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Abstract: In this paper, we are concerned with the existence, boundedness, and
integrability of minimizers of heterogeneous, two-phase free boundary problems Jγ(u) =∫
Ω

( f (x,∇u) + λ+(u+)γ + λ−(u−)γ + gu) dx → min under non-standard growth conditions. Included in
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1. Introduction

Let Ω be a bounded domain in Rn(n ≥ 2). Let ψ ∈ W1,p(·)(Ω) ∩ L∞(Ω) and g ∈ Lq(·)(Ω) with
p, q ∈ C(Ω; (1,+∞)) being certain given functions. The aim of this paper is to study heterogeneous,
two-phase free boundary problems

Jγ(u) =
∫
Ω

(
f (x,∇u) + Fγ(u) + gu

)
dx→ min (1.1)

over the setK =
{
u ∈ W1,p(·)(Ω) : u − ψ ∈ W1,p(·)

0 (Ω)
}

in the framework of Sobolev spaces with variable
exponents, where f : Ω × Rn → R is a Carathéodory function having a form

L−1|z|p(x) ≤ f (x, z) ≤ L(1 + |z|p(x)),∀x ∈ Ω, z ∈ Rn (1.2)
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with L ≥ 1 being a constant. The non-differentiable potential Fγ(·) is given by

Fγ(u) := λ+(u+)γ + λ−(u−)γ,

where γ ∈ [0, 1] is a parameter, and λ+, λ− ∈ R are positive constants with λ+ > λ−. As usual,
u± := max{±u, 0}, and by convention,

F0(u) := λ+χ{u>0} + λ−χ{u≤0}.

As is well known, the lower limiting case, i.e., γ = 0, relates to the jets and cavities problems. The
upper case, i.e., γ = 1, relates to obstacle-type problems. The intermediary problem, i.e., γ ∈ (0, 1),
can be used to model the density of certain chemical species in reaction with a porous catalyst pellet,
and has intrigued a number of mathematicians in the past decades.

It should be mentioned that a large class of functionals and identical obstacle problems under non-
standard growth conditions have been studied in [1, 3–5, 8, 17], which provide the reference estimates,
and suitable localization and freezing techniques, etc., to treat the non-standard growth exponents in
the functional governed by (1.1). It is well known that the boundedness of minimizers plays a crucial
role in getting regularity results. For more details about the history of free boundary problems of these
types, we refer to the work [15], where the authors provided a complete description of regularity theory
for the free boundary problems governed by (1.1) with f (z) ≡ |z|p and a constant p ∈ [2,+∞). Local and
global higher integrability results for solutions or derivatives of the solutions to the obstacle problems,
one may refer to [9–12, 19] and the references therein. The existence and asymptotic analysis of
nontrivial solutions for some related double-phase problems under unbalanced growth conditions may
be referred to [16, 18, 21] and the references therein.

In this paper, we would like to extend several known results to a larger class of free boundary
problems governed by (1.1). We shall establish the existence, boundedness, and integrability of
minimizers of Jγ(u). The results obtained in this paper are not only extensions of the one in the one-
phase obstacle problems under non-standard growth conditions (see, e.g., [3,4] ), but also a supplement
to the one in the degenerate free boundary problems studied in [15], as we also consider the singular
case p ∈ (1, 2).

In the rest of the paper, we first introduce some notations used in this paper. In Section 2, we state
basic assumptions on the functions f , p, and q and main results on the existence, boundedness, and
higher integrability of minimizers, which are proved in Sections 3 and 4, respectively.

Notation. Denote by BR(x) the open ball in Rn with center x and radius R > 0, and |BR(x)|
is the Lebesgue measure of BR(x). For an integrable function u defined on BR(x), let (u)x,R :=

1
|BR(x)|

∫
BR(x)

u(x)dx. Without confusion, for R > 0, we will write BR and (u)R instead of BR(x) and
(u)x,R respectively. Let C, c,C1,C2,C3, ... denote constants that may be different from each other, but
independent of γ.

The variable exponent of Lebesgue space Lp(·)(Ω) is defined by

Lp(·)(Ω) :=
{

u| u : Ω→ R is measurable,
∫
Ω

|u(x)|p(x)dx < +∞
}

with the norm ∥u∥Lp(·)(Ω) := inf
{
λ > 0;

∫
Ω

∣∣∣u(x)
λ

∣∣∣p(x)
dx ≤ 1

}
. The variable exponent Sobolev space

W1,p(·)(Ω) is defined by

W1,p(·)(Ω) :=
{
u ∈ Lp(·)(Ω); |∇u| ∈ Lp(·)(Ω)

}
(1.3)
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with the norm ∥u∥W1,p(·)(Ω) := ∥u∥Lp(·)(Ω) + ∥∇u∥Lp(·)(Ω). Define W1,p(·)
0 (Ω) as the closure of C∞0 (Ω)

in W1,p(·)(Ω). If Ω is bounded and p(·) satisfies (2.5) specified in Section 2, then the spaces
Lp(·)(Ω),W1,p(·)(Ω), and W1,p(·)

0 (Ω) are all separable and reflexive Banach spaces. ∥∇u∥Lp(·)(Ω) is an
equivalent norm of ∥u∥W1,p(·)

0 (Ω) defined for W1,p(·)
0 (Ω). We refer to [6,7,13] for the elementary properties

and more details of the space W1,p(·)(Ω).

