Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Hyperbolic Ricci solitons on perfect fluid spacetimes

  • Received: 07 April 2024 Revised: 24 May 2024 Accepted: 29 May 2024 Published: 05 June 2024
  • MSC : 53C25, 53C50, 53E20, 83C05

  • In the present paper, we investigate perfect fluid spacetimes and perfect fluid generalized Roberston-Walker spacetimes that contain a torse-forming vector field satisfying almost hyperbolic Ricci solitons. We show that the perfect fluid spacetimes that contain a torse-forming vector field satisfy an almost hyperbolic Ricci soliton, and we prove that a perfect fluid generalized Roberston-Walker spacetime satisfying an almost hyperbolic Ricci soliton (g,ζ,ϱ,μ) is an Einstein manifold. Also, we study an almost hyperbolic Ricci soliton (g,V,ϱ,μ) on these spacetimes when V is a conformal vector field, a torse-forming vector field, or a Ricci bi-conformal vector field.

    Citation: Shahroud Azami, Mehdi Jafari, Nargis Jamal, Abdul Haseeb. Hyperbolic Ricci solitons on perfect fluid spacetimes[J]. AIMS Mathematics, 2024, 9(7): 18929-18943. doi: 10.3934/math.2024921

    Related Papers:

    [1] Mohd. Danish Siddiqi, Fatemah Mofarreh . Hyperbolic Ricci soliton and gradient hyperbolic Ricci soliton on relativistic prefect fluid spacetime. AIMS Mathematics, 2024, 9(8): 21628-21640. doi: 10.3934/math.20241051
    [2] Noura Alhouiti, Fatemah Mofarreh, Akram Ali, Fatemah Abdullah Alghamdi . On gradient normalized Ricci-harmonic solitons in sequential warped products. AIMS Mathematics, 2024, 9(9): 23221-23233. doi: 10.3934/math.20241129
    [3] Yanlin Li, Mohd Danish Siddiqi, Meraj Ali Khan, Ibrahim Al-Dayel, Maged Zakaria Youssef . Solitonic effect on relativistic string cloud spacetime attached with strange quark matter. AIMS Mathematics, 2024, 9(6): 14487-14503. doi: 10.3934/math.2024704
    [4] Mohd Danish Siddiqi, Meraj Ali Khan, Ibrahim Al-Dayel, Khalid Masood . Geometrization of string cloud spacetime in general relativity. AIMS Mathematics, 2023, 8(12): 29042-29057. doi: 10.3934/math.20231487
    [5] Mohd Bilal, Mohd Vasiulla, Abdul Haseeb, Abdullah Ali H. Ahmadini, Mohabbat Ali . A study of mixed generalized quasi-Einstein spacetimes with applications in general relativity. AIMS Mathematics, 2023, 8(10): 24726-24739. doi: 10.3934/math.20231260
    [6] Yanlin Li, Dipen Ganguly, Santu Dey, Arindam Bhattacharyya . Conformal $ \eta $-Ricci solitons within the framework of indefinite Kenmotsu manifolds. AIMS Mathematics, 2022, 7(4): 5408-5430. doi: 10.3934/math.2022300
    [7] Abdul Haseeb, Fatemah Mofarreh, Sudhakar Kumar Chaubey, Rajendra Prasad . A study of $ * $-Ricci–Yamabe solitons on $ LP $-Kenmotsu manifolds. AIMS Mathematics, 2024, 9(8): 22532-22546. doi: 10.3934/math.20241096
    [8] Yanlin Li, Shahroud Azami . Generalized $ * $-Ricci soliton on Kenmotsu manifolds. AIMS Mathematics, 2025, 10(3): 7144-7153. doi: 10.3934/math.2025x326
    [9] Yusuf Dogru . $ \eta $-Ricci-Bourguignon solitons with a semi-symmetric metric and semi-symmetric non-metric connection. AIMS Mathematics, 2023, 8(5): 11943-11952. doi: 10.3934/math.2023603
    [10] Mohd Danish Siddiqi, Fatemah Mofarreh . Schur-type inequality for solitonic hypersurfaces in $ (k, \mu) $-contact metric manifolds. AIMS Mathematics, 2024, 9(12): 36069-36081. doi: 10.3934/math.20241711
  • In the present paper, we investigate perfect fluid spacetimes and perfect fluid generalized Roberston-Walker spacetimes that contain a torse-forming vector field satisfying almost hyperbolic Ricci solitons. We show that the perfect fluid spacetimes that contain a torse-forming vector field satisfy an almost hyperbolic Ricci soliton, and we prove that a perfect fluid generalized Roberston-Walker spacetime satisfying an almost hyperbolic Ricci soliton (g,ζ,ϱ,μ) is an Einstein manifold. Also, we study an almost hyperbolic Ricci soliton (g,V,ϱ,μ) on these spacetimes when V is a conformal vector field, a torse-forming vector field, or a Ricci bi-conformal vector field.



    In general relativity and symmetry of spacetime, a perfect fluid energy-momentum tensor is often used to describe the source of the gravitational field. The energy-momentum tensor T plays a key role as a matter content of the spacetime, matter is supposed to have pressure, density, and kinematic and dynamical quantities such as acceleration, speed, vorticity, expansion and shear [1]. In usual cosmological models, the universe's matter content is supposed to act like a perfect fluid. In general relativity, a perfect fluid solution is an exact solution of the Einstein field equation (EFE), where the gravitational field is completely produced by the momentum, mass and stress density of a fluid. In cosmology and astrophysics, fluid solutions are usually used as stellar models and cosmological models, respectively.

    The most important geometric flow is the Ricci flow. In 1982, Hamilton [2] presented the notion of Ricci soliton as a generalization of Einstein metrics and a special solution to Ricci flow. A Ricci soliton on a manifold (pseudo-Riemannian) M is defined by [3,4]

    LVg=2S2ϱg,

    where LV is the Lie derivative along the potential vector field V, S is the Ricci tensor of g, and ϱ is a real constant. If ϱ<0, =0, or >0, then the Ricci soliton is said to be shrinking, steady, or expanding, respectively. If V=gradψ for some function ψ, then g is named a gradient Ricci soliton. If ϱC(M), then g is termed an almost Ricci soliton.

    The authors Venkatesha and Kumara [5] studied Ricci solitons in perfect fluid spacetime (briefly, PF-spacetime) with a torse-forming vector field (briefly, TFVF). Also, the geometrical structure in a perfect fluid spacetime have been studied by many authors in several ways to a different extent such Blaga [6], Chaubey [7], Siddiqi [8], De et al.[9], Zhang et al. [10] and many others. In 2022, Li et al. [11] studied LP-Kenmotsu manifolds admitting η-Ricci solitons. Moreover, they proved some results for η-Ricci solitons in LP-Kenmotsu manifolds in the spacetime of general relativity. About a decade ago, the authors Arslan et al. [12] investigated some curvature conditions on generalized Robertson-Walker spacetime. In 2017, Mantica and Molinari [13] presented a survey on generalized Robertson-Walker spacetime with main focus on Chen's characterization in terms of a timelike concircular vector and obtained some new results. Very recently, the authors Azami et al. [14] studied left-invariant cross curvature solitons on Lorentzian three-dimensional Lie groups.

    Another type of geometric flow is hyperbolic geometric flow, defined by Dai et al. in [15],

    2t2g=2S,g(0)=g0,gt(0)=k0, (1.1)

    where k0 is a symmetric 2-tensor field on M.

    Let (Mn,g(t)) be a solution of (1.1) on (M,g0). The self-similar solution of (1.1) is given as follows [16,17]

    S(g0)+ϱLVg0+(LVLV)g0=μg0,

    for some constants ϱ and μ. In such a case, we say g0 is a hyperbolic Ricci soliton (briefly, HRS), and we denote it by (M,g0,V,ϱ,μ) (briefly (g0,V,ϱ,μ)). A HRS is an Einstein metric when V vanishes identically; thus, a HRS is a generalization of the Einstein metric. If ϱ=12 and V is a 2-Killing vector field [18,19], i.e., (LVLV)g0=0, then; a HRS is a Ricci soliton. We say that (M,g0,f,ϱ,μ) is a gradient HRS whenever f=V for some smooth functions f:MR.

    An almost HRS (or AHRS) is a 4-tuple (g,V,ϱ,μ), where ϱ and μ are two functions and the metric g (pseudo-Riemannian) obeys the equation

    S+ϱLVg+(LVLV)g=μg, (1.2)

    where S is concerned with g. In the following, we provide an example of an AHRS that is not Einstein and Ricci soliton.

    Example 1.1. Suppose that (x,y,z) is the standard coordinates in R3 and M={(x,y,z)R3|z0}. We consider the linearly independent vector fields

    e1=z2x,e2=z2y,e3=z.

    We define the metric g by

    g(ei,ej)={1,ifi=jandi,j{1,2},1,ifi=j=3,0,otherwise.

    We define symmetric (1, 1)-tensor ϕ, vector field ξ, and 1-form η on M by

    ξ=e3,η(X)=g(X,e3),ϕ=(110000000),

    for all vector fields X. Note that ϕ(X)=X+η(X)ξ, and η(ξ)=1. We obtain

    [,]e1e2e3e1002ze1e2002ze2e32ze12ze20

    The Levi-Civita connection of M is defined by

    eiej=(2ze302ze102ze32ze2000).

    We see that Xξ=2z(X+η(X)ξ). The nonvanishing components of the curvature tensor are:

    R(e1,e2)e1=4z2e2,R(e1,e2)e2=4z2e1,R(e1,e3)e1=6z2e3,R(e2,e3)e2=6z2e3,R(e1,e3)e3=6z2e1,R(e2,e3)e3=6z2e2.

    Hence, we get

    S=(2z20002z200012z2)=2z2g14z2ηη.

    Then Lξg=4z(g+ηη) and

    (LξLξ)g=20z2(g+ηη).

    Therefore, (M,g,ξ,3z,12z2) is an AHRS on manifold M.

    Motivated by the above studies, we study HRSs on PF-spacetimes. The paper is presented as follows: Section 2 is concerned with some fundamental concepts and formulas for PF-spacetimes. In Section 3, we study PF-spacetimes with TFVF satisfied in an AHRS. In Section 4, we investigate how perfect fluid generalized Roberston-Walker spacetimes (or PF-GRW-spacetimes) satisfy an AHRS.

