In this paper, we are concerned with the existence, boundedness, and integrability of minimizers of heterogeneous, two-phase free boundary problems $ \mathcal {J}_{\gamma}(u) = \int_{\Omega}\left(f(x, \nabla u)+\lambda_{+}(u^{+})^{\gamma}+\lambda_{-}(u^{-})^{\gamma}+gu\right)\text{d}x \rightarrow \text{min} $ under non-standard growth conditions. Included in such problems are heterogeneous jets and cavities of Prandtl-Batchelor type with $ \gamma = 0 $, chemical reaction problems with $ 0 < \gamma < 1 $, and obstacle type problems with $ \gamma = 1 $, respectively.
Citation: Jiayin Liu, Jun Zheng. Boundedness and higher integrability of minimizers to a class of two-phase free boundary problems under non-standard growth conditions[J]. AIMS Mathematics, 2024, 9(7): 18574-18588. doi: 10.3934/math.2024904
In this paper, we are concerned with the existence, boundedness, and integrability of minimizers of heterogeneous, two-phase free boundary problems $ \mathcal {J}_{\gamma}(u) = \int_{\Omega}\left(f(x, \nabla u)+\lambda_{+}(u^{+})^{\gamma}+\lambda_{-}(u^{-})^{\gamma}+gu\right)\text{d}x \rightarrow \text{min} $ under non-standard growth conditions. Included in such problems are heterogeneous jets and cavities of Prandtl-Batchelor type with $ \gamma = 0 $, chemical reaction problems with $ 0 < \gamma < 1 $, and obstacle type problems with $ \gamma = 1 $, respectively.
[1] | E. Acerbi, G. Mingione, Regularity results for a class of functionals with nonstandard growth, Arch. Ration. Mech. Anal., 156 (2001), 121–140. https://dx.doi.org/10.1007/s002050100117 doi: 10.1007/s002050100117 |
[2] | F. Duzaar, J. F. Grotowski, M. Kronz, Partial and full boundary regularity for minimizers of functionals with non-quadratic growth, J. Convex Anal., 11 (2004), 437–476. |
[3] | M. Eleuteri, J. Habermann, Regularity results for a class of obstacle problems under nonstandard growth conditions, J. Math. Anal. Appl., 344 (2008), 1120–1142. https://dx.doi.org/10.1016/j.jmaa.2008.03.068 doi: 10.1016/j.jmaa.2008.03.068 |
[4] | M. Eleuteri, J. Habermann, Calderón-Zygmund type estimates for a class of obstacle problems with $p(x)$ growth, J. Math. Anal. Appl., 372 (2010), 140–161. https://dx.doi.org/10.1016/j.jmaa.2010.05.072 doi: 10.1016/j.jmaa.2010.05.072 |
[5] | M. Eleuteri, J. Habermann, A Hölder continuity result for a class of obstacle problems under non-standard growth conditions, Math. Nachr., 284 (2011), 1404–1434. https://dx.doi.org/10.1002/mana.201190024 doi: 10.1002/mana.201190024 |
[6] | X. Fan, J. Shen, D. Zhao, Sobolev embedding theorems for spaces $W^{m, p(x)} (\Omega)$, J. Math. Anal. Appl., 262 (2001), 749–760. https://dx.doi.org/10.1006/jmaa.2001.7618 doi: 10.1006/jmaa.2001.7618 |
[7] | X. Fan, D. Zhao, On the spaces $L^{p(x)} (\Omega)$ and $W^{m, p(x)}(\Omega)$, J. Math. Anal. Appl., 263 (2001), 424–446. https://dx.doi.org/10.1006/jmaa.2000.7617 doi: 10.1006/jmaa.2000.7617 |
[8] | N. Foralli, G. Giliberti, Higher differentiability of solutions for a class of obstacle problems with variable exponents, J. Differential Equations, 313 (2022), 244–268. https://dx.doi.org/10.1016/j.jde.2021.12.028 doi: 10.1016/j.jde.2021.12.028 |
[9] | H. Gao, M. Jia, Global integrability for solutions to some anisotropic problem with nonstandard growth, Forum Math., 30 (2018), 1237–1243. https://dx.doi.org/10.1515/forum-2017-0240 doi: 10.1515/forum-2017-0240 |
[10] | P. Harjulehto, P. Hästö, A. Karppinen, Local higher integrability of the gradient of a quasiminimizer under generalized Orlicz growth conditions, Nonlinear Anal., 177 (2018), 543–552. https://dx.doi.org/10.1016/j.na.2017.09.010 doi: 10.1016/j.na.2017.09.010 |
[11] | A. Karppinen, Global continuity and higher integrability of a minimizer of an obstacle problem under generalized Orlicz growth conditions, Manuscripta Math., 164 (2021), 67–94. https://dx.doi.org/10.1007/s00229-019-01173-2 doi: 10.1007/s00229-019-01173-2 |
[12] | L. Koch, Global higher integrability for minimisers of convex obstacle problems with $ (p, q)$-growth, Calc. Var. Partial Differential Equations, 61 (2022), 1–28. https://dx.doi.org/10.1007/s00526-022-02202-x doi: 10.1007/s00526-022-02202-x |
[13] | O. Kováčik, J. Ráosník, On spaces $L^{p(x)} (\Omega)$ and $W^{m, p(x)} (\Omega)$, Czech. Math. J., 41 (1991), 592–618. https://dx.doi.org/10.21136/CMJ.1991.102493 doi: 10.21136/CMJ.1991.102493 |
[14] | O. A. Ladyzhenskaya, N. N. Ural'tseva, Linear and quasilinear elliptic equations, 1 Ed., New York: Academic Press, 1968. |
[15] | R. Leit$\tilde{a}$o, O. S. de Queiroz, E. V. Teixeira, Regularity for degenerate two-phase free boundary problems, Ann. Inst. H. Poincar$\acute{e}$, Anal. Non Lin$\acute{e}$aire, 32 (2015), 741–762. https://dx.doi.org/10.1016/j.anihpc.2014.03.004 |
[16] | Q. Li, V. D. Rădulescu, W. Zhang, Normalized ground states for the Sobolev critical Schrödinger equation with at least mass critical growth, Nonlinearity, 37 (2024), 025018. https://dx.doi.org/10.1088/1361-6544/ad1b8b doi: 10.1088/1361-6544/ad1b8b |
[17] | L. Nevali, Higher differentiability of solutions for a class of obstacle problems with non standard growth conditions, J. Math. Anal. Appl., 518 (2023), 126672. https://dx.doi.org/10.1016/j.jmaa.2022.126672 doi: 10.1016/j.jmaa.2022.126672 |
[18] | N. S. Papageorgiou, J. Zhang, W. Zhang, Solutions with sign information for noncoercive double phase equations, J. Geom. Anal., 34 (2024), 14. https://dx.doi.org/10.1007/s12220-023-01463-y doi: 10.1007/s12220-023-01463-y |
[19] | Y. Shan, H. Gao, Global integrability for solutions to obstacle problems, J. Part. Diff. Eq., 35 (2022), 320–330. https://dx.doi.org/10.4208/jpde.v35.n4.2 doi: 10.4208/jpde.v35.n4.2 |
[20] | M. Struwe, Variational methods: applications to nonlinear partial differential equations and Hamiltonian, 4 Eds., New York: Springer-Verlag, 2008. http://dx.doi.org/10.1007/978-3-540-74013-1 |
[21] | J. Zhang, H. Zhou, H. Mi, Multiplicity of semiclassical solutions for a class of nonlinear Hamiltonian elliptic system, Adv. Nonlinear Anal., 13 (2024), 20230139. https://dx.doi.org/10.1515/anona-2023-0139 doi: 10.1515/anona-2023-0139 |