Research article Special Issues

A study of mixed generalized quasi-Einstein spacetimes with applications in general relativity

  • In the present paper we study Ricci pseudo-symmetry, Z-Ricci pseudo-symmetry and concircularly pseudo-symmetry conditions on a mixed generalized quasi-Einstein spacetime MG(QE)4. Also, it is proven that if dΛ, then MG(QE)4 spacetime does not admit heat flux, where d and Λ are the function and the cosmological constant, respectively. In the end of this paper we construct a non-trivial example of MG(QE)4 to prove its existence.

    Citation: Mohd Bilal, Mohd Vasiulla, Abdul Haseeb, Abdullah Ali H. Ahmadini, Mohabbat Ali. A study of mixed generalized quasi-Einstein spacetimes with applications in general relativity[J]. AIMS Mathematics, 2023, 8(10): 24726-24739. doi: 10.3934/math.20231260

    Related Papers:

    [1] Xiaosheng Li . New Einstein-Randers metrics on certain homogeneous manifolds arising from the generalized Wallach spaces. AIMS Mathematics, 2023, 8(10): 23062-23086. doi: 10.3934/math.20231174
    [2] Sudhakar Kumar Chaubey, Meraj Ali Khan, Amna Salim Rashid Al Kaabi . $ N(\kappa) $-paracontact metric manifolds admitting the Fischer-Marsden conjecture. AIMS Mathematics, 2024, 9(1): 2232-2243. doi: 10.3934/math.2024111
    [3] Shahroud Azami, Mehdi Jafari, Nargis Jamal, Abdul Haseeb . Hyperbolic Ricci solitons on perfect fluid spacetimes. AIMS Mathematics, 2024, 9(7): 18929-18943. doi: 10.3934/math.2024921
    [4] Richa Agarwal, Fatemah Mofarreh, Sarvesh Kumar Yadav, Shahid Ali, Abdul Haseeb . On Riemannian warped-twisted product submersions. AIMS Mathematics, 2024, 9(2): 2925-2937. doi: 10.3934/math.2024144
    [5] Esmail Hassan Abdullatif Al-Sabri, Muhammad Rahim, Fazli Amin, Rashad Ismail, Salma Khan, Agaeb Mahal Alanzi, Hamiden Abd El-Wahed Khalifa . Multi-criteria decision-making based on Pythagorean cubic fuzzy Einstein aggregation operators for investment management. AIMS Mathematics, 2023, 8(7): 16961-16988. doi: 10.3934/math.2023866
    [6] Ibrahim Al-Dayel, Mohammad Shuaib, Sharief Deshmukh, Tanveer Fatima . $ \phi $-pluriharmonicity in quasi bi-slant conformal $ \xi^\perp $-submersions: a comprehensive study. AIMS Mathematics, 2023, 8(9): 21746-21768. doi: 10.3934/math.20231109
    [7] Tong Wu, Yong Wang . Super warped products with a semi-symmetric non-metric connection. AIMS Mathematics, 2022, 7(6): 10534-10553. doi: 10.3934/math.2022587
    [8] Adara M. Blaga, Sharief Deshmukh . Einstein solitons with unit geodesic potential vector field. AIMS Mathematics, 2021, 6(8): 7961-7970. doi: 10.3934/math.2021462
    [9] Jia-Bao Liu, Rashad Ismail, Muhammad Kamran, Esmail Hassan Abdullatif Al-Sabri, Shahzaib Ashraf, Ismail Naci Cangul . An optimization strategy with SV-neutrosophic quaternion information and probabilistic hesitant fuzzy rough Einstein aggregation operator. AIMS Mathematics, 2023, 8(9): 20612-20653. doi: 10.3934/math.20231051
    [10] K. Tamilvanan, Jung Rye Lee, Choonkil Park . Hyers-Ulam stability of a finite variable mixed type quadratic-additive functional equation in quasi-Banach spaces. AIMS Mathematics, 2020, 5(6): 5993-6005. doi: 10.3934/math.2020383
  • In the present paper we study Ricci pseudo-symmetry, Z-Ricci pseudo-symmetry and concircularly pseudo-symmetry conditions on a mixed generalized quasi-Einstein spacetime MG(QE)4. Also, it is proven that if dΛ, then MG(QE)4 spacetime does not admit heat flux, where d and Λ are the function and the cosmological constant, respectively. In the end of this paper we construct a non-trivial example of MG(QE)4 to prove its existence.



    A Riemannian (or semi-Riemannian) manifold (Mn,g), (n3) is named an Einstein manifold if the Ricci tensor Ric(0) of type (0,2) satisfies: Ric=rng, where r represents the scalar curvature of (Mn,g). Einstein manifolds form a natural subclass of several classes of (Mn,g) determined by a curvature restriction imposed on their Ricci tensor [1]. Also, Einstein manifolds play a key role in Riemannian geometry, the general theory of relativity as well as in mathematical physics.