2. Main results

In this paper, we always propose the following growth, ellipticity, and continuity conditions on the
function f :

f : Ω × Rn → R, f (x, z) is convex in z for every x, (2.1)

L−1(µ2 + |z|2)
p(x)

2 ≤ f (x, z) ≤ L(µ2 + |z|2)
p(x)

2 ,∀x ∈ Ω, z ∈ Rn, (2.2)

where L ≥ 1 and µ ∈ [0, 1] are constants. Let ω : R+ → R+ be a nondecreasing continuous function,
vanishing at zero, which represents the modulus of p ∈ C(Ω; (1,+∞)):

|p(x) − p(y)| ≤ ω(|x − y|) for all x, y ∈ Ω, (2.3)

and satisfies lim sup
R→0

ω(R) log
(

1
R

)
< +∞. Without loss of generality, we assume that

ω(R) ≤ L| log R|−1,∀R < 1. (2.4)

Assume further that

1 < p− = inf
x∈Ω

p(x) ≤ p(x) ≤ sup
x∈Ω

p(x) = p+ < n for all x ∈ Ω (2.5)

with

1
p−
−

1
p+

<
1
n
. (2.6)

Let q ∈ C(Ω; (1,+∞)) satisfy the conditions of the types (2.3) and (2.4) and

q(x) ≥ q− for all x ∈ Ω, q− >


1

p−−1
1

1
n−

1
p−
+ 1

p+
> n, if p− < 2,

1
1
n−

1
p−
+ 1

p+
≥ n, if p− ≥ 2.

(2.7)

A function u ∈ K is said to be a minimizer of the functional Jγ(u) governed by (1.1) if
Jγ(u) ≤ Jγ(v) for all v ∈ K .

The first result obtained in this paper is concerned with the existence and uniform (w.r.t. γ)
boundedness of minimizers for the functional Jγ(u).

Theorem 2.1. Assume that (2.1)–(2.7) hold. Then, for each γ ∈ [0, 1], there exists a minimizer
uγ ∈ K of the functional Jγ(u). Furthermore, uγ is bounded. More precisely,

∥uγ∥L∞(Ω) ≤ C(n, L, q−, p±, λ±,Ω, ∥ψ∥L∞(∂Ω), ∥g∥Lq(·)(Ω)).

AIMS Mathematics Volume 9, Issue 7, 18574–18588.



18577

The second result obtained in this paper is the following theorem, which indicates higher
integrability of minimizers of the functional Jγ(u).

Theorem 2.2. Assume that (2.1)–(2.7) hold and uγ ∈ K is a minimizer of the functional Jγ(u).
Then there exist two positive constants C0 and δ0 < q−

(
1 − 1

p−

)
− 1, both depending only on

n, p±, λ±, q−, L,M, and Ω, such that f(
1
|BR/2|

∫
BR/2

|∇uγ|p(x)(1+δ0)dx
) 1

1+δ0

≤
C0

|BR|

∫
BR

|∇uγ|p(x)dx

+C0

(
1
|BR|

∫
BR

(
1 + |g|

p−
p−−1 (1+δ0)

)
dx

) 1
1+δ0

,∀BR ⊂⊂ Ω. (2.8)

3. Existence and L∞-boundedness of minimizers

In this section, we prove Theorem 2.1 in a similar way as in [15].

Proof of Theorem 2.1. Firstly, we prove the existence of a minimizer of the functional Jγ(u).
Let I0 := min{Jγ(u) : u ∈ K}. We claim that I0 > −∞. Indeed, for any u ∈ K , by Poincaré’s

inequality, there exists a positive constant C = C(n, p±,Ω) such that

∥u∥Lp(·)(Ω) ≤ ∥u − ψ∥Lp(·)(Ω) + ∥ψ∥Lp(·)(Ω)

≤ C∥∇u − ∇ψ∥Lp(·)(Ω) + ∥ψ∥Lp(·)(Ω)

≤ C
(
∥∇u∥Lp(·)(Ω) + ∥∇ψ∥Lp(·)(Ω) + ∥ψ∥Lp(·)(Ω)