    Throughout this section, we assume that the vector fields X1,X2, and X3 are arbitrary vector fields, unless otherwise noted. The energy-momentum tensor T in PF-spacetime is defined through [20]

    T(X1,X2)=ρg(X1,X2)+(ρ+σ)η(X1)η(X2), (2.1)

    where σ is the energy-density and ρ is the isotropic pressure, and η(X1)=g(X1,ζ) is 1-form, such that g(ζ,ζ)+1=0. Let λ and ϵ be the cosmological and gravitational constants, respectively. The field equation governing the perfect fluid motion is Einstein's gravitational equation [20]

    S(X1,X2)+(λr2)g(X1,X2)=ϵT(X1,X2), (2.2)

    where r is the scalar curvature of g. From (2.1) and (2.2), we have

    S(X1,X2)=(λ+r2+ϵρ)g(X1,X2)+ϵ(ρ+σ)η(X1)η(X2). (2.3)

    Let (M4,g) be a relativistic PF-spacetime admitting (2.3). Thus, by contracting (2.3) and using g(ζ,ζ)=1, we conclude

    r=ϵ(σ3ρ)+4λ. (2.4)

    Applying (2.4) to (2.3), it follows:

    S(X1,X2)=(λ+ϵ(σρ)2)g(X1,X2)+ϵ(ρ+σ)η(X1)η(X2). (2.5)

    This implies

    QX1=(λ+ϵ(σρ)2)X1+ϵ(ρ+σ)η(X1)ζ,

    where Q is the Ricci operator such that g(QX1,X2)=S(X1,X2).

    Let (Mn,g) be a Lorentzian manifold. A manifold (Mn,g) (3n) is termed a generalized Robertson-Walker (GRW) spacetime [21]. If we write M as M=I×f2M, here IR is an open interval, f(>0)C(M), and M is a Riemannian (n1)-manifold. If, n=4 and M is of constant curvature, then the spacetime becomes the Robertson-Walker (RW) spacetime. Thus, every RW spacetime is a PF-spacetime, where, as in n=4, the GRW spacetime is a PF-spacetime if and only if it is a RW spacetime.

    Definition 2.1. If a vector field V(0) on a pseudo-Riemannian manifold (M,g) obeys

    X1V=hX1+ω(X1)V, (2.6)

    then it is called torse-forming [22,23]. Here is the Levi-Civita connection of g, ω is a 1-form, and hC(M). In this case, V becomes

    concircular [25] whenever ω=0 in (2.6),

    concurrent [26,27] if in the equation (2.6), ω=0 and h=1,

    parallel vector field if in equation (2.6), h=ω=0,

    torqued vector field [28] if in equation (2.6), ω(V)=0.

    Chen [24] presented a simple description of an (3) n-dimensional Lorentzian manifold with a timelike concircular vector field as follows:

    Theorem 2.1. [24] Let M be a Lorentzian n-manifold, n3. Then, M is a GRW spacetime if and only if it has a timelike concicular vector field.

    In this section, we study HRS on PF-spacetimes. Throughout this section, we assume that X1,X2, and X3 are arbitrary vector fields on a PF-spacetime M, unless otherwise noted.

    Now, we suppose that ζ is a TFVF and

    X1ζ=X1+η(X1)ζ. (3.1)

    In this case, on a PF-spacetime, we have the following relations:

    ζζ=0,(X1η)(X2)=g(X1,X2)+η(X1)η(X2),R(X1,X2)ζ=η(X2)X1η(X1)X2,η(R(X1,X2)X3)=η(X1)g(X2,X3)η(X2)g(X1,X3).

    Let ζ be a TFVF on PF-spacetime, (M4,g) and g admit an AHRS (1.2) such that V=fζ for some fC(M). Using (3.1), we obtain

    Lfζg(X1,X2)=(X1f)η(X2)+(X2f)η(X1)+2f(g(X1,X2)+η(X1)η(X2)), (3.2)

    hence

    (Lfζ(Lfζg))(X1,X2)=fζ((X1f)η(X2)+(X2f)η(X1)+2f(g(X1,X2)+η(X1)η(X2)))(((LfζX1)f)η(X2)+(X2f)η(LfζX1)+2f(g(LfζX1,X2)+η(LfζX1)η(X2)))((X1f)η(LfζX2)+((LfζX2)f)η(X1)+2f(g(X1,LfζX2)+η(X1)η(LfζX2))).

    Applying V=fζ and the above equation in (1.2), we infer

    S(X1,X2)+ϱ((X1f)η(X2)+(X2f)η(X1)+2f(g(X1,X2)+η(X1)η(X2)))+fζ((X1f)η(X2)+(X2f)η(X1)+2f(g(X1,X2)+η(X1)η(X2)))(((LfζX1)f)η(X2)+(X2f)η(LfζX1)+2f(g(LfζX1,X2)+η(LfζX1)η(X2)))((X1f)η(LfζX2)+((LfζX2)f)η(X1)+2f(g(X1,LfζX2)+η(X1)η(LfζX2)))μg(X1,X2)=0,

    which, by plugging X1=X2=ζ and using (2.5), yields

    λϵ(σ+3ρ)2+2fζ(ζ(f))+2ϱζ(f)+4(ζ(f))2μ=0. (3.3)

    Thus, we state:

    Theorem 3.1. Let ζ be a TFVF on PF-spacetime (M4,g) and g admit an AHRS (g,V,ϱ,μ) such that V=fζ for some fC(M), then the relation (3.3) holds.

    Now, let ζ be a TFVF on PF-GRW-spacetime (M4,g). Then, from (3.2), we have

    Lζg(X1,X2)=2(g(X1,X2)+η(X1)η(X2)), (3.4)

    and

    (Lζ(Lζg))(X1,X2)=2ζ(g(X1,X2)+η(X1)η(X2))2(g(LζX1,X2)+η(LζX1)η(X2))2(g(X1,LζX2)+η(X1)η(LζX2)). (3.5)

    We have

    g(LζX1,X2)=g(ζX1,X2)η(X1)η(X2)g(X1,X2). (3.6)

    Similarly, we have

    g(X1,LζX2)=g(X1,ζX2)g(X1,X2)η(X1)η(X2).

    Then

    g(LζX1,X2)+g(X1,LζX2)=ζ(g(X1,X2))2(η(X1)η(X2)+g(X1,X2)). (3.7)

    Since ζζ=ζ+η(ζ)ζ=0, using (3.6), we have

    η(LζX1)=g(LζX1,ζ)=g(ζX1,ζ)=ζ(g(X1,ζ))=ζ(η(X1)),

    similarly, we find

    η(LζX2)=ζ(η(X2)).

    Thus,

    η(LζX1)η(X2)+η(X1)η(LζX2)=ζ(η(X1)η(X2)). (3.8)

    Therefore, applying (3.7) and (3.8) to (3.5), it follows

    (Lζ(Lζg))(X1,X2)=4(η(X1)η(X2)+g(X1,X2)). (3.9)

    Using (2.5), (3.4), and (3.9), we get

    S+ϱLζg+(LζLζ)gμg=(ϵ(σρ)+ϱ2+2ϱ+4μ)g+(ϵ(ρ+σ)+2ϱ+4)ηη.

    From the above equation, (M4,g) admits an AHRS (g,ζ,ϱ,μ).

    Hence, we have:

    Theorem 3.2. Let ζ be a TFVF on a PF-spacetime (M4,g). Then, manifold M satisfies an AHRS (g,ζ,ϵ(σ+ρ)+42,ϱϵ2(σ+3ρ)).

    Remark 3.1. i) Let, in dust-like matter, the energy density be σ and η be the same as defined in (2.1). The energy-momentum of pressure-free fluid spacetime, or dust, is T(X1,X2)=ση(X1)η(X2). Hence, if ζ is a TFVF on a dust fluid spacetime M, then M satisfies an AHRS (g,ζ,ϵσ+42,ϱϵ2σ).

    ii) The energy-momentum tensor of dark fluid spacetime ρ=σ; is T(X1,X2)=ρg(X1,X2). Thus, if ζ is a TFVF on dark fluid spacetime M, then M satisfies an AHRS (g,ζ,2,ϱϵρ).

    iii) The energy-momentum of a radiation fluid spacetime σ=3ρ; is T(X1,X2)=ρ[g(X1,X2)+4η(X1)η(X2)]. Thus, if ζ is a TFVF on dust fluid spacetime M, then M satisfies an AHRS (g,ζ,2(ϵρ+1),ϱ3ϵρ).

    Definition 3.1. On a pseudo-Riemannian manifold (M,g), a vector field V obeying

    (LVg)(X1,X2)=2hg(X1,X2), (3.10)

    for some hC(M), is named a conformal Killing vector field. The vector field V reduces to a proper, a homothetic, or a Killing vector field when h is not constant, constant, or h=0, respecticvely.

    Let ζ be a TFVF on a PF-spacetime (M4,g), and let V be a conformal Killing vector field satisfying (3.10). Then

    ((LVLV)g)(X1,X2)=V(LVg(X1,X2))LVg(LVX1,X2)LVg(X1,LVX2)=V(2hg(X1,X2))2hg(LVX1,X2)2hg(X1,LVX2)=2V(h)g(X1,X2)+2hLVg(X1,X2)=(2V(h)+4h2)g(X1,X2). (3.11)

    By inserting (3.11) in Eq (1.2), we deduce

    S(X1,X2)+2hϱg(X1,X2)+(2V(h)+4h2)g(X1,X2)μg(X1,X2)=0. (3.12)

    We get

    (ϱ+r2+ϵρ+2ϱh+2V(h)+4h2μ)g(X1,X2)+ϵ(σ+ρ)η(X1)η(X2)=0. (3.13)

    We conclude with the following result:

    Theorem 3.3. If ζ is a TFVF on a PF-spacetime (M4,g) and g satisfies the AHRS (g,V,ϱ,μ), where V is the conformally Killing vector field, then M is Einstein, ϵ(σ+ρ)=0, and

    ϱ+r2+ϵρ+2ϱh+2V(h)+4h2μ=0.

    Let ζ be a TFVF on a PF-spacetime (M4,g) and (g,V,ϱ,μ) be an AHRS such that V is a TFVF and satisfied in (2.6). Then

    LVg(X1,X2)=2hg(X1,X2)+ω(X1)g(V,X2)+ω(W)g(V,X1), (3.14)

    and

    (LV(LVg))(X1,X2)=V(2hg(X1,X2)+ω(X1)g(V,X2)+ω(X2)g(V,X1))2hg(LVX1,X2)ω(LVX1)g(V,X2)ω(X2)g(V,LVX1)2hg(X1,LVX2)ω(X1)g(V,LVX2)ω(LVX2)g(V,X1). (3.15)

    On the other hand,

    g(LVX1,X2)=g(VX1,X2)hg(X1,X2)ω(X2)g(V,X1),

    similarly,

    g(X1,LVX2)=g(X1,VX2)hg(X1,X2)ω(X1)g(V,X2).

    Thus,

    g(LVX1,X2)+g(X1,LVX2)=V(g(X1,X2))2hg(X1,X2)ω(X2)g(V,X1)ω(X1)g(V,X2).

    Also, we have

    ω(LVX1)=ω(VX1X1V)=ω(VX1hX1ω(X1)V)=ω(VX1)hω(X1)ω(X1)ω(V),

    similarly,

    ω(LVX2)=ω(VX2)hω(X2)ω(X2)ω(V).

    Therefore, applying the above equations to (3.15), we infer

    (LV(LVg))(X1,X2)=(2V(h)+4h2)g(X1,X2)+V(ω(X1)g(V,X2)+ω(X2)g(V,X1))+4hω(X1)g(V,X2)+4hω(W)g(V,X1)ω(VX1)g(V,X2)+2ω(X1)ω(V)g(V,X2)ω(X2)g(VX1,V)+2ω(X2)ω(V)g(V,X1)ω(VX2)g(V,X1)ω(X1)g(VX2,V). (3.16)

    Putting X1=X2=ζ in (3.14) and (3.16), it follows

    LVg(ζ,ζ)=2h+2ω(ζ)η(V) (3.17)

    and

    (LV(LVg))(ζ,ζ)=(2V(h)+4h2)+V(2ω(ζ)η(V))+8hω(ζ)η(V)+4ω(ζ)ω(V)η(V)2ω(ζ)η(V)4(η(V))2ω(ζ)2ω(ζ)|V|2. (3.18)

    Applying (3.17) and (3.18) to (1.2), we arrive at

    ϵ(σ+3ρ)2+μ+ϱ(12h+2ω(ζ)η(V))(2V(h)+4h2)+V(2ω(ζ)η(V))+8hω(ζ)η(V)+4ω(ζ)ω(V)η(V)2ω(ζ)η(V)4(η(V))2ω(ζ)2ω(ζ)|V|2=0. (3.19)

    Thus, we conclude with the following result:

    Theorem 3.4. If ζ is a TFVF on a PF-spacetime (M4,g) and the metric g satisfies an AHRS (g,V,ϱ,μ) such that V is TFVF and satisfies (2.6), then the relation (3.19) holds.

    Corollary 3.1. If ζ is a TFVF on a PF-spacetime (M4,g) and the metric g satisfies an AHRS (g,V,ϱ,μ) such that V is the concircular vector field, that is, X1V=hX1 for all vector field X1, then

    ϵ(σ+3ρ)2+μ(1+2h)ϱ2V(h)4h2=0.

    Garcia-Parrado and Senovilla [29] introduced bi-conformal vector fields; later, this notion was defined by De et al. in [30] as follows:

    Definition 3.2. If a vector field X1 on a Riemannian manifold (M,g) obeys

    (LX1g)(X2,X3)=αg(X2,X3)+βS(X2,X3), (3.20)

    and

    (LX1S)(X2,X3)=αS(X2,X3)+βg(X2,X3), (3.21)

    for some smooth functions α(0) and β(0), then it is called Ricci bi-conformal vector field.

    Let ζ be a TFVF on PF-spacetime (M4,g), and g satisfies the AHRS (g,V,ϱ,μ) such that V is the Ricci bi-conformal vector field and satisfies (3.20) and (3.21). We get

    LV(LVg)=(α2+β2+V(α))g+(2αβ+V(β))S. (3.22)

    Inserting (3.20) and (3.22) in (1.2), we have

    (1+ϱβ+2αβ+V(β))S(X1,X2)+(ϱαμ+α2+β2+V(α))g(X1,X2)=0. (3.23)

    Substituting X1=X2=ζ in (3.23), we arrive at

    (1+ϱβ+2αβ+V(β))(ϱ+ϵ(σ+ρ))ϵ(σρ)2+(ϱαμ+α2+β2+V(α))=0, (3.24)

    and

    (1+ϱβ+2αβ+V(β))(S(X1,X2)+(ϱϵ(σ+3ρ)2)g(X1,X2))=0. (3.25)

    Set F=1+ϱβ+2αβ+V(β) and G=ϱαμ+α2+β2+V(α).

    Taking the Lie derivative of (3.23) and using (3.20) and (3.21), we deduce

    (αF+βG+V(F))S(X1,X2)+(αG+βF+V(G))g(X1,X2)=0. (3.26)

    Inserting X1=X2=ζ in the Eq (3.26), we conclude

    (αF+βG+V(F))(ϱ+ϵ(σ+3ρ)2)+αG+βF+V(G)=0. (3.27)

    Using (3.24) and (4.12), we infer

    F(ββ(ϱ+ϵ(σ+3ρ)2)V(ϱ+ϵ(σ+3ρ)2))=0.

    If F0 then (3.25) yields that M is an Einstein manifold and r=4(ϱ+ϵ(σ+3ρ)2), where ϱ+ϵ(σ+3ρ)2 is constant. If F=0, then G=0. Therefore, we have:

    Theorem 3.5. Suppose that ζ is a TFVF on PF-spacetime (M4,g) and g satisfies the HRS (g,V,ϱ,μ), where V is the Ricci bi-conformal vector field and satisfies (3.20) and (3.21). Then PF-spacetime is Einstein,

    ββ(ϱ+ϵ(σ+3ρ)2)V(ϱ+ϵ(σ+3ρ)2)=0,

    and r=4(ϱ+ϵ(σ+3ρ)2) or ϱ=1β(1+2αβ+V(β)) and μ=αβ(1+V(β))α2+β2+V(α).

    In this section, we study HRS on PF-GRW-spacetimes. Throughout this section, we assume that the vector fields X1 and X2 are arbitrary vector fields on PF-GRW-spacetime M, unless otherwise noted. Now, we consider the velocity vector field ζ of the PF-GRW-spacetime (M4,g) as a concircular vector field, i.e.,

    X1ζ=ψX1. (4.1)

    In this case, we have

    R(X1,X2)ζ=(X1ψ)X2(X2ψ)X1. (4.2)

    Executing contraction over X1, we obtain

    S(X1,ζ)=3(X1ψ),

    and

    X2f=13(ϱϵ(σ+3ρ)2)η(X2). (4.3)

    Applying (4.3) to (4.2), we get

    R(X1,X2)ζ=13(ϱϵ(σ+3ρ)2)(η(X1)X2η(X2)X1).