    Approximately two decades ago, the idea of quasi-Einstein manifolds was proposed and studied by Chaki and Maity [2]. An (Mn,g), (n>2) is said to be a quasi-Einstein manifold (QE)n if its Ric(0) satisfies

    Ric(ζ1,ζ2)=ag(ζ1,ζ2)+bU(ζ1)U(ζ2), (1.1)

    where a,b(0)R and U is a non-zero 1-form such that

    g(ζ1,ϱ)=U(ζ1),g(ϱ,ϱ)=U(ϱ)=1, (1.2)

    for all vector fields ζ1 and a unit vector field ϱ called the generator of (QE)n. Also, the 1-form U is named the associated 1-form. From (1.1) it is clear that for b=0, (QE)n reduces to an Einstein manifold. The notion of (QE)n came into existence during the study of exact solutions of Einstein's field equations as well as during considerations of quasi-umbilical hypersurfaces of semi-Euclidean spaces. For example, the Robertson-Walker spacetimes are (QE)4. Also, (QE)4 can be taken as a model of the perfect fluid spacetime in general relativity [3,4,5].

    An (Mn,g),(n3) is said to be a generalized quasi-Einstein manifold G(QE)n [6,7,8] if its Ric(0) satisfies

    Ric(ζ1,ζ2)=ag(ζ1,ζ2)+bU(ζ1)U(ζ2)+cV(ζ1)V(ζ2), (1.3)

    where a,b(0),c(0)R and U(0), V(0) are 1-forms such that

    g(ζ1,ϱ)=U(ζ1),g(ζ1,σ)=V(ζ1),g(ϱ,ϱ)=1,g(σ,σ)=1, (1.4)

    where σ and ϱ are mutually orthogonal unit vector fields, i.e., g(ϱ,σ)=0 and are known as generators of G(QE)n.

    In 2007, Bhattacharya et al. [9] introduced the notion of mixed generalized quasi-Einstein manifolds. An (Mn,g),(n3) is said to be a mixed generalized quasi-Einstein manifold MG(QE)n if its Ric(0) satisfies

    Ric(ζ1,ζ2)=ag(ζ1,ζ2)+bU(ζ1)U(ζ2)+cV(ζ1)V(ζ2)   +d[U(ζ1)V(ζ2)+U(ζ2)V(ζ1)], (1.5)

    where a,b(0),c(0),d(0)R and U(0), V(0) are 1-forms defined in (1.4).

    MG(QE)n has wide applications in cosmology and the general theory of relativity and is studied by several authors, such as [10,11,12,13] and many others.

    Putting ζ1=ζ2=ej in (1.5), where {ej} is an orthonormal basis of the tangent space at each point of MG(QE)n and taking summation over i (1jn), we get

    r=na+b+c, (1.6)

    where r is the scalar curvature of MG(QE)n.

    Let K be the Riemannian curvature tensor of an (Mn,g). The k-nullity distribution N(k) of an (Mn,g) is defined by [14,15]

    N(k):pNp(k)={ζ3TpMn:K[ζ1,ζ2)ζ3=k(g(ζ2,ζ3)ζ1g(ζ1,ζ3)ζ2]}, (1.7)

    for all ζ1,ζ2TpMn, where k is some smooth function.

    In a similar manner, the k-nullity distribution N(k) of a Lorentzian manifold can be defined. In a (QE)n, if the generator ϱ belongs to some k-nullity distribution N(k), then (Mn,g) is called an N(k)-(QE)n [16]. In 2007, Özgür and Triphati [17] proved that in an N(k)-(QE)n, k is not arbitrary, that is equal to a+bn1.

    A spacetime is a time oriented (M4,g) with Lorentz metric of signature (+,+,+,). A 4-dimensional Lorentzian manifold is said to be MG(QE)4 with the generator ϱ if its Ric(0) satisfies (1.5). Here U(0) and V(0) being1-forms such that σ is the heat flux vector field perpendicular to the velocity vector field ϱ. Therefore, for any ζ1, we have

    g(ζ1,ϱ)=U(ζ1),  g(ζ1,σ)=V(ζ1),  g(ϱ,ϱ)=1,  g(σ,σ)=1. (1.8)

    From (1.5) and (1.8) we have

    Ric(ζ1,ϱ)=(ab)U(ζ1)dV(ζ1),Ric(ζ1,σ)=(a+c)V(ζ1)+dU(ζ1),r=4ab+c. (1.9)

    In [18], a generalized (0,2) type symmetric Z tensor was introduced by Mantica and Molinari and defined as follows

    Z(ζ1,ζ2)=Ric(ζ1,ζ2)+ϕg(ζ1,ζ2), (1.10)

    where ϕ is an arbitrary scalar function. The properties of the Z tensor in several ways to a different extent have been studied in [19,20]. If the Z tensor at each point of the spacetime vanishes, then the spacetime is said to be Z flat.

    Einstein's field equation (without cosmological constant) is given by

    Ric(ζ1,ζ2)r2g(ζ1,ζ2)=ΛT(ζ1,ζ2), (1.11)

    where T and Λ represent the energy-momentum tensor and the Einstein gravitational constant, respectively.

    The idea of perfect fluid spacetime came into existence while discussing the structure of the universe. In general relativity the matter content of the spacetime is described by T. The matter content is supposed to be a fluid having pressure and density and possessing kinematical and dynamical quantities like acceleration, velocity, vorticity, shear and expansion. In a perfect fluid spacetime, the energy-momentum tensor T is given through the relation

    T(ζ1,ζ2)=μg(ζ1,ζ2)+(μ+ψ)U(ζ1)U(ζ2), (1.12)

    where ψ and μ stand for the energy density and isotropic pressure, respectively. ϱ is the unit timelike velocity vector field such that g(ζ1,ϱ)=U(ζ1) for all ζ1. In case of fluid matter distribution, the energy momentum tensor is given by Ellis [21] as

    T(ζ1,ζ2)=μg(ζ1,ζ2)+(μ+ψ)U(ζ1)U(ζ2)+V(ζ1)V(ζ2)   +U(ζ1)V(ζ2)+U(ζ2)V(ζ1), (1.13)

    where g(ζ1,ϱ)=U(ζ1), g(ζ1,σ)=V(ζ1), A=U(ϱ)=1, V(σ)>0, g(ϱ,σ)=0. σ is the heat conduction vector field perpendicular to the velocity vector field ϱ.

