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1. Introduction

A Riemannian (or semi-Riemannian) manifold (M", g), (n > 3) is named an Einstein manifold if
the Ricci tensor Ric(# 0) of type (0,2) satisfies: Ric = *g, where r represents the scalar curvature
of (M", g). Einstein manifolds form a natural subclass of several classes of (M", g) determined by a
curvature restriction imposed on their Ricci tensor [1]. Also, Einstein manifolds play a key role in

Riemannian geometry, the general theory of relativity as well as in mathematical physics.

Approximately two decades ago, the idea of quasi-Einstein manifolds was proposed and studied
by Chaki and Maity [2]. An (M",g), (n > 2) is said to be a quasi-Einstein manifold (QF), if its
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Ric(# 0) satisfies

Ric({1,$p) = ag(d1, ) + bU)HU(L), (L.1)

where a, b(# 0) € R and U is a non-zero 1-form such that

g(l1,0) =U(1), glo,0)=U(o) =1, (1.2)

for all vector fields £; and a unit vector field o called the generator of (QF),. Also, the 1-form U
is named the associated 1-form. From (1.1) it is clear that for b = 0, (QF), reduces to an Einstein
manifold. The notion of (QF), came into existence during the study of exact solutions of Einstein’s
field equations as well as during considerations of quasi-umbilical hypersurfaces of semi-Euclidean
spaces. For example, the Robertson-Walker spacetimes are (QFE),. Also, (QF)4 can be taken as a
model of the perfect fluid spacetime in general relativity [3-5].

An (M", g),(n > 3) is said to be a generalized quasi-Einstein manifold G(QE), [6-8] if its Ric(# 0)
satisfies

Ric(¢1,8) = ag(&r, &) + bULDU(L) + cVIED VL), (1.3)
where a, b(# 0),c(# 0) € R and U(# 0), V(# 0) are 1-forms such that

8(51,0) = U(gl)a g(gl,o-) = V(gl)’ g(Q?Q) = 1’ g(O', O-) = 1’ (14)

where o and o are mutually orthogonal unit vector fields, i.e., g(o, o) = 0 and are known as generators
of G(QE),.

In 2007, Bhattacharya et al. [9] introduced the notion of mixed generalized quasi-Einstein
manifolds. An (M", g),(n > 3) is said to be a mixed generalized quasi-Einstein manifold MG(QFE), if
its Ric(# 0) satisfies

Ric({1,8) = ag(d1,4) + bU)U(L) + cV(IEDV(E) (L.5)
+d[U)V($) + U)VIED],

where a, b(# 0), c(# 0),d(# 0) € R and U(# 0), V(# 0) are 1-forms defined in (1.4).

MG(QE), has wide applications in cosmology and the general theory of relativity and is studied by
several authors, such as [10-13] and many others.

Putting {; = {», = e; in (1.5), where {e;} is an orthonormal basis of the tangent space at each point
of MG(QE), and taking summation over i (1 < j < n), we get

r=na+b+c, (1.6)

where r is the scalar curvature of MG(QE),.
Let K be the Riemannian curvature tensor of an (M",g). The k-nullity distribution N (k) of an
(M", g) is defined by [14, 15]

N(k) :p— Nyk) ={3 € T,M" : K[{1, H) = k(8. 83)6 — 881, 83)E 1 (L.7)

for all {1,¢, € T,M", where k is some smooth function.
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In a similar manner, the k-nullity distribution N (k) of a Lorentzian manifold can be defined. In a
(QE),, if the generator o belongs to some k-nullity distribution N(k), then (M", g) is called an N (k)-
(QE), [16]. In 2007, Ozgiir and Triphati [17] proved that in an N'(k)-(QE),, k is not arbitrary, that is
equal to %

A spacetime is a time oriented (M*, g) with Lorentz metric of signature (+,+,+,—). A 4-
dimensional Lorentzian manifold is said to be MG(QE), with the generator o if its Ric(# 0)
satisfies (1.5). Here U(# 0) and V(# 0) beingl-forms such that o is the heat flux vector field

perpendicular to the velocity vector field o. Therefore, for any {;, we have

8(&1,0) = U(&1), g(&1,0) =V(), glo,0)=-1, glo,o) =1. (1.8)
From (1.5) and (1.8) we have
Ric(¢1,0) = (a=D)U(&1) — dV($), Ric(&y, 0) = (a + o)V(E) +dU(4), (1.9)

r=4a->b+c.

