In the present paper we study Ricci pseudo-symmetry, Z-Ricci pseudo-symmetry and concircularly pseudo-symmetry conditions on a mixed generalized quasi-Einstein spacetime $ MG(QE)_{4} $. Also, it is proven that if $ d\neq \varLambda $, then $ MG(QE)_{4} $ spacetime does not admit heat flux, where $ d $ and $ \varLambda $ are the function and the cosmological constant, respectively. In the end of this paper we construct a non-trivial example of $ MG(QE)_{4} $ to prove its existence.
Citation: Mohd Bilal, Mohd Vasiulla, Abdul Haseeb, Abdullah Ali H. Ahmadini, Mohabbat Ali. A study of mixed generalized quasi-Einstein spacetimes with applications in general relativity[J]. AIMS Mathematics, 2023, 8(10): 24726-24739. doi: 10.3934/math.20231260
In the present paper we study Ricci pseudo-symmetry, Z-Ricci pseudo-symmetry and concircularly pseudo-symmetry conditions on a mixed generalized quasi-Einstein spacetime $ MG(QE)_{4} $. Also, it is proven that if $ d\neq \varLambda $, then $ MG(QE)_{4} $ spacetime does not admit heat flux, where $ d $ and $ \varLambda $ are the function and the cosmological constant, respectively. In the end of this paper we construct a non-trivial example of $ MG(QE)_{4} $ to prove its existence.
[1] | A. L. Besse, Einstein manifolds, classics in mathematics, Berlin: Springer-Verlag, 1987. https://doi.org/10.1007/978-3-540-74311-8 |
[2] | M. C. ChaKi, R. K. Maity, On quasi-Einstein manifolds, Publ. Math. Debrecen, 57 (2000), 297–306. https://doi.org/10.5486/PMD.2000.2169 doi: 10.5486/PMD.2000.2169 |
[3] | C. A. Mantica, L. G. Molinari, U. C. De, A condition for a perfect fluid spacetime to be a generalized Robertson-WalKer space-time, J. Math. Phys., 57 (2016), 022508. https://doi.org/10.1063/1.4941942 doi: 10.1063/1.4941942 |
[4] | C. A. Mantica, Y. J. Suh, U. C. De, A note on generalized Robertson-WalKer spacetimes, Int. J. Geom. Meth. Mod. Phys., 13 (2016), 1650079. https://doi.org/101142/s0219887816500791 |
[5] | U. C. De, G. C. Ghosh, On quasi Einstein and special quasi Einstein manifolds, Proc. Int. Conf. Math. Appl., 2004. |
[6] | A. A. Shaikh, S. K. Hui, Some classes of generalized quasi-Einstein manifolds, Commun. Korean Math. Soc., 24 (2009), 415–424. https://doi.org/10.4134/CKMS.2009.24.3.415 doi: 10.4134/CKMS.2009.24.3.415 |
[7] | S. Güler, S. A. Demirbag, A study of generalized quasi Einstein spacetimes with applications in general relativity, Int. J. Theor. Phys., 55 (2016), 548–562. https://doi.org/10.1007/s10773-015-2692-1 doi: 10.1007/s10773-015-2692-1 |
[8] | U. C. De, G. C. Ghosh, On generalized quasi Einstein manifolds, Kyungpook Math. J., 44 (2004), 607–615. |
[9] | A. Bhattacharya, T. De, D. Debnath, On mixed generalized quasi-Einstein manifold and some properties, An. Stiint. Univ. Al I-Mat., 53 (2007), 137–148. |
[10] | M. Vasiulla, A. Haseeb, F. Mofarreh, M. Ali, Application of mixed generalized quasi-Einstein spacetimes in general relativity, Mathematics, 10 (2022), 3749. https://doi.org/10.3390/math10203749 doi: 10.3390/math10203749 |
[11] | D. T. Leyson, R. S. Lemence, On mixed generalized quasi-Einstein manifolds, J. Math. Soc. Philipp., 39 (2016), 17–34. |
[12] | A. Taleshian, A. A. Hosseinzadeh, K. Darvishi, On some classes of mixed generalized quasi-Einstein manifolds, Azerbaijan J. Math., 4 (2014), 58–63. |
[13] | U. C. De, H. K. El-Sayied, N. Syied, S. Shenawy, Mixed generalized quasi-Einstein warped product manifolds, Bull. Iran. Math. Soc., 48 (2022), 1311–1324. https://doi.org/10.1007/s41980-021-00582-y doi: 10.1007/s41980-021-00582-y |
[14] | S. Güler, S. A. Demirbag, On Ricci Symmetric generalized quasi Einstein spacetimes, Miskolc Math. Notes, 16 (2015), 853–868. https://doi.org/10.18514/MMN.2015.1447 doi: 10.18514/MMN.2015.1447 |
[15] | S. Tanno, Ricci curvatures of contact Riemannian manifolds, Tohoku Math. J., 40 (1988), 441–448. https://doi.org/10.2748/tmj/1178227985 doi: 10.2748/tmj/1178227985 |
[16] | M. M. Triphati, J. S. Kim, On $N(\mathcal K)$-Einstein manifolds. Commun. Korean Math. Soc., 22 (2007), 411–417. |
[17] | C. Özgür, M. M. Tripathi, On the concircular curvature tensor of an $N(\mathcal K)$-quasi Einstein manifold, Math. Pannon., 18 (2007) 95–100. |
[18] | C. A. Mantica, L. G. Molinari, WeaKly Z symmetric manifolds, Acta Math. Hunger., 135 (2012), 80–96. https://doi.org/10.1007/s10474-011-0166-3 doi: 10.1007/s10474-011-0166-3 |
[19] | M. Ali, A. Haseeb, F. Mofarreh, M. Vasiulla, Z-symmetric manifolds admitting Schouten tensor, Mathematics, 10 (2022), 4293. https://doi.org/10.3390/math10224293 doi: 10.3390/math10224293 |
[20] | C. A. Mantica, Y. J. Suh, Pseudo Z symmetric Riemannian manifolds with harmonic curvature tensors, Int. J. Geom. Methods Mod. Phys., 9 (2012), 1250004. https://doi.org/10.1142/S0219887812500041 doi: 10.1142/S0219887812500041 |
[21] | G. F. R. Ellis, Relativistic cosmology, Academic Press, 1971. |
[22] | R. Deszcz, On pseudo symmetric spaces, Bull. Soc. Math. Belg. Ser. A, 44 (1992), 1–34. |
[23] | U. C. De, A. A. Shaikh, Differential geometry of manifolds, New Delhi: Narosa Publishing House (Pvt. Ltd.), 2007. |