    Now, let ζ be a concircular vector field on a PF-GRW-spacetime (M4,g). Then, we obtain

    Lζg(X1,X2)=2ψg(X1,X2), (4.4)

    and

    (Lζ(Lζg))(X1,X2)=2ζ(ψg(X1,X2))2ψg(LζX1,X2)2ψg(X1,LζX2)=2ζ(ψ)g(X1,X2)+2ψLζg(X1,X2)=(2ζ(ψ)+4ψ2)g(X1,X2). (4.5)

    Using (4.4) and (4.5), we conclude

    ϱLζg(X1,X2)+(Lζ(Lζg))(X1,X2)=(2ϱψ+2ζ(ψ)+4ψ2)g(X1,X2).

    Then Eq (1.2) implies that

    S(X1,X2)=(2ψϱ2V(ψ)4ψ2+μ)g(X1,X2).

    Thus, we can state:

    Theorem 4.1. If a PF-GRW-spacetime (M4,g) with concircular vector field ζ satisfies an AHRS (g,ζ,ϱ,μ), then M is an Einstein spacetime.

    Now, suppose that (M4,g) with concircular vector field ζ admits the AHRS (1.2) and V=φζ for some function φ on M. Using (4.1), we have

    Lφζg(X1,X2)=(X1φ)η(X2)+(X2φ)η(X1)+2φψg(X1,X2),

    and

    (Lφζ(Lφζg))(X1,X2)=φζ((X1φ)η(X2)+(X2φ)η(X1)+2φψg(X1,X2))(((LφζX1)φ)η(X2)+(X2φ)η(LφζX1)+2φψg(LφζX1,X2))((X1φ)η(LφζX2)+((LφζX2)φ)η(X1)+2φψg(X1,LφζX2)).

    Inserting X1=X2=ζ in the above equations, we get

    Lφζg(ζ,ζ)=2(ζφ)2φψ,

    and

    (Lφζ(Lφζg))(ζ,ζ)=2φζ((ζφ)+φψ)4((ζφ)2+φψ(ζφ)).

    Applying V=φζ and the above equations in (1.2), we infer

    3ζ(ψ)+2ϱ((ζφ)+φψ)+2φζ((ζφ)+φψ)+4((ζφ)2+φψ(ζφ))μ=0. (4.6)

    Therefore, this leads to:

    Theorem 4.2. Let ζ be a concircular vector field on PF-GRW-spacetime (M4,g) and (g,V,ϱ,μ) be an AHRS such that V=φζ, then the identity (4.6) holds.

    Let V be a conformal Killing vector field on a PF-GRW-spacetime (M4,g) with concircular vector field ζ. Then, by inserting (3.11) in (1.2), we obtain (3.12). Plugging X2=ζ in (3.12), we infer

    3X1(ψ)=(2hϱ2V(h)4h2+μ)η(X1). (4.7)

    Also, by inserting X1=X2=ζ in (3.12), we infer

    3ζ(ψ)+2hϱ+2V(h)+4h2μ=0. (4.8)

    Also, from (4.7), we get

    3g(ψ,X1)=(2hϱ2V(h)4h2+μ)g(ξ,X1).

    Since X1 is an arbitrary vector field, we conclude

    3ψ=(2hϱ2V(h)4h2+μ)ξ. (4.9)

    We conclude the following:

    Theorem 4.3. If the metric g of a PF-GRW-spacetime (M4,g) with concircular vector field ζ satisfies the AHRS (g,V,ϱ,μ) such that V is the conformally Killing vector field, then spacetime is Einstein and the identities (4.8) and (4.9) are true.

    Let ζ be a concircular vector field on a PF-GRW-spacetime (M4,g), and (g,V,ϱ,μ) be an AHRS such that V is a TFVF and satisfies (2.6). Then, putting X1=X2=ζ in (3.14) and (3.16), it follows that

    LVg(ζ,ζ)=2h+2ω(ζ)η(V) (4.10)

    and

    (LV(LVg))(ζ,ζ)=(2V(h)+4h2)+V(2ω(ζ)η(V))+8hω(ζ)η(V)+4ω(ζ)ω(V)η(V)2ψω(V)η(V)2ψω(ζ)|V|2.

    Applying (4.10) and (4.11) to (1.2), we arrive at

    3ζ(ψ)+μ+ϱ(2h+2ω(ζ)η(V))(2V(h)+4h2)+V(2ω(ζ)η(V))+8hω(ζ)η(V)+4ω(ζ)ω(V)η(V)2ψω(V)η(V)2ψω(ζ)|V|2=0. (4.11)

    Therefore, we have:

    Theorem 4.4. If the metric g of a PF-GRW-spacetime (M4,g) with concircular vector field ζ satisfies the AHRS (g,V,ϱ,μ) such that V is a TFVF and satisfies (2.6), then the Eq (4.11) holds.

    Let ζ be a concircular vector field on PF-GRW-spacetime (M4,g) and g satisfies the AHRS (g,V,ϱ,μ) such that V is the Ricci bi-conformal vector field and satisfies (3.20) and (3.21). Substituting X1=X2=ζ in (3.23), we arrive at

    (1+ϱβ+2αβ+V(β))(3ζ(ψ))+(ϱαμ+α2+β2+V(α))=0,

    and

    (1+ϱβ+2αβ+V(β))(S(X1,X2)(3ζ(ψ))g(X1,X2))=0.

    Putting X1=X2=ζ in (3.26), we conclude

    (αF+βG+V(F))(3ζ(ψ))+αG+βF+V(G)=0. (4.12)

    Using (3.24) and (4.12), we infer

    F(ββ(3ζ(ψ))V(3ζ(ψ)))=0.

    If F0 then the identity (3.25) yields M is an Einstein manifold, and r=12ζ(ψ), where ζ(ψ) is a constant. If F=0, then G=0. Therefore, by using (4.3), we conclude:

    Theorem 4.5. Suppose that ζ is a concircular vector field on a PF-GRW-spacetime (M4,g) and the metric g satisfies the HRS (g,V,ϱ,μ) such that V is the Ricci bi-conformal vector field and satisfies (3.20) and (3.21). Then, M is an Einstein manifold,

    ββ(ϱϵ(σ+3ρ)2)V(ϱϵ(σ+3ρ)2)=0,

    and r=12ζ(ψ) or ϱ=1β(1+2αβ+V(β)) and μ=αβ(1+V(β))α2+β2+V(α).

    In this paper, we obtain the geometrical conditions and characteristics of HRS to utilize their existence in perfect fluid and GRW spacetimes. We first assume that (g,fζ,ϱ,μ) satisfies AHRS such that ζ is a TFVF on PF-spacetime (M4,g), and we give a differential equation that the function f admits in it. Then, we show that any PF-spacetime with a TFVF satisfies a HRS. Also, we prove that if any PF-spacetime with TFVF ζ satisfies HRS (g,V,ϱ,μ), where V is the conformal Killing vector field or Ricci bi-conformal vector field, then PF-spacetime is Einstein. Next, we show that a PF-GRW-spacetime with concicular vector field ζ and AHRS (g,φζ,ϱ,μ) is Einstein for φ=1, and in general case φ admits in a differential equation. Also, we study a HRS (g,V,ϱ,μ) on PF-GRW-spacetimes when V is a conformal Killing vector field, a TFVF, or a Ricci bi-conformal vector field.

    Shahroud Azami: Conceptualization, investigation, methodology; Mehdi Jafari: Investigation, methodology, writing – original draft; Nargis Jamal: Conceptualization, methodology, writing – review & editing; Abdul Haseeb: Conceptualization, investigation, writing – review & editing. All authors have read and approved the final version of the manuscript for publication.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors are really thankful to the learned reviewers for their careful reading of our manuscript and their many insightful comments and suggestions that have improved the quality of our manuscript.

    The authors declare no conflicts of interest.



    [1] Z. Ahsan, Tensors: Mathematics of differential geometry and relativity, PHI Learning Pvt. Ltd., 2015.
    [2] R. S. Hamilton, The Ricci flow on surfaces, Contemp. Math., 71 (1988), 237–262. https://doi.org/10.1090/conm/071
    [3] C. Calin, M. Crasmareanu, From the Eisenhart problem to Ricci solitons in f-Kenmotsu manifolds, arXiv: 1006.3132, 2010. https://doi.org/10.48550/arXiv.1006.3132
    [4] A. Haseeb, M. Bilal, S. K. Chaubey, A. A. H. Ahmadini, ζ-conformally flat LP-Kenmotsu manifolds and Ricci-Yamabe solitons, Mathematics, 11 (2023), 212. https://doi.org/10.3390/math11010212 doi: 10.3390/math11010212
    [5] Venkatesha, H. A. Kumara, Ricci soliton and geometrical structure in a perfect fluid spacetime with torse-forming vector field, Afr. Mat., 30 (2019), 725–736. https://doi.org/10.1007/s13370-019-00679-y doi: 10.1007/s13370-019-00679-y
    [6] A. M. Blaga, Solitons and geometrical structures in a perfect fluid spacetime, Rocky Mountain J. Math., 50 (2020), 41–53. https://doi.org/10.1216/rmj.2020.50.41 doi: 10.1216/rmj.2020.50.41
    [7] S. K. Chaubey, Characterization of perfect fluid spacetme admitting gradient η-Ricci and gradient Einstein solitons, J. Geom. Phys., 162 (2021), 104069. https://doi.org/10.1016/j.geomphys.2020.104069 doi: 10.1016/j.geomphys.2020.104069
    [8] M. D. Siddiqi, S. A. Siddiqi, Conformal Ricci soliton and geometrical structure in a perfect fluid spacetime, Int. J. Geom. Methods Mod. Phys., 17 (2020), 2050083. https://doi.org/10.1142/S0219887820500838 doi: 10.1142/S0219887820500838
    [9] K. De, U. C. De, A. A. Syied, N. B. Turki, S. Alsaeed, Perfect fluid spacetimes and gradient solitons, J. Nonlinear Math. Phys., 29 (2022), 843–858. https://doi.org/10.1007/s44198-022-00066-5 doi: 10.1007/s44198-022-00066-5
    [10] P. Zhang, Y. Li, S. Roy, S. Dey, A. Bhattacharyya, Geometrical structure in a perfect fluid spacetime with conformal Ricci-Yamabe soliton, Symmetry, 14 (2022), 594. https://doi.org/10.3390/sym14030594 doi: 10.3390/sym14030594
    [11] Y. Li, A. Haseeb, M. Ali, LP-Kenmotsu manifolds admitting η-Ricci solitons and spacetime, J. Math., 2022 (2022), 6605127. https://doi.org/10.1155/2022/6605127 doi: 10.1155/2022/6605127
    [12] K. Arslan, R. Deszcz, R. Ezentas, M. Hotlos, C. Martahan, On generalized Robertson-Walker spacetime satisfying some curvature condition, Turk. J. Math., 38 (2014), 353–373. https://doi.org/10.3906/mat-1304-3 doi: 10.3906/mat-1304-3
    [13] C. A. Mantica, L. G. Molinari, Generalized Robertson-Walker spacetime-A survey, Int. J. Geom. Methods Mod. Phys., 14 (2017), 1730001. https://doi.org/10.1142/S021988781730001X doi: 10.1142/S021988781730001X
    [14] S. Azami, M. Jafari, A. Haseeb, A. A. H. Ahmadini, Cross curvature solitons of Lorentzian three-dimensional lie groups, Axioms, 13 (2024), 211. https://doi.org/10.3390/axioms13040211 doi: 10.3390/axioms13040211
    [15] W. R. Dai, D. X. Kong, K. Liu, Hyperbolic gometric flow (I): Short-time existence and nonlinear stability, Pure Appl. Math. Q., 6 (2010), 331–359. https://dx.doi.org/10.4310/PAMQ.2010.v6.n2.a3 doi: 10.4310/PAMQ.2010.v6.n2.a3
    [16] S. Azami, G. Fasihi-Ramndi, Hyperbolic Ricci soliton on warped product manifolds, Filomat, 37 (2023), 6843–6853. https://doi.org/10.2298/FIL2320843A doi: 10.2298/FIL2320843A
    [17] H. Faraji, S. Azami, G. Fasihi-Ramandi, Three dimensional homogeneous hyperbolic Ricci soliton, J. Nonlinear Math. Phys., 30 (2023), 135–155. https://doi.org/10.1007/s44198-022-00075-4 doi: 10.1007/s44198-022-00075-4
    [18] J. X. Cruz Neto, I. D. Melo, P. A. Sousa, Non-existence of strictly monotone vector fields on certain Riemannian manifolds, Acta Math. Hungar., 146 (2015), 240–246. https://doi.org/10.1007/s10474-015-0482-0 doi: 10.1007/s10474-015-0482-0
    [19] S. Z. Németh, Five kinds of monotone vector fields, Pure Math. Appl., 9 (1998), 417–428.
    [20] B. O'Neill, Semi-Riemannian geometry with application to Relativity, Academic Press, 1983
    [21] L. J. Alias, A. Romero, M. Sanchez, Uniquenes of complete spacelike hypersurfaces of constant mean curvature in generalized Robertson-Walker spacetime, Gen. Relat. Gravit., 27 (1995), 71–84. https://doi.org/10.1007/BF02105675 doi: 10.1007/BF02105675
    [22] K. Yano, On the torse-forming directions in Riemannian spaces, Proc. Imp. Acad., 20 (1944), 340–345. https://doi.org/10.3792/pia/1195572958 doi: 10.3792/pia/1195572958
    [23] A. Haseeb, M. A. Khan, Conformal η-Ricci-Yamabe solitons within the framework of ϵ-LP-Sasakian 3-manifolds, Adv. Math. Phys., 2022 (2022), 3847889. https://doi.org/10.1155/2022/3847889 doi: 10.1155/2022/3847889
    [24] B. Y. Chen, A simple characterization of generalized Robertson-Walker space-times, Gen. Relativ. Gravit., 46 (2014), 1833. https://doi.org/10.1007/s10714-014-1833-9 doi: 10.1007/s10714-014-1833-9
    [25] K. Yano, Concircular geometry I. Concircular tranformations, Proc. Imp. Acad., 16 (1940), 195–200. https://doi.org/10.3792/pia/1195579139 doi: 10.3792/pia/1195579139
    [26] J. A. Schouten, Ricci calculus, Heidelberg: Springer Berlin, 1954. https://doi.org/10.1007/978-3-662-12927-2
    [27] K. Yano, B. Y. Chen, On the concurrent vector fields of immersed manifolds, Kodai Math. Sem. Rep., 23 (1971), 343–350. https://doi.org/10.2996/kmj/1138846372 doi: 10.2996/kmj/1138846372
    [28] B. Y. Chen, Classification of torqued vector fields and its applications to Ricci solitons, Kragujevac J. Math., 41 (2017), 239–250. https://doi.org/10.5937/KgJMath1702239C doi: 10.5937/KgJMath1702239C
    [29] A. Garcia-Parrado, J. M. M. Senovilla, Bi-conformal vector fields and their applications, Class. Quantum Grav., 21 (2004), 2153–2177. https://doi.org/10.1088/0264-9381/21/8/017 doi: 10.1088/0264-9381/21/8/017
    [30] U. C. De, A. Sardar, A. Sarkar, Some conformal vector fields and conformal Ricci solitons on N(k)-contact metric manifolds, AUT J. Math. Comput., 2 (2021), 61–71. https://doi.org/10.22060/ajmc.2021.19220.1043 doi: 10.22060/ajmc.2021.19220.1043
  • This article has been cited by:

    1. Lixu Yan, Yanlin Li, Fatemah Mofarreh, Akram Ali, Pişcoran Laurian-Ioan, On Sequential Warped Products Whose Manifold Admits Gradient Schouten Harmonic Solitons, 2024, 12, 2227-7390, 2451, 10.3390/math12162451
    2. Abdul Haseeb, Fatemah Mofarreh, Sudhakar Kumar Chaubey, Rajendra Prasad, A study of $ * $-Ricci–Yamabe solitons on $ LP $-Kenmotsu manifolds, 2024, 9, 2473-6988, 22532, 10.3934/math.20241096
    3. Shahroud Azami, Rawan Bossly, Abdul Haseeb, Riemann solitons on Egorov and Cahen-Wallach symmetric spaces, 2025, 10, 2473-6988, 1882, 10.3934/math.2025087
    4. Adara M Blaga, Cihan Özgür, Some properties of hyperbolic Yamabe solitons, 2025, 100, 0031-8949, 045230, 10.1088/1402-4896/adb343
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1095) PDF downloads(64) Cited by(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog