Research article Special Issues

Viscosity-type inertial iterative methods for variational inclusion and fixed point problems

  • Received: 12 March 2024 Revised: 07 May 2024 Accepted: 28 May 2024 Published: 03 June 2024
  • MSC : 47H05, 47H06, 49J53

  • In this paper, we have introduced some viscosity-type inertial iterative methods for solving fixed point and variational inclusion problems in Hilbert spaces. Our methods calculated the viscosity approximation, fixed point iteration, and inertial extrapolation jointly in the starting of every iteration. Assuming some suitable assumptions, we demonstrated the strong convergence theorems without computing the resolvent of the associated monotone operators. We used some numerical examples to illustrate the efficiency of our iterative approaches and compared them with the related work.

    Citation: Mohammad Dilshad, Fahad Maqbul Alamrani, Ahmed Alamer, Esmail Alshaban, Maryam G. Alshehri. Viscosity-type inertial iterative methods for variational inclusion and fixed point problems[J]. AIMS Mathematics, 2024, 9(7): 18553-18573. doi: 10.3934/math.2024903

    Related Papers:

  • In this paper, we have introduced some viscosity-type inertial iterative methods for solving fixed point and variational inclusion problems in Hilbert spaces. Our methods calculated the viscosity approximation, fixed point iteration, and inertial extrapolation jointly in the starting of every iteration. Assuming some suitable assumptions, we demonstrated the strong convergence theorems without computing the resolvent of the associated monotone operators. We used some numerical examples to illustrate the efficiency of our iterative approaches and compared them with the related work.