)
, (3.1)

which implies

∥∇u∥p−
Lp(·)(Ω) ≥ C1∥u∥

p−
Lp(·)(Ω) − ∥ψ∥

p−
Lp(·)(Ω) − ∥∇ψ∥

p−
Lp(·)(Ω), (3.2)

and

∥∇u∥p+
Lp(·)(Ω) ≥ C2∥u∥

p+
Lp(·)(Ω) − ∥ψ∥

p+
Lp(·)(Ω) − ∥∇ψ∥

p+
Lp(·)(Ω), (3.3)

where C1 and C2 are positive constants depending only on n, p±, and Ω.
Due to q(x) ≥ q−, we deduce from (2.7), Hölder’s inequality, and Young’s inequality with ϵ > 0 that∣∣∣∣∣∫

Ω

gudx
∣∣∣∣∣ ≤ C3(p+, p−)∥g∥

L
p(·)

p(·)−1 (Ω)
∥u∥Lp(·)(Ω)

≤ C4(p+, p−)∥g∥Lq(·)(Ω)∥1∥
L

1
1− 1

p(·) −
1

q(·) (Ω)

∥u∥Lp(·)(Ω)

≤ C4(p+, p−)
(
1 + |Ω|1−

1
p−
− 1

q−

)
∥g∥Lq(·)(Ω)∥u∥Lp(·)(Ω) (3.4)

≤

ε∥u∥
p−
Lp(·)(Ω) +C5(ε, p±,Ω)∥g∥

p−
p−−1

Lq(·)(Ω), or,

ε∥u∥p+
Lp(·)(Ω) +C6(ε, p±,Ω)∥g∥

p+
p+−1

Lq(·)(Ω),
(3.5)

where ε ∈ (0, 1) will be chosen later.
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Now we consider two cases: ∥∇u∥Lp(·)(Ω) > 1 and ∥∇u∥Lp(·)(Ω) ≤ 1.

Case 1: ∥∇u∥Lp(·)(Ω) > 1. It follows from (2.2), (3.2), and (3.5) that

Jγ(u) ≥ L−1
∫
Ω

|∇u|p(x)dx −
∣∣∣∣∣∫
Ω

gudx
∣∣∣∣∣ (3.6)

≥ L−1∥∇u∥p−
Lp(·)(Ω) −

∣∣∣∣∣∫
Ω

gudx
∣∣∣∣∣

≥ L−1C1∥u∥
p−
Lp(·)(Ω) − L−1

(
∥ψ∥

p−
Lp(·)(Ω) + ∥∇ψ∥

p−
Lp(·)(Ω)

)
− ε∥u∥p−

Lp(·)(Ω)

−C5(ε, p±,Ω)∥g∥
p−

p−−1

Lq(·)(Ω). (3.7)

Choose ε ∈ (0, 1) such that L−1C1 − ε > 0, then, (3.7) yields

Jγ(u) > −L−1(∥ψ∥p−
Lp(·)(Ω) + ∥∇ψ∥

p−
Lp(·)(Ω)) −C5(ε, p±,Ω)∥g∥

p−
p−−1

Lq(·)(Ω) > −∞.

Case 2: ∥∇u∥Lp(·)(Ω) ≤ 1. We deduce from (2.2), (3.3), and (3.5) that

Jγ(u) ≥ L−1
∫
Ω

|∇u|p(x)dx −
∣∣∣∣∣∫
Ω

gudx
∣∣∣∣∣

≥ L−1∥∇u∥p+
Lp(·)(Ω) −

∣∣∣∣∣∫
Ω

gudx
∣∣∣∣∣

≥ L−1C2∥u∥
p+
Lp(·)(Ω) − L−1

(
∥ψ∥

p+
Lp(·)(Ω) + ∥∇ψ∥

p+
Lp(·)(Ω)

)
− ε∥u∥p+

Lp(·)(Ω)

−C6(ε, p±,Ω)∥g∥
p+

p+−1

Lq(·)(Ω). (3.8)

Choose ε ∈ (0, 1) such that L−1C2 − ε > 0, then, (3.8) gives

Jγ(u) > −L−1
(
∥ψ∥

p+
Lp(·)(Ω) + ∥∇ψ∥

p+
Lp(·)(Ω)

)
−C6(ε, p±,Ω)∥g∥

p+
p+−1

Lq(·)(Ω) > −∞.

Now we prove the existence of a minimizer of Jγ(u). Let u j ∈ K be a minimizing sequence. We
will show that {u j − ψ} (up to a subsequence) is bounded in W1,p(·)

0 (Ω). Without loss of generality, we
assume that ∥∇u j∥Lp(·)(Ω) > 1. For j ≫ 1, we have Jγ(u j) ≤ I0 + 1.

From (3.1), (3.4), (3.6), and Young’s inequality with ε > 0, we obtain

∥∇u j∥
p−
Lp(·)(Ω) ≤

∫
Ω

|∇u j|
p(x)dx

≤ LJγ(u j) + L
∣∣∣∣∣∫
Ω

gu jdx
∣∣∣∣∣

≤ L(I0 + 1) + LC7(p±,Ω, ∥g∥Lq(·)(Ω))∥u j∥Lp(·)(Ω),

≤ C8(∥∇u j∥Lp(·)(Ω) + ∥∇ψ∥Lp(·)(Ω) + ∥ψ∥Lp(·)(Ω)) + L(I0 + 1),

≤
1
2
∥∇u j∥

p−
Lp(·)(Ω) +C9

(
1 + ∥∇ψ∥Lp(·)(Ω) + ∥ψ∥Lp(·)(Ω)

)
,

where C8 and C9 depend only on L, I0, p±,Ω, and ∥g∥Lq(·)(Ω). Then, we get

∥∇u j∥
p−
Lp(·)(Ω) ≤ 2C9

(
1 + ∥∇ψ∥Lp(·)(Ω) + ∥ψ∥Lp(·)(Ω)

)
,
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which, along with Poincaré’s inequality, ensures that {u j−ψ} is bounded in W1,p(·)
0 (Ω). Therefore, there

is a function u ∈ K such that, up to a subsequence,

u j ⇀ u weakly in W1,p(·)(Ω), u j → u in Lp(·)(Ω), u j → u a.e. in Ω.

With a slight modification of the proof of [20, Theorem 1.6], we infer from (2.1) and (2.2) that∫
Ω

f (x, |∇u|)dx ≤ lim inf
j→∞

∫
Ω

f (x, |∇u j|)dx. (3.9)

For γ ∈ (0, 1], by the pointwise convergence, we have∫
Ω

(Fγ(u) + gu)dx ≤ lim inf
j→∞

∫
Ω

(Fγ(u j) + gu j)dx. (3.10)

For γ = 0, recalling that λ+ > λ− > 0, we have∫
Ω

λ−χ{u≤0}dx =
∫
{u≤0}

λ−χ{u j>0}dx +
∫
{u≤0}

λ−χ{u j≤0}dx ≤
∫
{u≤0}

λ+χ{u j>0}dx +
∫
Ω

λ−χ{u j≤0}dx,

which implies ∫
Ω

λ−χ{u≤0}dx ≤ lim inf
j→∞

(∫
{u≤0}

λ+χ{u j>0}dx +
∫
Ω

λ−χ{u j≤0}dx
)
.

In addition, since u j → u a.e. in Ω, it follows from the Dominated Convergence Theorem that∫
Ω

λ+χ{u>0}dx =
∫
{u>0}

λ+ lim
j→∞

χ{u j>0}dx = lim
j→∞

∫
{u>0}

λ+χ{u j>0}dx.

Therefore, it holds that ∫
Ω

(F0(u) + gu)dx ≤ lim inf
j→∞

∫
Ω

(F0(u j) + gu j)dx. (3.11)

From (3.9), (3.10), and (3.11), we conclude that

Jγ(u) ≤ lim inf
j→∞

Jγ(u j) = I0,∀γ ∈ [0, 1], (3.12)

which indicates the existence of a minimizer in K .
Secondly, we establish the L∞- boundedness of uγ. Hereafter, in this proof, we will refer to uγ as u.
Let j0 := [sup

∂Ω

|ψ|] be the smallest positive integer above sup
∂Ω

|ψ|. For each j ≥ j0, we define the

truncated function u j : Ω→ R by

u j =

{
j · sgn(u), if |u| > j,
u, if |u| ≤ j,

where sgn(u) = 1 if u > 0 and sgn(u) = −1 if u ≤ 0. Define the set A j := {|u| > j}.
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For γ ∈ (0, 1], in view of the minimality of u, we derive that∫
A j

f (x,∇u)dx =
∫
Ω

( f (x,∇u) − f (x,∇u j)) +
∫

A j

f (x,∇u j)dx

≤

∫
A j

g(u j − u)dx +
∫

A j

λ+
(
(u+j )γ − (u+)γ

)
dx

+

∫
A j

λ−
(
(u−j )γ − (u−)γ

)
dx + L|A j|. (3.13)

Now we estimate each term on the right-hand side of (3.13).∫
A j

λ+
(
(u+j )γ − (u+)γ

)
dx = λ+

∫
A j∩{u>0}

( jγ − |u|γ) dx + λ+

∫
A j∩{u≤0}

(
((− j)+)γ − (u+)γ

)
dx ≤ 0.

∫
A j

λ−
(
(u−j )γ − (u−)γ

)
dx = λ−

∫
A j∩{u≤0}

( jγ − |u|γ)dx + λ−

∫
A j∩{u>0}

(
( j−)γ − (u−)γ

)
dx ≤ 0.

Then, we get ∫
A j

(
Fγ(u j) − Fγ(u)

)
dx ≤ 0. (3.14)

For the first term in the right-hand side of (3.13), we deduce that∫
A j

g(u j − u)dx =
∫

A j∩{u>0}
g( j − u)dx +

∫
A j∩{u≤0}

g(−u − j)dx ≤ 2
∫

A j

|g|(|u| − j)dx. (3.15)

For γ = 0, it suffices to notice that u j > 0 and u have the same sign. From the choice of the truncated
function, we know that (|u| − j)+ ∈ W1,p(·)

0 (A j). Applying Hölder’s inequality and the embedding
theorem, we have∫

A j

|g|(|u| − j)+dx ≤ 2∥g∥
L

p(·)
p(·)−1 (A j)

∥(|u| − j)+∥Lp(·)(A j)

≤ C∥g∥Lq(·)(A j)∥1∥Lt(·)(A j)∥(|u| − j)+∥Lp∗(·)(A j)∥1∥Ln(A j)

≤

 C∥g∥Lq(·)(Ω)|A j|
1
t−
+ 1

n ∥∇(|u| − j)+∥Lp(·)(A j), if |A j| > 1
C∥g∥Lq(·)(Ω)|A j|

1
t+
+ 1

n ∥∇(|u| − j)+∥Lp(·)(A j), if |A j| ≤ 1

=

 C|Ω|
1
t−
+ 1

n
(
|A j |

|Ω|

) 1
t−
+ 1

n
∥∇(|u| − j)+∥Lp(·)(A j), if |A j| > 1

C|Ω|
1
t+
+ 1

n
(
|A j |

|Ω|

) 1
t+
+ 1

n
∥∇(|u| − j)+∥Lp(·)(A j), if |A j| ≤ 1

≤ C(1 + |Ω|)
1
t−
+ 1

n

(
|A j|

|Ω|

) 1
t+
+ 1

n

∥∇u∥Lp(·)(A j)

= C
(
|A j|

|Ω|

) 1
t+
+ 1

n

∥∇u∥Lp(·)(A j), (3.16)
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where t ∈ C(Ω; (1,+∞)) satisfies 1
t(·) = 1 − 1

p(·) −
1

q(·) , we denote

t− := inf
x∈Ω

t(x), t+ := sup
x∈Ω

t(x), p∗(·) :=
np(·)

n − p(·)
,

and the constant C in the last inequality depends only on p±, q−, n,Ω, and ∥g∥Lq(·)(Ω).
From (3.13) to (3.16), we infer that∫

A j

f (x,∇u)dx ≤ C
(
|A j|

|Ω|

) 1
t+
+ 1

n

∥∇u∥Lp(·)(A j) + L|A j|, (3.17)

where C depends only on p±, q−, n,Ω, and ∥g∥Lq(·)(Ω).
Now we consider two cases: ∥∇u∥Lp(·)(A j) > 1 and ∥∇u∥Lp(·)(A j) ≤ 1.
Case 1: ∥∇u∥Lp(·)(A j) > 1. We deduce from (2.2), (3.17), and Young’s inequality with ϵ > 0 that

∥∇u∥p−
Lp(·)(A j)

≤

∫
A j

|∇u|p(x)dx

≤ L
∫

A j

f (x,∇u)dx

≤ C
(
|A j|

|Ω|

) 1
t+
+ 1

n

∥∇u∥Lp(·)(A j) + L2|A j|

≤ C
(
|A j|

|Ω|

)( 1
t+
+ 1

n

) p−
p−−1

+
1
2
∥∇u∥p−

Lp(·)(A j)
+ L2|A j|,

which implies

∥∇u∥p−
Lp(·)(A j)

≤ C
(
|A j|

|Ω|

)( 1
t+
+ 1

n

) p−
p−−1

+ L2|A j| = C
(
|A j|

|Ω|

)(1− 1
p−
− 1

q−
+ 1

n

) p−
p−−1

+ L2|A j|.

Therefore, we have

∥∇u∥Lp(·)(A j) ≤ C
(
|A j|

|Ω|

)(1− 1
p−
− 1

q−
+ 1

n

)
1

p−−1

+C
(
|A j|

|Ω|

) 1
p−

, (3.18)

where C depends only on L, p±, q−, n,Ω, and ∥g∥Lq(·)(Ω).
Analogous to (3.16), we deduce that∫

A j

(|u| − j)+dx ≤ 2∥1∥
L

p(·)
p(·)−1 (A j)

∥(|u| − j)+∥Lp(·)(A j)

≤

 C|A j|
1− 1

p+
+ 1

n ∥∇u∥Lp(·)(A j), if |A j| > 1
C|A j|

1− 1
p−
+ 1

n ∥∇u∥Lp(·)(A j), if |A j| ≤ 1

≤ C
(
|A j|

|Ω|

)1− 1
p−
+ 1

n

∥∇u∥Lp(·)(A j)
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≤ C
(
|A j|

|Ω|

)1− 1
p−
+ 1

n
( |A j|

|Ω|

)(1− 1
p−
− 1

q−
+ 1

n

)
1

p−−1

+C
(
|A j|

|Ω|

) 1
p−


= C

(
|A j|

|Ω|

)(1− 1
p−
− 1

q−
+ 1

n

)
1

p−−1+
(
1− 1

p−
+ 1

n

)
+C

(
|A j|

|Ω|

)1+ 1
n

(3.19)

where in the last inequality we used (3.18), and the constant C depends only on L, p±, q−, n,Ω, and
∥g∥Lq(·)(Ω).

Case 2: ∥∇u∥Lp(·)(A j) ≤ 1. Analogously, we may obtain∫
A j

(|u| − j)+dx ≤ C
(
|A j|

|Ω|

)(1− 1
p−
− 1

q−
+ 1

n

)
1

p+−1+
(
1− 1

p−
+ 1

n

)
+C

(
|A j|

|Ω|

)1+ 1
n

, (3.20)

where the constant C depends only on L, p±, q−, n,Ω, and ∥g∥Lq(·)(Ω).
Now, combining (3.19) and (3.20), we get∫

A j

(|u| − j)+dx ≤ C
(
|A j|

|Ω|

)1+
(
1− 1

p−
− 1

q−
+ 1

n

)
1

p+−1−
1

p−
+ 1

n

+C
(
|A j|

|Ω|

)1+ 1
n

,

where C depends only on L, p±, q−, n,Ω, and ∥g∥Lq(·)(Ω).
Notice that by (2.6) and (2.7) we have 1

q−
< 1

n −
1
p−
+ 1

p+
and 1

p+
− 1

p−
+ 1

n > 0, respectively, thus

ϵ0 :=min
{

1
n
,

(
1 −

1
p−
−

1
q−
+

1
n

)
1

p+ − 1
−

1
p−
+

1
n

}
≥min

{
1
n
,

(
1 −

1
p−
−

1
n
+

1
p−
−

1
p+
+

1
n

)
1

p+ − 1
−

1
p−
+

1
n

}
=min

{
1
n
,

1
p+
−

1
p−
+

1
n

}
>0.

Notice also that ∥u∥L1(A j0 ) ≤

(
1 + |A j0 |

p−−1
p−

)
∥u∥Lp(x)(A j0 ) ≤ C. Then, applying [14, Lemma 5.1], we obtain

the boundedness of minimizers. □

Remark 3.1. Note that in [5], the assumption that
∫
Ω
|∇u|p(x)dx ≤ M with some M ≥ 0 is proposed

for establishing local regularity of minimizers of functionals having a form
∫
Ω

f (x, u,∇u)dx, while in
this paper, we are able to show that any minimizer uγ of Jγ(u) is uniformly bounded w.r.t. γ ∈ [0, 1] in
W1,p(·)(Ω) by using the L∞- estimate of uγ. Indeed, we have∫

Ω

|∇uγ|p(x)dx ≤ L
∫
Ω

f (x,∇uγ)dx

≤ L
(
Jγ(ψ) −

∫
Ω

F(uγ)dx +
∫
Ω

|guγ|dx
)

≤ LJγ(ψ) +C
(
L, n, p±, λ±,Ω, ∥ψ∥L∞(∂Ω), ∥g∥Lq(·)(Ω)

)
≤ M,

where M = M
(
L, n, q−, p±, λ±,Ω, ∥ψ∥L∞(∂Ω), ∥g∥Lq(·)(Ω)

)
is a positive constant. Therefore, we conclude

that uγ − ψ ∈ W1,p(·)
0 (Ω) with ∥uγ∥W1,p(·)(Ω) ≤ C, where C is independent of γ.
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4. Higher integrability

In this section, we prove the higher integrability of minimizers of Jγ(u). We first recall some
important lemmas that will be used in the proof.

Lemma 4.1 ( [5]). Let θ ∈ (0, 1), A > 0, and B ≥ 0 be constants, and h ∈ Lp(·)(BR). If k ≥ 0 is a
bounded function on (r,R) and satisfies

k(t) ≤ θk(s) + A
∫

BR

∣∣∣∣∣ h(x)
s − t

∣∣∣∣∣p(x)

dx + B,

for all r ≤ t < s ≤ R, there exists a constant C ≡ C(θ, p+) such that

k(r) ≤ C
(
A

∫
BR

∣∣∣∣∣ h(x)
R − r

∣∣∣∣∣p(x)

dx + B
)
.

Lemma 4.2 (Gehring-type Lemma, [2]). Let E be a closed subset of Ω. Consider two nonnegative
functions f , g ∈ L1(Ω) and p ∈ (1,+∞) such that there holds

1
|B ρ

2
(x) ∩Ω|

∫
B ρ

2
(x)∩Ω
|g|pdx ≤ bp

((
1

|Bρ(x) ∩Ω|

∫
Bρ(x)∩Ω

|g|dx
)p

+
1

|Bρ(x) ∩Ω|

∫
Bρ(x)∩Ω

| f |pdx
)

for almost all x ∈ Ω\E with Bρ ∩ E = ∅, for some constant b. Then, there exist constants C =
C(n, p, q, b) and ϵ = ϵ(n, p, b) such that(

1
|Ω|

∫
Ω

|̃g|qdx
) 1

q

≤ C

( 1
|Ω|

∫
Ω

|g|pdx
) 1

p

+

(
1
|Ω|

∫
Ω

| f |qdx
) 1

q


holds true for all q ∈ [p, p + ϵ), where g̃(x) := |Bd(x,E)(x)∩Ω|
|Ω|

g(x).

Based on Lemma 4.2 and the technique of iteration, we can prove the higher integrability of
minimizers of Jγ(u).

Proof of Theorem 2.2. Let 0 < R < R0 ≤ 1 and x0 ∈ BR with BR0(x0) ⊂ Ω. Let t, s ∈ R with
R
2 < t < s < R. Let η ∈ C∞c (BR), 0 ≤ η ≤ 1, be a cut-off function with η ≡ 1 on Bt, η ≡ 0 outside Bs,
and |∇η| ≤ 2

s−t .
In the sequel, we refer to uγ as u. Let z := u− η(u− (u)R). We deduce from (2.2) and the minimality

of u that

L−1
∫

Bt

|∇u|p(x)dx ≤
∫

Bt

f (x,∇u)dx

≤

∫
Bs

f (x,∇u)dx

≤

∫
Bs

(
f (x,∇z) +

(
Fγ(z) − Fγ(u)

)
+ g(z − u)

)
dx

≤ L
∫

Bs

(
µ2 + |∇z|2

) p(x)
2 dx +

∫
Bs

(
Fγ(z) − Fγ(u)

)
dx +

∫
Bs

g(z − u)dx, (4.1)
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where as in the last but one inequality, we used the fact that the inequality∫
spt φ

(
f (x,∇u) + Fγ(u) + gu

)
dx ≤

∫
spt φ

(
f (x,∇u + ∇φ) + Fγ(u + φ) + g(u + φ)

)
dx (4.2)

holds true for all φ ∈ W1,p(·)
0 (Ω) with spt φ ⊂⊂ Ω. Indeed, it follows from the minimality of u that∫

spt φ

(
f (x,∇u) + Fγ(u) + gu

)
dx +

∫
Ω\(spt φ)

(
f (x,∇u) + Fγ(u) + gu

)
dx

≤

∫
spt φ

(
f (x,∇u + ∇φ) + Fγ(u + φ) + g(u + φ)

)
dx

+

∫
Ω\(spt φ)

(
f (x,∇u + ∇φ) + Fγ(u + φ) + g(u + φ)

)
dx

≤

∫
spt φ

(
f (x,∇u + ∇φ) + Fγ(u + φ) + g(u + φ)

)
dx

+

∫
Ω\(spt φ)

(
f (x,∇u + ∇φ) + Fγ(u + φ) + g(u + φ)

)
dx

=

∫
spt φ

(
f (x,∇u + ∇φ) + Fγ(u + φ) + g(u + φ)

)
dx +

∫
Ω\(spt φ)

(
f (x,∇u) + Fγ(u) + gu

)
dx.

Now we estimate each term at (4.1).∫
Bs

|∇z|p(x)dx ≤
∫

Bs

|(1 − η)∇u − ∇η(u − (u)R)|p(x) dx

≤ C
∫

Bs\Bt

|∇u|p(x)dx +C
∫

Bs

∣∣∣∣∣u − (u)R

s − t

∣∣∣∣∣p(x)

dx, (4.3)

where C = C(p+, p−) is a positive constant.
A direct calculus shows that∫

Bs

(
Fγ(z) − Fγ(u)

)
dx = λ+

∫
Bs

(
(z+)γ − (u+)γ

)
dx + λ−

∫
Bs

(
(z−)γ − (u−)γ

)
dx ≤ C

∫
Bs

|z − u|γdx,

where C = C(λ+, λ−) is a positive constant.
Then, by Young’s inequality, we deduce that∫

Bs

(
Fγ(z) − Fγ(u)

)
dx ≤ C

∫
Bs

|u − (u)R|
γdx = C

∫
Bs

∣∣∣∣∣u − (u)R

s − t

∣∣∣∣∣γ |s − t|γdx

≤ C
∫

Bs

∣∣∣∣∣u − (u)R

s − t

∣∣∣∣∣p(x)

dx +C
∫

Bs

|s − t|
γp(x)
p(x)−γ dx (4.4)

= C
∫

Bs

∣∣∣∣∣u − (u)R

s − t

∣∣∣∣∣p(x)

dx +C|Bs|, (4.5)

where C = C(p±, λ±) is a positive constant.
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The Young’s inequality also gives∫
Bs

|g(z − u)|dx ≤
∫

Bs

|g||u − (u)R|dx

≤ C
∫

Bs

∣∣∣∣∣u − (u)R

s − t

∣∣∣∣∣p(x)

dx +C
∫

Bs

(|g||s − t|)
p(x)

p(x)−1 dx

≤ C
∫

Bs

∣∣∣∣∣u − (u)R

s − t

∣∣∣∣∣p(x)

dx +C
∫

Bs

|g|
p(x)

p(x)−1 dx

≤ C
∫

Bs

∣∣∣∣∣u − (u)R

s − t

∣∣∣∣∣p(x)

dx +C
∫

Bs

(
1 + |g|

p−
p−−1

)
dx, (4.6)

where C = C(p+, p−) is a positive constant.
Combining (4.1)–(4.6), we obtain∫

Bt

|∇u|p(x)dx ≤ C
∫

Bs\Bt

|∇u|p(x)dx +C
∫

Bs

∣∣∣∣∣u − (u)R

s − t

∣∣∣∣∣p(x)

dx +C
∫

Bs

(
1 + |g|

p−
p−−1

)
dx, (4.7)

where the constant C depends only on L, p±, and λ±.
Now, “filling the hole,” we get∫

Bt

|∇u|p(x)dx ≤
C

1 +C

∫
Bs

|∇u|p(x)dx +
∫

Bs

∣∣∣∣∣u − (u)R

s − t

∣∣∣∣∣p(x)

dx +
∫

Bs

(
1 + |g|

p−
p−−1

)
dx,

which, along with Lemma 4.1, implies that

1
|BR/2|

∫
BR/2

|∇u|p(x)dx ≤ C
1
|BR|

∫
BR

∣∣∣∣∣u − (u)R

R − R/2

∣∣∣∣∣p(x)

dx +C
1
|BR|

∫
BR

(
1 + |g|

p−
p−−1

)
dx. (4.8)

Let p1 := minx∈BR
p(x) and p2 := maxx∈BR

p(x). By Sobolev–Poincaré’s inequality, we deduce that
there exists ν ∈ (0, 1) such that

1
|BR|

∫
BR

∣∣∣∣∣u − (u)R

R

∣∣∣∣∣p(x)

dx ≤ 1 +
1
|BR|

∫
BR

∣∣∣∣∣u − (u)R

R

∣∣∣∣∣p2

dx

≤ 1 +C
(∫

BR

(
1 + |∇u|p(x)

)
dx

) p2−p1
p1ν

R
(p1−p2)n

p1ν

(
1
|BR|

∫
BR

|∇u|p1νdx
) 1
ν

≤ C
(

1
|BR|

∫
BR

|∇u|p(x)νdx
) 1
ν

+C, (4.9)

where in the last inequality we used the result stated in Remark 3.1.
Combining (4.8) and (4.9), we get

1
|BR/2|

∫
BR/2

|∇u|p(x)dx ≤ C
(

1
|BR|

∫
BR

|∇u|p(x)νdx
) 1
ν

+C
1
|BR|

∫
BR

(
1 + |g|

p−
p−−1

)
dx,

where C = C(n, p±, λ±, L,M,Ω).
Now applying Lemma 4.2, we conclude that there exists δ0 ∈

(
0, q1

(
1 − 1

p−

)
− 1

)
such that (2.8)

holds true. □
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5. Conclusions

In this paper, we proved the existence, uniform boundedness, and a higher integrability of
minimizers of the functional Jγ(u) under the framework of Sobolev spaces with variable exponents.
Based on the obtained results, we will further study the regularity such as Hölder continuity of
minimizers of the functional Jγ(u).
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