In [18], a generalized (0, 2) type symmetric Z tensor was introduced by Mantica and Molinari and
defined as follows

Z($1, &) = Ric(l1, &) + ¢g(d1, o), (1.10)

where ¢ is an arbitrary scalar function. The properties of the Z tensor in several ways to a different
extent have been studied in [19, 20]. If the Z tensor at each point of the spacetime vanishes, then the
spacetime is said to be Z flat.

Einstein’s field equation (without cosmological constant) is given by

Ric(41, &) - gg(gl,gz) = AT(41, 8), (1.11)

where T and A represent the energy-momentum tensor and the Einstein gravitational constant,
respectively.

The idea of perfect fluid spacetime came into existence while discussing the structure of the
universe. In general relativity the matter content of the spacetime is described by 7. The matter
content is supposed to be a fluid having pressure and density and possessing kinematical and dynamical
quantities like acceleration, velocity, vorticity, shear and expansion. In a perfect fluid spacetime, the
energy-momentum tensor 7" is given through the relation

T(1,8) = pg(dr, &) + (w+ YU U(LL), (1.12)

where ¢ and u stand for the energy density and isotropic pressure, respectively. o is the unit timelike
velocity vector field such that g({;,0) = U({y) for all £;. In case of fluid matter distribution, the energy
momentum tensor is given by Ellis [21] as

T(41,02) = pg(d1, &) + (w+YUEDHU(L) + VLD V(L) (1.13)
+ U(0)V((2) + ULV,

where g({1,0) = U(&)), g(&1,0) = V(&§1), A = Ulp) = -1, V(o) > 0, g(o,0) = 0. o is the heat
conduction vector field perpendicular to the velocity vector field o.
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Definition 1.1. An (M", g) is called Ricci-pseudosymmetric [22], if the tensors K - Ric and Q(g, Ric)
are linearly dependent, where

(K1, 82) - Ric)(L3,8s) = —Ric(K($1, $2)85, 4s) — Ric($, K (1, £2)Ea), (1.14)
Q(g, Ric) ({3, 4a; (1, &) = Ric(($y Ng )83, 8a) = Ric($3, (81 Ny $)4a), (L.15)

and
(&1 Ng )3 = 8(8r, 308 — 881, $3)0o, (1.16)

for all {1, &, &, & on M" and K denotes the curvature tensor of M". Then (M",g) is Ricci-
pseudosymmetric if and only if

(K1, ) - Rie)($3, &) = LyQ(g, Ric)(&3, 4a; {1, $) (L.17)
holds on G, where G, = {{; € M" : Ric # *g at {1}, where Ly is a certain function on G.

The concircular curvature tensor N of type (1,3) on an (M", g) (n > 3) is defined by [23]

N, &) = K&, 8 — n(nr— 1)[8(52,43)41 - g1, ), (1.18)

where r is the scalar curvature of the manifold.
In view of (1.18), it follows that

N &ay Gas &) = K1y Gas G50 L) —

’
nn—1)

where N({1,8,8,8) = 8N, 06y L)y Kyl G la) = 8K, 0, 8) and &, &, Gy G

€ x(M™). Here, K is the curvature tensor of type (0,4) and N(¢ 1,42, 3, 44) 1s the concircular curvature
tensor of type (0,4) which satisfies the following properties: N({1,$2,{3,44) = —N({, (1, (3, 44) and

N1, 0,83, 80) = =N, &y as 85)-

From (1.19), we have

[8({2, 83)8(41, 8s) — 8(81, 3)8(L2, 4], (1.19)

>\ Niej.&2,€.0) = ~Ric(2,0) + ~8(02,0). (120)

J=1

2. Ricci pseudo-symmetric MG(QFE), spacetimes

In this section, we consider Ricci-pseudosymmetric MG(QE), spacetime. Therefore, from (1.5)
and (1.14)—(1.17) we have

alg(K(&1, 8283, L) + (83, K(&1, £2)Ea)] + bLU(K(L1, )8 U (L) + U(G)A(K(, £2)8)]
+ c[V(K(£1, LBV + VIG)VK (G, £2)8a)] + dIUK (L, $2)85)V ()
+ U(L)V(K (&1, 8)8) + UGB VK, £2)48a) + VG U(K (L1, £2)44)]
= Ls(b[g(é“z, $BIUEDUE) = 851, )ULULL) + 8(42, L) U(L1)AL)
= 8(£1, LDU(LDA(G)] + clg(L2, H)VIEDV(Ea) — 8(41, IV V(L)
+8(£L2, L)V(IEDV(E) — 8(41, L) V() V(G)]
+d[g(L, BIUEDV(L) + UL)VIED] — (L1, BIU) V(L) + U V(H)]
+ 8(&, EDLUG)V(E) + UGB VED] — 8(81, EolUL)V(EG) + U(§3)V(§2)])-

2.1)
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Now, contracting the foregoing equation over {; and 4, we obtain

blU(K (0, $2)3) — U(L3)Ric(Lr, 0)] + c[V(K (0, £2)43) — V({)Ric(Ls, 0)]
+d[U(K (o, $)83) + V(K (0, )83) — U(GB)Ric(S, ) — V(E3)Ric((, 0)]

2.2
= Li[b{—g({2, 3) — AU (L) UGB} + ¢{g(n, §3) — 4V V(G)) 2
—4d{U(&)V(5) + UG)V(L)H.
Putting {5 = o in (2.2), we obtain
bRic(8r,0) + ¢K(0, &2, 0,0) + d{K (0, £, 0,0) + Ric(ls, o) 2.3)
= L,[(3b + 0)U(L) + 4dV(H)],
where K is the curvature tensor of type (0, 4).
By putting {3 = o and ¢4 = o in (2.1) and using (1.8), we obtain
K1, 42,0,0) = LUV - UGV, b+c #0. (2.4)
In view of (1.8), (2.3) and (2.4), we arrive at
U(&)[ab — b* + d* = 3bL,] + V(&)[—bd + ad + cd — 3dL,] = 0. (2.5)
Putting &, = o in (2.5), we get
ab —b* + d*
L, = — 3 (2.6)
Again, putting £, = o in (2.5), we get
cither d =0 or L, = 222%€ @.7)

3

If d = 0, then from (2.6) we find L, = %, asb # 0. If d # 0, then L, = ”‘Tb”. Comparing

this with (2.6), it follows that ¢ = d = 0 and thus MG(QE), spacetime reduces to a quasi Einstein
spacetime. Therefore, from (2.4) we have

(a-b)
3

K1, 2o = (UL — U)o, (2.8)

(a=b)
3
N (%) quasi-Einstein spacetime. Therefore, we can state the following result:

which means that the generator o belongs to the -nullity distribution. Thus, the manifold turns into

Theorem 2.1. Every Ricci-pseudosymmetric MG(QE)4 spacetime is a N(“3;b) quasi-Einstein

spacetime, for some certain function Ly = %, where b + ¢ # 0.
3. Z-Ricci pseudo-symmetric MG(QE), spacetime

An (M", g), (n > 3) is called Z-Ricci pseudo-symmetric if and only if the following relation
Z-Q = foP(g,Q), (3.1
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holds on the set Gy = {{; € M" : P(g,Q) # 0 at ¢}, where Q is the Ricci operator defined by
Ric({1,$) = g(QL, &) and fy is a smooth function on Gg. The tensor P(g, Q) is defined by

P(g, QL4 41, 82) = QUG Ag £2)4w), (3.2)

for all vector fields ¢, &3, .
Now, it MG(QE), is a Z-Ricci pseudosymmetric, then from (3.1) we get

(Z(01,0) - Qs = foP(8, QL4 {15 0). (3.3)

If fq =0, then (M", g) reduces to a Z-Ricci semisymmetric manifold. Now considering

(Z(1,0) - Qs (&1 A 0) - Q)
(1 N, )R — QU N, &) (3.4)

Z($2, QUG — Z(81, QL) — Z(4o, LR HZ(E, £4)QUb.

Also,

P(g, Q)4 41, 8) = QUE N $)Ea)
= Q(g(L2, L)1 — 8(41, L) dn) (3.5)
= 8({2, LR — 841, L)L

By virtue of (3.4) and (3.5), (3.3) turns to

Z(5, QL) — Z(81, QL) — Z(8, LR +Z(L1, ()R

3.6)
= falg($2, LR — (&1, L))
From (1.5), it follows that
Qs = aly +bU({)o + cV()o +d[U(L)o + V(o 3.7
By virtue of (3.7), (3.6) becomes
Z($r, ala)ly + bU(L)Z(L, 0081 + V(LD Z(LL, o)y + dU(L4)Z(8, )
+dV({)Z($r, 0000 — [Z2(&1, als)ls + DU Z(L1, 000 + V(L) Z(Eh, o) (3.8)

+dU(L)Z(8y, ) + dV(ED)Z(L, 0)4]
= {fag($2, &4) + Z(o, EVQL — { fg(&1, {)+Z(41, L)}QU.

In view of (1.5) and (1.10), (3.8) takes the form

aZ(&r, &)y + bUGa(a — b+ P)U(L>) — dV(L)I + cV(Gai(a + ¢ + $)V(H) + dU(DL)Y
+dUGl(a+ ¢+ P)V(H) +dUL)Y + dV(IEia - b+ U(L) — dV(L)I
—aZ(&1, 808 = bULa = b+ )U() — dV(E)IL — cVIl(a + ¢ + §)V(E) + dU )
—dU((@+ c+ PV() +dUDIL — dVIE)(a — b + 9)U(1) — dV(E)I

= {fag({2, &u) + Ric($a, 8a) + ¢8(La, EVQL1 — { fag (&1, ) +Ric(Ly, {a)+9g(L1, L)L,
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which by putting {; = o, {, = o yields

al(a +c+ $)V(Ly) + dUEn)}o — bdU({n)o + cla + ¢ + 9)V(E)o + d(a + ¢ + 9)U(L1)o
~d*V(&)o — al(a— b+ )U(L) — dV(E)lo +bla— b+ U)o + cdV (Lo

+d? U)o +d(a— b+ @V(L)o = {foV(&) + (@ + V(&) +dU(L) + $V(4)) Qo
—{faU(&) + (a = D)U(Ls) — dV(&s) + pU({)Qo-

Taking the inner product of the foregoing equation with o, we lead to

d(fa+b+)U(G) +{(b+c)a+c+ ) — fala—b)IV(L) = 0. (3.9)

Now by putting {4 = 0 1n (3.9), we obtain d(fq+b+c) = 0. Thus, we have eitherd = O or fg = —(b+0).
For the first case d = 0, MG(QE), spacetime reduces to a G(QFE), spacetime. Hence, we can state the
following theorem:

Theorem 3.1. A Z-Ricci pseudo-symmetric MG(QE), spacetime is a G(QE)4 spacetime.
4. Concircularly pseudo-symmetric MG(QE), spacetime

An (M", g), (n > 3) is said to be concircularly pseudo-symmetric if and only if the following relation

(N(£1,8) - Ric)((3, &) = LsQ(g, Ric) ({3, 445 {1, 82) 4.1)

holds on the set Gy, where G, = {{; € M" : Ric # ~g at {1} and L, is a certain function on G. In view
of (1.14)—(1.16), (4.1) turns to

Ric(N(£1,$2)83)8s) + Ric(L3, N(L1, £2)4s) 4.2)
= L,[g({2, 3)Ric(r, 8s) — g(41, 3)Ric(Ln, 44)
+8({2, {4)Ric(dy, 83) — g(41, {a)Ric((r, §3)].

By using (1.5) in (4.2) it follows that

alg(N({1, 0283, 8a) + 8(43, N(L1, $2)8a)] + BIUN(L1, £)3B)U(L) + U(G)U (N, $2)4)]
+ c[VIN(&1, $)E3)V(E) + V(GBI VIN(EL )] + dITUNL $)83) V() + UG VN, $)483)
+ U(G)V(IN(1, $)4s) + VI)UN(E, $) )]

= Ls(b[g({z, G)UDUE) — 84, B)ULU(L) + 8(8, L) UEDUG) — 8(41, LU (L)UB)] (4.3)

+¢[8(82, VDV = 8(41, BIVLIVLL) + 8(42, LD VIED V) = 841, Lo V(L) V(E3)]
+d[g(5, BNUEDV(L) + UG)VED] = (&1, BIULI V(L) + UL V(H)]

+8(£2, ZDLU D V(G) + UG)VED] = 8(41, EDLU (L) V() + U({3)V(§2)]).

Now, contracting the foregoing equation over {; and ;, we have
bIU(N(0,2)83) + U(GB){=Ric(r,0) + gg({z,v)}] +c[V(N(o, £)03)
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+V(GH-Ric(5, 0) + gg(éz,ﬁ)}] +d[U(N(0, 2)83) + V(N(0, £2)43)

+U(G)(—Ric(&o, o) + §g<§2, o)} + V(E)(=Ric(l. 0) + gg@z,g)}] (4.4)

= L[b{—g({2, $3) — 4U(L)U($3)} + clg(dn, £3) — 4V(H) V()
—4d{U(5)V($3) + UGBV},

Putting {5 = o in (4.4), we get
bIRic(52,0) = 7U@)] + N (@, 2. 0,0)
+d[N(e. £2,0.0) + Ric(02,0) = V(&) (4.5)
= LJ(3b + )U(L) + 4dV(H)].