    加载中


    [1] A. Alamer, M. Dilshad, Halpern-type inertial iteration methods with self-adaptive step size for split common null point problem, Mathematics, 12 (2024), 747. http://dx.doi.org/10.3390/math12050747 doi: 10.3390/math12050747
    [2] Q. Ansari, F. Babu, Proximal point algorithm for inclusion problems in Hadamard manifolds with applications, Optim. Lett., 15 (2021), 901–921. http://dx.doi.org/10.1007/s11590-019-01483-0 doi: 10.1007/s11590-019-01483-0
    [3] A. Adamu, D. Kitkuan, A. Padcharoen, C. Chidume, P. Kumam, Inertial viscosity-type iterative method for solving inclusion problems with applications, Math. Comput. Simulat., 194 (2022), 445–459. http://dx.doi.org/10.1016/j.matcom.2021.12.007 doi: 10.1016/j.matcom.2021.12.007
    [4] M. Akram, M. Dilshad, A. Rajpoot, F. Babu, R. Ahmad, J. Yao, Modified iterative schemes for a fixed point problem and a split variational inclusion problem, Mathematics, 10 (2022), 2098. http://dx.doi.org/10.3390/math10122098 doi: 10.3390/math10122098
    [5] M. Akram, M. Dilshad, A unified inertial iterative approach for general quasi variational inequality with application, Fractal Fract., 6 (2022), 395. http://dx.doi.org/10.3390/fractalfract6070395 doi: 10.3390/fractalfract6070395
    [6] F. Alvarez, H. Attouch, An inertial proximal method for maximal monotone operators via discretization of a nonlinear Oscillator with damping, Set-Valued Anal., 9 (2001), 3–11. http://dx.doi.org/10.1023/A:1011253113155 doi: 10.1023/A:1011253113155
    [7] J. Cruz, T. Nghia, On the convergence of the forward-backward splitting method with linesearches, Optim. Method. Softw., 31 (2016), 1209–1238. http://dx.doi.org/10.1080/10556788.2016.1214959 doi: 10.1080/10556788.2016.1214959
    [8] P. Combettes, V. Wajs, Signal recovery by proximal forward-backward splitting, Multiscale Model. Sim., 4 (2005), 1168–1200. http://dx.doi.org/10.1137/050626090 doi: 10.1137/050626090
    [9] P. Combettes, The convex feasibility problem in image recovery, Adv. Imag. Elect. Phys., 95 (1996), 155–270. http://dx.doi.org/10.1016/S1076-5670(08)70157-5 doi: 10.1016/S1076-5670(08)70157-5
    [10] Q. Dong, D. Jiang, P. Cholamjiak, Y. Shehu, A strong convergence result involving an inertial forward-backward algorithm for monotone inclusions, J. Fixed Point Theory Appl., 19 (2017), 3097–3118. http://dx.doi.org/10.1007/s11784-017-0472-7 doi: 10.1007/s11784-017-0472-7
    [11] J. Douglas, H. Rachford, On the numerical solution of heat conduction problems in two and three space variables, Trans. Amer. Math. Soc., 82 (1956), 421–439. http://dx.doi.org/10.2307/1993056 doi: 10.2307/1993056
    [12] M. Dilshad, A. Khan, M. Akram, Splitting type viscosity methods for inclusion and fixed point problems on Hadamard manifolds, AIMS Mathematics, 6 (2021), 5205–5221. http://dx.doi.org/10.3934/math.2021309 doi: 10.3934/math.2021309
    [13] M. Dilshad, M. Akram, Md. Nsiruzzaman, D. Filali, A. Khidir, Adaptive inertial Yosida approximation iterative algorithms for split variational inclusion and fixed point problems, AIMS Mathematics, 8 (2023), 12922–12942. http://dx.doi.org/10.3934/math.2023651 doi: 10.3934/math.2023651
    [14] D. Filali, M. Dilshad, L. Alyasi, M. Akram, Inertial iterative algorithms for split variational inclusion and fixed point problems, Axioms, 12 (2023), 848. http://dx.doi.org/10.3390/axioms12090848 doi: 10.3390/axioms12090848
    [15] D. Kitkuan, P. Kumam, J. Martínez-Moreno, Generalized Halpern-type forward-backward splitting methods for convex minimization problems with application to image restoration problems, Optimization, 69 (2020), 1557–1581. http://dx.doi.org/10.1080/02331934.2019.1646742 doi: 10.1080/02331934.2019.1646742
    [16] G. López, V. Martín-Márquez, F. Wang, H. Xu, Forward-backward splitting methods for accretive operators in Banach spaces, Abstr. Appl. Anal., 2012 (2012), 109236. http://dx.doi.org/10.1155/2012/109236 doi: 10.1155/2012/109236
    [17] D. Lorenz, T. Pock, An inertial forward-backward algorithm for monotone inclusions, J. Math. Imaging Vis., 51 (2015), 311–325. http://dx.doi.org/10.1007/s10851-014-0523-2 doi: 10.1007/s10851-014-0523-2
    [18] P. Lion, B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM J. Numer. Anal., 16 (1979), 964–979. http://dx.doi.org/10.1137/0716071 doi: 10.1137/0716071
    [19] Y. Malitsky, M. Tam, A forward-backward splitting method for monotone inclusions without cocoercivity, SIAM J. Optimiz., 30 (2020), 1451–1472. http://dx.doi.org/10.1137/18M1207260 doi: 10.1137/18M1207260
    [20] P. Mainge, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal., 16 (2008), 899–912. http://dx.doi.org/10.1007/s11228-008-0102-z doi: 10.1007/s11228-008-0102-z
    [21] A. Moudafi, M. Oliny, Convergence of a splitting inertial proximal method for monotone operators, J. Comput. Appl. Math., 155 (2003), 447–454. http://dx.doi.org/10.1016/S0377-0427(02)00906-8 doi: 10.1016/S0377-0427(02)00906-8
    [22] B. Polyak, Some methods of speeding up the convergence of iteration methods, USSR Comput. Math. Math. Phys., 4 (1964), 1–17. http://dx.doi.org/10.1016/0041-5553(64)90137-5 doi: 10.1016/0041-5553(64)90137-5
    [23] M. Rahaman, R. Ahmad, M. Dilshad, I. Ahmad, Relaxed $\eta$-proximal operator for solving a variational-like inclusion problem, Math. Model. Anal., 20 (2015), 819–835. http://dx.doi.org/10.3846/13926292.2015.1117026 doi: 10.3846/13926292.2015.1117026
    [24] S. Reich, A. Taiwo, Fast hybrid iterative schemes for solving variational inclusion problems, Math. Methods. Appl. Sci., 46 (2023), 17177–17198. http://dx.doi.org/10.1002/mma.9494 doi: 10.1002/mma.9494
    [25] R. Rockafellar, On the maximal monotonicity of subdifferential mappings, Pac. J. Math., 33 (1970), 209–216. http://dx.doi.org/10.2140/pjm.1970.33.209 doi: 10.2140/pjm.1970.33.209
    [26] R. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim., 14 (1976), 877–898. http://dx.doi.org/10.1137/0314056 doi: 10.1137/0314056
    [27] W. Takahashi, N. Wong, J. Yao, Two generalized strong convergence theorems of Halpern's type in Hilbert spaces and applications, Taiwan. J. Math., 16 (2012), 1151–1172. http://dx.doi.org/10.11650/twjm/1500406684 doi: 10.11650/twjm/1500406684
    [28] Y. Tang, H. Lin, A. Gibali, Y. Cho, Convergence analysis and applications of the inertial algorithm solving inclusion problems, Appl. Numer. Math., 175 (2022), 1–17. http://dx.doi.org/10.1016/j.apnum.2022.01.016 doi: 10.1016/j.apnum.2022.01.016
    [29] Y. Tang, Y. Zhang, A. Gibali, New self-adaptive inertial-like proximal point methods for the split common null point problem, Symmetry, 13 (2021), 2316. http://dx.doi.org/10.3390/sym13122316 doi: 10.3390/sym13122316
    [30] D. Thong, N. Vinh, Inertial methods for fixed point problems and zero point problems of the sum of two monotone mappings, Optimization, 68 (2019), 1037–1072. http://dx.doi.org/10.1080/02331934.2019.1573240 doi: 10.1080/02331934.2019.1573240
    [31] H. Xu, Iterative algorithms for nonlinear operators, J. Lond. Math. Soc., 66 (2002), 240–256. http://dx.doi.org/10.1112/S0024610702003332 doi: 10.1112/S0024610702003332
    [32] P. Yodjai, P. Kumam, D. Kitkuan, W. Jirakitpuwapat, S. Plubtieng, The Halpern approximation of three operators splitting method for convex minimization problems with an application to image inpainting, Bangmod Int. J. Math. Comp. Sci., 5 (2019), 58–75.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(577) PDF downloads(24) Cited by(0)

Article outline

Figures and Tables

Figures(8)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog