of interest

The authors declare that they have no conflict of interest.

References

1. O. Brinon, B. Conrad, CMI Summer School notes on p-adic Hodge theory (preliminary version),
course notes, 2009.

2. P. Colmez, Integration sur les variétés p-adiques, Société mathématique de France, 1998.
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