Putting {3 = 0 and {4 = o in (4.3) and using (1.8), we can easily find

bl-g(N(&1, {)o, 0)] + c[g(N(L1, $)o, 0)] + d[g(N(&1, $)o, 0) — g(N(&1, {)o, o))
= Ls(b[—A(fl)B(fz) + A($2)B(Z)] + c[A(L)B(G) — A(41)B((L)]
+ d[A(L)A() — A(L1)A(L) + B(&)(—-B(4) + B(d )B(fz)])-

On simplification, we obtain

N(&1,4,0,0) = LU V(L) = U)V(L)], where b+ c # 0. (4.6)
From (1.18) and (4.6), we obtain
K1 82.0.0) = (35 + LIUEVE) - UGV (4.7)
In view of (1.9) and (4.6), from (4.5) it follows that
U(&)[-3b% — be + 4d° — 12bL,] + V(&)[-5b + 3¢ — 12L,]d = 0. (4.8)
Putting £, = o in (4.8) gives
—3b? — be + 4d?
L, = 0 . (4.9)
Again, putting , = o in (4.8), we get
d=0 or L= _b4+c. (4.10)

If d = 0, then from (4.9) we find L, = ‘311’2“', asb # 0. Ifd # 0, then L; = #. Comparing this
with (4.9), it follows that ¢ = d = 0 and thus MG(QFE), spacetime reduces to a (QF), spacetime.

Therefore, from (4.7) we have

K, Lo = —=—[U() — UG, (4.11)

(a=b)
3
N (%) quasi-Einstein spacetime. Therefore, we have the following result:

(a—b)
3

which means that the generator o belongs to the -nullity distribution. Thus, the manifold turns into

Theorem 4.1. Every concircularly pseudo-symmetric MG(QE)4 spacetime is a N (%

) quasi-Einstein
spacetime, for some certain function Ly = %, where b + ¢ # 0.
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5. Heat flux in MG(QE), spacetimes

Consider an MG(QE), spacetime satisfying Einstein’s field equation without cosmological constant
whose matter content is viscous fluid. Then, by (1.11) and (1.13), the Ric is of the form

Ric(t1.&) = (Au+ §>g<41 L) + A+ YUC)U(L) (5.1)
FAVE)V(L) + ATUCOV(L) + UG V)],
From (1.5) and (5.1), we have

ag(&1,82) + bUG)U(L) + cV(END V(L)
+d[U({)V(5) + U()V(E)] (5.2)

= (Au+ §>g(§1,§2> + A+ WUEHUG)
FAV(E)V(G) + ATUG)V(E) + UGV,

Putting £, = o in (5.2), it follows that

(a—b- % +AWUG) = (d — MV, (5.3)

for all £;. Removing {; from the above equation we have
(a—b- g + Ao = (d - Ao (5.4)
Taking the inner product in (5.3) by o yields
a—b—§+/\w:0. (5.5)

Using (5.5) in (5.3) we get B = 0 (which is inadmissible), provided d # A. Thus we have the following
result:

Theorem 5.1. An MG(QE), spacetime can not admit heat flux if the smooth function d is not equal to
the cosmological constant A.

6. Example of MG(QFE), spacetime

In this section, we construct a non-trivial example to prove the existence of an MG(QE), spacetime.
We assume a Lorentzian manifold (M*, g) endowed with the Lorentzian metric g given by

ds* = giddidl] = —%(d{f) + ! 4(dr2) + rA(d6?) + (rsind)*(dy)*, (6.1)

c_
p
where i, j = 1,2,3,4 and w, c are constants. Then the covariant and contravariant components of the
metric are respectively given by

. w B 1
811 = iy g22—5_4,

833 = r, 844 = (rsind), gij=0 for 1<i#j<4, (6.2)
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and
1 4 1

n__r »_¢_4 =, gH=
’ r?’ (rsin6)?’

- s

w
The only non-vanishing components of the Christoffel symbols are

2 _4 1y 1 2] _ c 3]
37T\ T T2 22 T 2me—an) 32 T

3 } _ —sin(26)

{ 4‘;} = cot(0), { 424} = (4r — ¢)(sinb)?, { a4 5

The non-zero derivatives of (6.4) are

or 33 " or

(9 4 _ 2
%0 {43} = cosec”(0), o |44

For the Riemannian curvature tensor,

© G G e o)

The non-zero components of (I) are:

Ko = a%{zll - %

T = _% {323} =

K, = —% { 424} = —4(sinb)?,
7(243 = —(% {434} = cos(20),

and the non-zero components of (II) are:

K= {0 o) oot o
: {}J (o) o

AIMS Mathematics

4 1
Qe

62_481_L22__c(c—8r)23__
B 12f 7 212" 0r |22 2r%(c—4r? or\32]  or

0 (2 0 (2 0
{ } = 4(sind)?, %0 {44} = (4r — c)(sin(26)), 20 {:’4} = —cos(206).

g/ =0 for 1<i#j<4. (6.3)

(6.4)

40 1
2=

Volume 8, Issue 10, 24726-24739.



24736

1 —
7(313 -

1 —
7<‘441 -

2 _
7<332 -

3 —
7(443 -

) osf~ 5} o
It

A2
el
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Adding components corresponding to (I) and (II), we have
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. ¢c—=3r , _4r-c ]
Koy = 2c—dr)’ O 5 Kia =
c c(sinb)?

Ko, = ~5 K = —— Koy = =

(4r — c¢)(sin)?

G c)(sind)?

2r

r

(5r — ¢)(sind)?
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Thus, the non-zero components of the curvature tensor, up to symmetry are

w(c —3r) w(c —4r) w(c — 4r)(sinb)?
Ko —m, Kizz1 = T2 Kiaa = 2,2 s
c c(sin6)? )
Kazzz = ar—o Koasr = 2((T—)c)’ Ksazs = r(c — 5r)(sinf)®

and the non-zero components of the Ricci tensor are

. w
. h 2 33 44
Riciy = g"Kijin = & Koo + &7 Kiziz + & Kiana = 3

3
r(c —4r)’
Ricy; = g5 = 8" K131 + &7 Ko + g4 Ragza = -3,

. ih 11 33 44
Ricy = g"Kojpn = &8 Koot + 87 Kooz + &8 Kosoa = —

Ricys = 8" Kyjan = 8" K1 + 82 Kupar + g Kuzaz = —3(sind)’.

The scalar curvature scal is given by

scal = g“Ric“ + g22RiC22 + g33RiC33 + g44Ric44 =—-—

r2’
. ) 4 2 3
Let us consider the associated scalars a, b, ¢, d defined by a = -, b= -=, ==, d= > and the
r r r r
1-forms are defined by
w 1
@ ifiel . ifizd
Ay ={N- and B()={22 "'
0, if 1=2.3.4 0, ifi=1,2,3
where generators are unit vector fields, then from (1.5), we have
Ricy; :ag11+bU1U1+cV1V1+d(U1V1+U1V1), (65)
Ricy = agrn + bU2U2 +cVoVh + d(U2V2 + U2V2), (66)
Ricsz = agsz + bU3U3 +cV3V3 + d(U3V3 + U3V3), (67)
Ricys = agas + bU4U4 +cV4Vy + d(U4V4 + U4V4). (68)
Now,
R.HS. Of (65) =agn + bUU; +cV V| + d(UlVl + U1V1)
3 4
- 22 Ty Y 040
r? ro rror
3w 4w
B8 (6.9)
W
B
=Ry
=L.HS.of (6.5).

By a similar argument it can be shown easily that (6.6), (6.7) and (6.8) are also true. Hence, (IR*,g) is
an MG(QE);,.
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7. Conclusions

The most modern approaches to mathematical general relativity begin with the concept of a
manifold. After Riemannian manifolds, the structure of Lorentzian manifold is the most significant
subclass of pseudo-Riemannian manifolds. The theory of general relativity is mainly studied on a semi-
Riemannian manifold which sometimes is not an Einstein spacetime. Thus, it was always necessary
to expand the concept of Einstein manifolds to quasi-Einstein, generalized quasi-Einstein and mixed
generalized quasi-Einstein manifolds. Mixed generalized quasi-Einstein manifolds play a key role in
the general relativity and cosmology and has wide applications in general relativistic viscous fluid
spacetime admitting heat flux and stress. In the present work, we investigate some geometric and
physical properties of mixed generalized quasi-Einstein spacetimes in general relativity and cosmology
satisfying certain conditions.
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