    Definition 1.1. An (Mn,g) is called Ricci-pseudosymmetric [22], if the tensors KRic and Q(g,Ric) are linearly dependent, where

    (K(ζ1,ζ2)Ric)(ζ3,ζ4)=Ric(K(ζ1,ζ2)ζ3,ζ4)Ric(ζ3,K(ζ1,ζ2)ζ4), (1.14)
    Q(g,Ric)(ζ3,ζ4;ζ1,ζ2)=Ric((ζ1gζ2)ζ3,ζ4)Ric(ζ3,(ζ1gζ2)ζ4), (1.15)

    and

    (ζ1gζ2)ζ3=g(ζ2,ζ3)ζ1g(ζ1,ζ3)ζ2, (1.16)

    for all ζ1, ζ2, ζ3, ζ4 on Mn and K denotes the curvature tensor of Mn. Then (Mn,g) is Ricci-pseudosymmetric if and only if

    (K(ζ1,ζ2)Ric)(ζ3,ζ4)=LsQ(g,Ric)(ζ3,ζ4;ζ1,ζ2) (1.17)

    holds on Gs, where Gs={ζ1Mn:Ricrngatζ1}, where Ls is a certain function on Gs.

    The concircular curvature tensor N of type (1,3) on an (Mn,g) (n3) is defined by [23]

    N(ζ1,ζ2)ζ3=K(ζ1,ζ2)ζ3rn(n1)[g(ζ2,ζ3)ζ1g(ζ1,ζ3)ζ2], (1.18)

    where r is the scalar curvature of the manifold.

    In view of (1.18), it follows that

    ¯N(ζ1,ζ2,ζ3,ζ4)=¯K(ζ1,ζ2,ζ3,ζ4)rn(n1)[g(ζ2,ζ3)g(ζ1,ζ4)g(ζ1,ζ3)g(ζ2,ζ4)], (1.19)

    where ¯N(ζ1,ζ2,ζ3,ζ4)=g(N(ζ1,ζ2)ζ3,ζ4), ¯K(ζ1,ζ2,ζ3,ζ4)=g(K(ζ1,ζ2)ζ3,ζ4) and ζ1, ζ2, ζ3, ζ4 χ(Mn). Here, ¯K is the curvature tensor of type (0,4) and ¯N(ζ1,ζ2,ζ3,ζ4) is the concircular curvature tensor of type (0, 4) which satisfies the following properties: ¯N(ζ1,ζ2,ζ3,ζ4)=¯N(ζ2,ζ1,ζ3,ζ4) and ¯N(ζ1,ζ2,ζ3,ζ4)=¯N(ζ1,ζ2,ζ4,ζ3).

    From (1.19), we have

    nj=1¯N(ej,ζ2,ej,ϱ)=Ric(ζ2,ϱ)+rng(ζ2,ϱ). (1.20)

    In this section, we consider Ricci-pseudosymmetric MG(QE)4 spacetime. Therefore, from (1.5) and (1.14)–(1.17) we have

    a[g(K(ζ1,ζ2)ζ3,ζ4)+g(ζ3,K(ζ1,ζ2)ζ4)]+b[U(K(ζ1,ζ2)ζ3)U(ζ4)+U(ζ3)A(K(ζ1,ζ2)ζ4)]+c[V(K(ζ1,ζ2)ζ3)V(ζ4)+V(ζ3)V(K(ζ1,ζ2)ζ4)]+d[U(K(ζ1,ζ2)ζ3)V(ζ4)+U(ζ4)V(K(ζ1,ζ2)ζ3)+U(ζ3)V(K(ζ1,ζ2)ζ4)+V(ζ3)U(K(ζ1,ζ2)ζ4)]=Ls(b[g(ζ2,ζ3)U(ζ1)U(ζ4)g(ζ1,ζ3)U(ζ2)U(ζ4)+g(ζ2,ζ4)U(ζ1)A(ζ3)g(ζ1,ζ4)U(ζ2)A(ζ3)]+c[g(ζ2,ζ3)V(ζ1)V(ζ4)g(ζ1,ζ3)V(ζ2)V(ζ4)+g(ζ2,ζ4)V(ζ1)V(ζ3)g(ζ1,ζ4)V(ζ2)V(ζ3)]+d[g(ζ2,ζ3)[U(ζ1)V(ζ4)+U(ζ4)V(ζ1)]g(ζ1,ζ3)[U(ζ2)V(ζ4)+U(ζ4)V(ζ2)]+g(ζ2,ζ4)[U(ζ1)V(ζ3)+U(ζ3)V(ζ1)]g(ζ1,ζ4)[U(ζ2)V(ζ3)+U(ζ3)V(ζ2)]). (2.1)

    Now, contracting the foregoing equation over ζ1 and ζ4, we obtain

    b[U(K(ϱ,ζ2)ζ3)U(ζ3)Ric(ζ2,ϱ)]+c[V(K(σ,ζ2)ζ3)V(ζ3)Ric(ζ2,σ)]+d[U(K(σ,ζ2)ζ3)+V(K(ϱ,ζ2)ζ3)U(ζ3)Ric(ζ2,σ)V(ζ3)Ric(ζ2,σ)]=Ls[b{g(ζ2,ζ3)4U(ζ2)U(ζ3)}+c{g(ζ2,ζ3)4V(ζ2)V(ζ3)}4d{U(ζ2)V(ζ3)+U(ζ3)V(ζ2)}]. (2.2)

    Putting ζ3=ϱ in (2.2), we obtain

    bRic(ζ2,ϱ)+c¯K(σ,ζ2,ϱ,σ)+d{¯K(ϱ,ζ2,ϱ,σ)+Ric(ζ2,σ)}=Ls[(3b+c)U(ζ2)+4dV(ζ2)], (2.3)

    where ¯K is the curvature tensor of type (0,4).

    By putting ζ3=ϱ and ζ4=σ in (2.1) and using (1.8), we obtain

    ¯K(ζ1,ζ2,ϱ,σ)=Ls[U(ζ2)V(ζ1)U(ζ1)V(ζ2)],  b+c0. (2.4)

    In view of (1.8), (2.3) and (2.4), we arrive at

    U(ζ2)[abb2+d23bLs]+V(ζ2)[bd+ad+cd3dLs]=0. (2.5)

    Putting ζ2=ϱ in (2.5), we get

    Ls=abb2+d23b. (2.6)

    Again, putting ζ2=σ in (2.5), we get

    either  d=0orLs=ab+c3. (2.7)

    If d=0, then from (2.6) we find Ls=ab3, as b0. If d0, then Ls=ab+c3. Comparing this with (2.6), it follows that c=d=0 and thus MG(QE)4 spacetime reduces to a quasi Einstein spacetime. Therefore, from (2.4) we have

    K(ζ1,ζ2)ϱ=(ab)3[U(ζ2)ζ1U(ζ1)ζ2], (2.8)

    which means that the generator ϱ belongs to the (ab)3-nullity distribution. Thus, the manifold turns into N(ab3) quasi-Einstein spacetime. Therefore, we can state the following result:

    Theorem 2.1. Every Ricci-pseudosymmetric MG(QE)4 spacetime is a N(ab3) quasi-Einstein spacetime, for some certain function Ls=ab3, where b+c0.

    An (Mn,g), (n3) is called Z-Ricci pseudo-symmetric if and only if the following relation

    ZQ=fQP(g,Q), (3.1)

    holds on the set GQ={ζ1Mn:P(g,Q)0atζ1}, where Q is the Ricci operator defined by Ric(ζ1,ζ2)=g(Qζ1,ζ2) and fQ is a smooth function on GQ. The tensor P(g,Q) is defined by

    P(g,Q)(ζ4;ζ1,ζ2)=Q((ζ1gζ2)ζ4), (3.2)

    for all vector fields ζ1, ζ2, ζ4.

    Now, if MG(QE)4 is a Z-Ricci pseudosymmetric, then from (3.1) we get

    (Z(ζ1,ζ2)Q)ζ4=fQP(g,Q)(ζ4;ζ1,ζ2). (3.3)

    If fQ=0, then (Mn,g) reduces to a Z-Ricci semisymmetric manifold. Now considering

    (Z(ζ1,ζ2)Q)ζ4=((ζ1zζ2)Q)ζ4     =(ζ1zζ2)Qζ4Q((ζ1zζ2)ζ4)=Z(ζ2,Qζ4)ζ1Z(ζ1,Qζ4)ζ2Z(ζ2,ζ4)Qζ1+Z(ζ1,ζ4)Qζ2. (3.4)

    Also,

    P(g,Q)(ζ4;ζ1,ζ2)=Q((ζ1gζ2)ζ4)=Q(g(ζ2,ζ4)ζ1g(ζ1,ζ4)ζ2)=g(ζ2,ζ4)Qζ1g(ζ1,ζ4)Qζ2. (3.5)

    By virtue of (3.4) and (3.5), (3.3) turns to

    Z(ζ2,Qζ4)ζ1Z(ζ1,Qζ4)ζ2Z(ζ2,ζ4)Qζ1+Z(ζ1,ζ4)Qζ2=fQ{g(ζ2,ζ4)Qζ1g(ζ1,ζ4)Qζ2}. (3.6)

    From (1.5), it follows that

    Qζ1=aζ1+bU(ζ1)ϱ+cV(ζ1)σ+d[U(ζ1)σ+V(ζ1)ϱ]. (3.7)

    By virtue of (3.7), (3.6) becomes

    Z(ζ2,aζ4)ζ1+bU(ζ4)Z(ζ2,ϱ)ζ1+cV(ζ4)Z(ζ2,σ)ζ1+dU(ζ4)Z(ζ2,σ)ζ1+dV(ζ4)Z(ζ2,ϱ)ζ1[Z(ζ1,aζ4)ζ2+bU(ζ4)Z(ζ1,ϱ)ζ2+cV(ζ4)Z(ζ1,σ)ζ2+dU(ζ4)Z(ζ1,σ)ζ2+dV(ζ4)Z(ζ1,ϱ)ζ2]={fQg(ζ2,ζ4)+Z(ζ2,ζ4)}Qζ1{fQg(ζ1,ζ4)+Z(ζ1,ζ4)}Qζ2. (3.8)

    In view of (1.5) and (1.10), (3.8) takes the form

    aZ(ζ2,ζ4)ζ1+bU(ζ4){(ab+ϕ)U(ζ2)dV(ζ2)}ζ1+cV(ζ4){(a+c+ϕ)V(ζ2)+dU(ζ2)}ζ1+dU(ζ4){(a+c+ϕ)V(ζ2)+dU(ζ2)}ζ1+dV(ζ4){(ab+ϕ)U(ζ2)dV(ζ2)}ζ1aZ(ζ1,ζ4)ζ2bU(ζ4){(ab+ϕ)U(ζ1)dV(ζ1)}ζ2cV(ζ4){(a+c+ϕ)V(ζ1)+dU(ζ1)}ζ2dU(ζ4){(a+c+ϕ)V(ζ1)+dU(ζ1)}ζ2dV(ζ4){(ab+ϕ)U(ζ1)dV(ζ1)}ζ2={fQg(ζ2,ζ4)+Ric(ζ2,ζ4)+ϕg(ζ2,ζ4)}Qζ1{fQg(ζ1,ζ4)+Ric(ζ1,ζ4)+ϕg(ζ1,ζ4)}Qζ2,

    which by putting ζ1=ϱ, ζ2=σ yields

    a{(a+c+ϕ)V(ζ4)+dU(ζ4)}ϱbdU(ζ4)ϱ+c(a+c+ϕ)V(ζ4)ϱ+d(a+c+ϕ)U(ζ4)ϱd2V(ζ4)ϱa{(ab+ϕ)U(ζ4)dV(ζ4)}σ+b(ab+ϕ)U(ζ4)σ+cdV(ζ4)σ+d2U(ζ4)σ+d(ab+ϕ)V(ζ4)σ={fQV(ζ4)+(a+c)V(ζ4)+dU(ζ4)+ϕV(ζ4)}Qϱ{fQU(ζ4)+(ab)U(ζ4)dV(ζ4)+ϕU(ζ4)}Qσ.

    Taking the inner product of the foregoing equation with ϱ, we lead to

    d(fQ+b+c)U(ζ4)+{(b+c)(a+c+ϕ)fQ(ab)}V(ζ4)=0. (3.9)

    Now by putting ζ4=ϱ in (3.9), we obtain d(fQ+b+c)=0. Thus, we have either d=0 or fQ=(b+c). For the first case d=0, MG(QE)4 spacetime reduces to a G(QE)4 spacetime. Hence, we can state the following theorem:

    Theorem 3.1. A Z-Ricci pseudo-symmetric MG(QE)4 spacetime is a G(QE)4 spacetime.

    An (Mn,g), (n3) is said to be concircularly pseudo-symmetric if and only if the following relation

    (N(ζ1,ζ2)Ric)(ζ3,ζ4)=LSQ(g,Ric)(ζ3,ζ4;ζ1,ζ2) (4.1)

    holds on the set Gs, where Gs={ζ1Mn:Ricrngatζ1} and Ls is a certain function on Gs. In view of (1.14)–(1.16), (4.1) turns to

    Ric(N(ζ1,ζ2)ζ3)ζ4)+Ric(ζ3,N(ζ1,ζ2)ζ4)=Ls[g(ζ2,ζ3)Ric(ζ1,ζ4)g(ζ1,ζ3)Ric(ζ2,ζ4)+g(ζ2,ζ4)Ric(ζ1,ζ3)g(ζ1,ζ4)Ric(ζ2,ζ3)]. (4.2)

    By using (1.5) in (4.2) it follows that

    a[g(N(ζ1,ζ2)ζ3,ζ4)+g(ζ3,N(ζ1,ζ2)ζ4)]+b[U(N(ζ1,ζ2)ζ3)U(ζ4)+U(ζ3)U(N(ζ1,ζ2)ζ4)]+c[V(N(ζ1,ζ2)ζ3)V(ζ4)+V(ζ3)V(N(ζ1,ζ2)ζ4)]+d[U(N(ζ1,ζ2)ζ3)V(ζ4)+U(ζ4)V(N(ζ1,ζ2)ζ3)+U(ζ3)V(N(ζ1,ζ2)ζ4)+V(ζ3)U(N(ζ1,ζ2)ζ4)]=Ls(b[g(ζ2,ζ3)U(ζ1)U(ζ4)g(ζ1,ζ3)U(ζ2)U(ζ4)+g(ζ2,ζ4)U(ζ1)U(ζ3)g(ζ1,ζ4)U(ζ2)U(ζ3)]+c[g(ζ2,ζ3)V(ζ1)V(ζ4)g(ζ1,ζ3)V(ζ2)V(ζ4)+g(ζ2,ζ4)V(ζ1)V(ζ3)g(ζ1,ζ4)V(ζ2)V(ζ3)]+d[g(ζ2,ζ3)[U(ζ1)V(ζ4)+U(ζ4)V(ζ1)]g(ζ1,ζ3)[U(ζ2)V(ζ4)+U(ζ4)V(ζ2)]+g(ζ2,ζ4)[U(ζ1)V(ζ3)+U(ζ3)V(ζ1)]g(ζ1,ζ4)[U(ζ2)V(ζ3)+U(ζ3)V(ζ2)]). (4.3)

    Now, contracting the foregoing equation over ζ1 and ζ4, we have

    b[U(N(ϱ,ζ2)ζ3)+U(ζ3){Ric(ζ2,ϱ)+r4g(ζ2,σ)}]+c[V(N(σ,ζ2)ζ3)+V(ζ3){Ric(ζ2,σ)+r4g(ζ2,σ)}]+d[U(N(σ,ζ2)ζ3)+V(N(ϱ,ζ2)ζ3)+U(ζ3){Ric(ζ2,σ)+r4g(ζ2,σ)}+V(ζ3){Ric(ζ2,ϱ)+r4g(ζ2,ϱ)}] =Ls[b{g(ζ2,ζ3)4U(ζ2)U(ζ3)}+c{g(ζ2,ζ3)4V(ζ2)V(ζ3)}   4d{U(ζ2)V(ζ3)+U(ζ3)V(ζ2)}]. (4.4)

    Putting ζ3=ϱ in (4.4), we get

    b[Ric(ζ2,ϱ)r4U(ζ2)]+c¯N(σ,ζ2,ϱ,σ)+d[¯N(ϱ,ζ2,ϱ,σ)+Ric(ζ2,σ)r4V(ζ2)]=Ls[(3b+c)U(ζ2)+4dV(ζ2)]. (4.5)

    Putting ζ3=ϱ and ζ4=σ in (4.3) and using (1.8), we can easily find

    b[g(N(ζ1,ζ2)σ,ϱ)]+c[g(N(ζ1,ζ2)ϱ,σ)]+d[g(N(ζ1,ζ2)ϱ,ϱ)g(N(ζ1,ζ2)σ,σ)]=Ls(b[A(ζ1)B(ζ2)+A(ζ2)B(ζ1)]+c[A(ζ2)B(ζ1)A(ζ1)B(ζ2)]+d[A(ζ2)A(ζ1)A(ζ1)A(ζ2)+B(ζ2)(B(ζ1))+B(ζ1)B(ζ2)]).

    On simplification, we obtain

    ¯N(ζ1,ζ2,ϱ,σ)=Ls[U(ζ2)V(ζ1)U(ζ1)V(ζ2)], where  b+c0. (4.6)

    From (1.18) and (4.6), we obtain

    ¯K(ζ1,ζ2,ϱ,σ)=(r12+Ls)[U(ζ2)V(ζ1)U(ζ1)V(ζ2)]. (4.7)

    In view of (1.9) and (4.6), from (4.5) it follows that

    U(ζ2)[3b2bc+4d212bLs]+V(ζ2)[5b+3c12Ls]d=0. (4.8)

    Putting ζ2=ϱ in (4.8) gives

    Ls=3b2bc+4d212b. (4.9)

    Again, putting ζ2=σ in (4.8), we get

    d=0orLs=b+c4. (4.10)

    If d=0, then from (4.9) we find Ls=3bc12, as b0. If d0, then Ls=b+c4. Comparing this with (4.9), it follows that c=d=0 and thus MG(QE)4 spacetime reduces to a (QE)4 spacetime. Therefore, from (4.7) we have

    K(ζ1,ζ2)ϱ=(ab)3[U(ζ2)ζ1U(ζ1)ζ2], (4.11)

    which means that the generator ϱ belongs to the (ab)3-nullity distribution. Thus, the manifold turns into N(ab3) quasi-Einstein spacetime. Therefore, we have the following result:

    Theorem 4.1. Every concircularly pseudo-symmetric MG(QE)4 spacetime is a N(ab3) quasi-Einstein spacetime, for some certain function Ls=ab3, where b+c0.

    Consider an MG(QE)4 spacetime satisfying Einstein's field equation without cosmological constant whose matter content is viscous fluid. Then, by (1.11) and (1.13), the Ric is of the form

    Ric(ζ1,ζ2)=(Λμ+r2)g(ζ1,ζ2)+Λ(μ+ψ)U(ζ1)U(ζ2)+ΛV(ζ1)V(ζ2)+Λ[U(ζ1)V(ζ2)+U(ζ2)V(ζ1)]. (5.1)

    From (1.5) and (5.1), we have

    ag(ζ1,ζ2)+bU(ζ1)U(ζ2)+cV(ζ1)V(ζ2)+d[U(ζ1)V(ζ2)+U(ζ2)V(ζ1)]=(Λμ+r2)g(ζ1,ζ2)+Λ(μ+ψ)U(ζ1)U(ζ2)+ΛV(ζ1)V(ζ2)+Λ[U(ζ1)V(ζ2)+U(ζ2)V(ζ1)]. (5.2)

    Putting ζ2=ϱ in (5.2), it follows that

    (abr2+Λψ)U(ζ1)=(dΛ)V(ζ1), (5.3)

    for all ζ1. Removing ζ1 from the above equation we have

    (abr2+Λψ)ϱ=(dΛ)σ. (5.4)

    Taking the inner product in (5.3) by ϱ yields

    abr2+Λψ=0. (5.5)

    Using (5.5) in (5.3) we get B=0 (which is inadmissible), provided dΛ. Thus we have the following result:

    Theorem 5.1. An MG(QE)4 spacetime can not admit heat flux if the smooth function d is not equal to the cosmological constant Λ.

    In this section, we construct a non-trivial example to prove the existence of an MG(QE)4 spacetime. We assume a Lorentzian manifold (M4,g) endowed with the Lorentzian metric g given by

    ds2=gijdζi1dζj1=ωr(dζ21)+1cr4(dr2)+r2(dθ2)+(rsinθ)2(dψ)2, (6.1)

    where i, j = 1,2,3,4 and ω, c are constants. Then the covariant and contravariant components of the metric are respectively given by

    g11=ωr,g22=1cr4,g33=r2,g44=(rsinθ)2,gij=0for  1ij4, (6.2)

    and

    g11=rω,  g22=cr4,  g33=1r2,  g44=1(rsinθ)2,  gij=0for  1ij4. (6.3)

    The only non-vanishing components of the Christoffel symbols are

    {233}=4rc, {112}=12r, {222}=c2r(c4r), {332}={442}=1r,{443}=cot(θ), {244}=(4rc)(sinθ)2, {344}=sin(2θ)2. (6.4)

    The non-zero derivatives of (6.4) are

    r{233}=4, r{112}=12r2, r{222}=c(c8r)2r2(c4r)2, r{332}=r{442}=1r2,θ{443}=cosec2(θ), r{244}=4(sinθ)2, θ{244}=(4rc)(sin(2θ)), θ{344}=cos(2θ).

    For the Riemannian curvature tensor,

    KlijK=|ζj1ζK1{lij}{liK}|=I+|{miK}{mij}{lmK}{lmj}|=II.

    The non-zero components of (Ⅰ) are:

    K1221=r{121}=12r2,K2332=r{233}=4,  K2442=r{244}=4(sinθ)2,  K3443=θ{344}=cos(2θ),

    and the non-zero components of (Ⅱ) are:

    K1221={m21}{1m2}{m22}{1m1}={121}{112}{222}{121}=2c4r4r2(c4r),
    K1313={m31}{1m3}{m33}{1m1}={233}{121}=4rc2r,
    K1441={m41}{1m4}{m44}{1m1}={244}{121}=(4rc)(sinθ)22r,
    K2332={m22}{2m3}{m33}{2m2}={232}{233}=4rcr,
    K2442={m42}{2m4}{m44}{2m2}={442}{244}{244}{222}=(sinθ)2(c8r)2r,
    K3443={m43}{3m4}{m44}{3m3}={443}{344}{244}{223}=cos(θ)2(4rc)(sinθ)2r.

    Adding components corresponding to (Ⅰ) and (Ⅱ), we have

    K1221=c3rr2(c4r),K1313=4rc2r,K1414=(4rc)(sinθ)22r,
    K2332=c2r,K2442=c(sinθ)22r,K3443=(5rc)(sinθ)2r.

    Thus, the non-zero components of the curvature tensor, up to symmetry are

    K1221=ω(c3r)r3(c4r),K1331=ω(c4r)2r2,K1441=ω(c4r)(sinθ)22r2,
    K2332=c2(4rc),K2442=c(sinθ)22(4rc),K3443=r(c5r)(sinθ)2

    and the non-zero components of the Ricci tensor are

    Ric11=gjhK1j1h=g22K1212+g33K1313+g44K1414=ωr3,
    Ric22=gjhK2j2h=g11K2121+g33K2323+g44K2424=3r(c4r),
    Ric33=gjhK3j3h=g11K3131+g22K3232+g44R3434=3,
    Ric44=gjhK4j4h=g11K4141+g22K4242+g33K4343=3(sinθ)2.

    The scalar curvature scal is given by

    scal=g11Ric11+g22Ric22+g33Ric33+g44Ric44=8r2.

    Let us consider the associated scalars a, b, c, d defined by a=3r2,b=4r2,c=2r2,d=3r2, and the 1-forms are defined by

    Ai(ζ1)={ωr,if i = 10,if 1 = 2, 3, 4andBi(ζ1)={12r2,if i = 40,if i = 1, 2, 3

    where generators are unit vector fields, then from (1.5), we have

    Ric11=ag11+bU1U1+cV1V1+d(U1V1+U1V1), (6.5)
    Ric22=ag22+bU2U2+cV2V2+d(U2V2+U2V2), (6.6)
    Ric33=ag33+bU3U3+cV3V3+d(U3V3+U3V3), (6.7)
    Ric44=ag44+bU4U4+cV4V4+d(U4V4+U4V4). (6.8)

    Now,

    R.H.S.of(6.5)=ag11+bU1U1+cV1V1+d(U1V1+U1V1)=3r2×ωr4r2×ωr+0+0=3ωr34ωr3=ωr3=R11=L.H.S.of(6.5). (6.9)

    By a similar argument it can be shown easily that (6.6), (6.7) and (6.8) are also true. Hence, (IR4, g) is an MG(QE)4.

    The most modern approaches to mathematical general relativity begin with the concept of a manifold. After Riemannian manifolds, the structure of Lorentzian manifold is the most significant subclass of pseudo-Riemannian manifolds. The theory of general relativity is mainly studied on a semi-Riemannian manifold which sometimes is not an Einstein spacetime. Thus, it was always necessary to expand the concept of Einstein manifolds to quasi-Einstein, generalized quasi-Einstein and mixed generalized quasi-Einstein manifolds. Mixed generalized quasi-Einstein manifolds play a key role in the general relativity and cosmology and has wide applications in general relativistic viscous fluid spacetime admitting heat flux and stress. In the present work, we investigate some geometric and physical properties of mixed generalized quasi-Einstein spacetimes in general relativity and cosmology satisfying certain conditions.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors are really thankful to the learned reviewers for their careful reading of our manuscript and their many insightful comments and suggestions that have improved the quality of our manuscript. The authors would also like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by grant code 23UQU4330007DSR003.

    The authors declare no conflicts of interest.



    [1] A. L. Besse, Einstein manifolds, classics in mathematics, Berlin: Springer-Verlag, 1987. https://doi.org/10.1007/978-3-540-74311-8
    [2] M. C. ChaKi, R. K. Maity, On quasi-Einstein manifolds, Publ. Math. Debrecen, 57 (2000), 297–306. https://doi.org/10.5486/PMD.2000.2169 doi: 10.5486/PMD.2000.2169
    [3] C. A. Mantica, L. G. Molinari, U. C. De, A condition for a perfect fluid spacetime to be a generalized Robertson-WalKer space-time, J. Math. Phys., 57 (2016), 022508. https://doi.org/10.1063/1.4941942 doi: 10.1063/1.4941942
    [4] C. A. Mantica, Y. J. Suh, U. C. De, A note on generalized Robertson-WalKer spacetimes, Int. J. Geom. Meth. Mod. Phys., 13 (2016), 1650079. https://doi.org/101142/s0219887816500791
    [5] U. C. De, G. C. Ghosh, On quasi Einstein and special quasi Einstein manifolds, Proc. Int. Conf. Math. Appl., 2004.
    [6] A. A. Shaikh, S. K. Hui, Some classes of generalized quasi-Einstein manifolds, Commun. Korean Math. Soc., 24 (2009), 415–424. https://doi.org/10.4134/CKMS.2009.24.3.415 doi: 10.4134/CKMS.2009.24.3.415
    [7] S. Güler, S. A. Demirbag, A study of generalized quasi Einstein spacetimes with applications in general relativity, Int. J. Theor. Phys., 55 (2016), 548–562. https://doi.org/10.1007/s10773-015-2692-1 doi: 10.1007/s10773-015-2692-1
    [8] U. C. De, G. C. Ghosh, On generalized quasi Einstein manifolds, Kyungpook Math. J., 44 (2004), 607–615.
    [9] A. Bhattacharya, T. De, D. Debnath, On mixed generalized quasi-Einstein manifold and some properties, An. Stiint. Univ. Al I-Mat., 53 (2007), 137–148.
    [10] M. Vasiulla, A. Haseeb, F. Mofarreh, M. Ali, Application of mixed generalized quasi-Einstein spacetimes in general relativity, Mathematics, 10 (2022), 3749. https://doi.org/10.3390/math10203749 doi: 10.3390/math10203749
    [11] D. T. Leyson, R. S. Lemence, On mixed generalized quasi-Einstein manifolds, J. Math. Soc. Philipp., 39 (2016), 17–34.
    [12] A. Taleshian, A. A. Hosseinzadeh, K. Darvishi, On some classes of mixed generalized quasi-Einstein manifolds, Azerbaijan J. Math., 4 (2014), 58–63.
    [13] U. C. De, H. K. El-Sayied, N. Syied, S. Shenawy, Mixed generalized quasi-Einstein warped product manifolds, Bull. Iran. Math. Soc., 48 (2022), 1311–1324. https://doi.org/10.1007/s41980-021-00582-y doi: 10.1007/s41980-021-00582-y
    [14] S. Güler, S. A. Demirbag, On Ricci Symmetric generalized quasi Einstein spacetimes, Miskolc Math. Notes, 16 (2015), 853–868. https://doi.org/10.18514/MMN.2015.1447 doi: 10.18514/MMN.2015.1447
    [15] S. Tanno, Ricci curvatures of contact Riemannian manifolds, Tohoku Math. J., 40 (1988), 441–448. https://doi.org/10.2748/tmj/1178227985 doi: 10.2748/tmj/1178227985
    [16] M. M. Triphati, J. S. Kim, On N(K)-Einstein manifolds. Commun. Korean Math. Soc., 22 (2007), 411–417.
    [17] C. Özgür, M. M. Tripathi, On the concircular curvature tensor of an N(K)-quasi Einstein manifold, Math. Pannon., 18 (2007) 95–100.
    [18] C. A. Mantica, L. G. Molinari, WeaKly Z symmetric manifolds, Acta Math. Hunger., 135 (2012), 80–96. https://doi.org/10.1007/s10474-011-0166-3 doi: 10.1007/s10474-011-0166-3
    [19] M. Ali, A. Haseeb, F. Mofarreh, M. Vasiulla, Z-symmetric manifolds admitting Schouten tensor, Mathematics, 10 (2022), 4293. https://doi.org/10.3390/math10224293 doi: 10.3390/math10224293
    [20] C. A. Mantica, Y. J. Suh, Pseudo Z symmetric Riemannian manifolds with harmonic curvature tensors, Int. J. Geom. Methods Mod. Phys., 9 (2012), 1250004. https://doi.org/10.1142/S0219887812500041 doi: 10.1142/S0219887812500041
    [21] G. F. R. Ellis, Relativistic cosmology, Academic Press, 1971.
    [22] R. Deszcz, On pseudo symmetric spaces, Bull. Soc. Math. Belg. Ser. A, 44 (1992), 1–34.
    [23] U. C. De, A. A. Shaikh, Differential geometry of manifolds, New Delhi: Narosa Publishing House (Pvt. Ltd.), 2007.
  • This article has been cited by:

    1. Mohd Vasiulla, Mohabbat Ali, İnan Ünal, A study of mixed super quasi-Einstein manifolds with applications to general relativity, 2024, 21, 0219-8878, 10.1142/S0219887824501779
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1384) PDF downloads(76) Cited by(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog