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1. Introduction

A fixed point problem (FPP) is a significant problem that provides a natural support for studying a
broad range of nonlinear problems with applications. The fixed point problem of mapping T is defined
as

Fix(T ) = {s ∈ E : T (s) = s}, (1.1)

where E is a real Hilbert space and T : E→ E is a nonexpansive mapping.
For a single-valued monotone operator Q : E → E and a set-valued operator G : E ⇒ E, the

variational inclusion problem (VIsP) is to search s? ∈ E such that

0 ∈ Q(s?) + G(s?). (1.2)

Several problems, such as image recovery, optimization, variational inequality, can be transformed
into a FPP or VIsP. Due to such applicability, in the last decades, several iterative methods have been
formulated to solve FPPs and VIsPs in linear and nonlinear spaces, for example, [4, 8, 9, 12, 13, 15, 32].
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Dauglas and Rachford [11] formulated the forward-backward splitting method for VIsP:

sn+1 = RG
µn

[I − µnQ](sn), (1.3)

where µn > 0, RG
µn

= [I + µnG]−1 is the resolvent of G (also known as the backward operator), and
[I − µnQ] is known as the forward operator. We can rewrite (1.3) as

sn − sn+1

µn
∈ Q(sn) + G(sn+1), (1.4)

which is studied by Ansari and Babu [2] in nonlinear space. If Q = 0, the monotone inclusion problem
(MIsP) is to search s? ∈ E such that

0 ∈ G(s?), (1.5)

which was studied in [26]. The proximal point method, or the regularization method, is one of the
renowned methods for MIsP studied by Lions and Mercier [18]:

sn+1 = [I + µnG]−1(sn). (1.6)

Since the operator RG
µn

is nonexpansive appearing in backward step, the algorithms have been studied
widely by numerous authors, see for example [7, 10, 15–17, 19, 23, 27].

An essential development in the field of nonlinear science is the inertial extrapolation, introduced
by Polyak [22], for fast convergence of algorithms. Alvarez and Attouch [6] implemented the inertial
extrapolation to acquire the inertial proximal point method to solve MIsP. For µn > 0, find sn+1 ∈ E

such that

0 ∈ µnG(sn+1) + sn+1 − sn − βn(sn − sn−1), (1.7)

and equivalently

sn+1 = RG
µn

[sn + βn(sn − sn−1)], (1.8)

where βn ∈ [0, 1) is the extrapolation coefficient and βn(sn − sn−1) is known as the inertial step. They
proved the weak convergence of (1.8) assuming

∞∑
n=1

βn‖sn − sn−1‖
2 < +∞. (1.9)

Inertial extrapolation has been demonstrated to have good convergence properties and a high
convergence rate, therefore they have been improved and used in a variety of nonlinear problems,
see [3, 5, 13, 14, 28, 29] and the references inside.

The following inertial proximal point approach was presented by Moudafi and Oliny in [21] to solve
VIsP: {

un = sn + βn(sn − sn−1),
sn = [I + µnG]−1(un − µnQun),

(1.10)

where µn < 2/κ, and κ is the Lipschitz constant of operator Q. They proved the weak convergence
of (1.10) using the same assumption (1.9). Recently, Duang et al. [30] studied the VIsP and FPP. They
proposed the following viscosity inertial method (Algorithm 1.1) for estimating the common solution
in Hilbert spaces.
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Algorithm 1.1. (Algorithm 3 of [30]) Viscosity inertial method (VIM)

Choose arbitrary points s0 and s1 and set n = 1.
Step 1. Compute

un = sn + θn(sn − sn−1),
vn = [I + λG]−1(I − λQ)un.

If un = vn, then stop (sn is a solution of VIsP) . If not, proceed to Step 2.
Step 2. Compute

sn+1 = ψnk(un) + (1 − ψn)Tvn.

Let n = n + 1 and proceed to Step 1.

In the above calculation Q is η-inverse strongly monotone (in short η-ism) and G is a maximal
monotone operator, k is a contraction, T is a nonexpansive mapping, λ ∈ (0, 2η), and the control
sequence fulfills the requirements listed below:

(i) ψn ∈ (0, 1), lim
n→∞

ψn = 0,
∞∑

n=1
ψn = ∞, lim

n→∞

ψn−1
ψn

= 0,

(ii) θn ∈ [0, θ), θ > 0, lim
n→∞

θn
ψn
‖sn − sn−1‖ = 0.

Recently, Reich and Taiwo [24] investigated hybrid viscosity-type iterative schemes for solving
variational inclusion problems in which viscosity approximation and inertial extrapolation were
computed jointly. Ahmed and Dilshad [1] studied the Halpern-type iterative method for solving
split common null point problems where the Halpern iteration and inertial iterations are computed
simultaneously at the start of every iteration.

Motivated by the work in [1, 24, 30], we present two viscosity-type inertial iteration methods for
common solutions of VIsPs and FPPs. In our algorithms, we implement the viscosity iteration, fixed
point iteration, and inertial extrapolation at the first step of each iteration. Our methods do not need
the inverse strongly monotone assumptions on the operators Q and G, which are considered in the
literature. We prove the strong convergence of the presented methods without calculating the resolvent
of the associated monotone operators Q and G.

We organize the paper as follows: In Section 2, we discuss some basic definitions and useful
lemmas. In Section 3, we propose viscosity-type iterative methods for solving VIsPs and FPPs and
prove the strong convergence theorems. In Section 4, as a consequence of our methods, we present
Halpern-type inertial iterative methods for VIsPs and FPPs. Sections 5 describes some applications for
solving variational inequality and optimization problems. In Section 6, we show the efficiency of the
suggested methods by comparing them with Algorithm 3 of [30].

2. Preliminaries

Let {sn} be a sequence in E. Then sn → s denotes strong convergence of {sn} to s and sn ⇀ s denotes
weak convergence. The weak w-limit of {sn} is defined by

ww(sn) = {s ∈ H : yn j ⇀ s as j→ ∞ where sn j is a subsequnce of sn}.
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The following useful inequality is well-known in the Hilbert space E:

‖s1 ± w1‖
2 ≤ ‖s1‖

2 ± 2〈s1,w1〉 + ‖w1‖
2. (2.1)

Definition 2.1. A mapping k : E→ E is called

(i) a contraction, if ‖k(s1) − k(w1)‖ ≤ τ‖s1 − w1‖, ∀ s1,w1 ∈ E, τ ∈ (0, 1);
(ii) nonexpansive, if ‖k(s1) − k(w1)‖ ≤ ‖s1 − w1‖,∀ s1,w1 ∈ E.

Definition 2.2. Let Q : E→ E. Then

(i) Q is called monotone, if 〈Q(s1) − Q(w1), s1 − w1〉 ≥ 0,∀ s1,w1 ∈ E;
(ii) Q is called η-ism, if there exists η > 0 such that

〈Q(s1) − Q(w1), s1 − w1〉 ≥ η‖Q(s1) − Q(w1)‖2, ∀ s1,w1 ∈ E;

(iii) Q is called δ-strongly monotone, if there exists δ > 0 such that

〈Q(s1) − Q(w1), s1 − w1〉 ≥ δ‖s1 − w1‖
2, ∀ s1,w1 ∈ E;

(iv) Q is called κ-Lipschitz continuous, if there exists κ > 0 such that

‖Q(s1) − Q(w1)‖ ≤ κ‖s1 − w1‖, ∀ s1,w1 ∈ E.

Definition 2.3. Let G : E→ 2E. Then

(i) the graph of G is defined by Graph(G) = {(s1,w1) ∈ E × E : w1 ∈ G(s1)};
(ii) G is called monotone, if for all (s1,w1), (s2,w2) ∈ Graph(G), 〈w1 − w2, s1 − s2〉 ≥ 0;

(iii) G is called maximal monotone, if G is monotone and (I + µG)(E) = E, for µ > 0.

Lemma 2.1. [31] Let sn ∈ R be a nonnegative sequence such that

sn+1 ≤ (1 − λn)sn + λnξn, n ≥ n0 ∈ N,

where λn ∈ (0, 1) and ξn ∈ R fulfill the requirements given below:

lim
n→∞

λn = 0,
∞∑

n=1

λn = ∞, and lim sup
n→∞

ξn ≤ 0.

Then sn → 0 as n→ ∞.

Lemma 2.2. [20] Let yn ∈ R be a sequence that does not decrease at infinity in the sense that there
exists a subsequence ynk of yn such that ynk < ynk+1 for all k ≥ 0. Also consider the sequence of integers
{Υ(n)}n≥n0 defined by

Υ(n) = max{k ≤ n : yk ≤ yk+1}.

Then {Υ(n)}n≥n0 is a nondecreasing sequence verifying lim
n→∞

Υ(n) = ∞, and for all n ≥ n0, the following
inequalities hold:

yΥ(n) ≤ yΥ(n)+1,

y(n) ≤ yΥ(n)+1.
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3. Main results

In the present section, we define our viscosity-type inertial iteration methods for solving FPP and
VIsP. We symbolize the solution set of FPP by Λ and of VIsP by ∆ and assume that Λ ∩ ∆ , ∅. We
adopt the following assumptions in order to prove the convergence of the sequences obtained from the
suggested methods:
(S1) k : E→ E is a τ-contraction with 0 < τ < 1;
(S2) Q : E → E is a δ-strongly monotone and κ-Lipschitz continuous operator and G : E ⇒ E is a
maximal monotone operator;
(S3) µn is a sequence such that 0 < µ̄ ≤ µn ≤ µ < 1/2δ and κ ≤ 2δ;

(S4) λn ∈ (0, 1) satisfies lim
n→∞

λn = 0 and
∞∑

n=1
λn = ∞;

(S5) σn is a positive sequence satisfying
∞∑

n=1
σn < ∞ and lim

n→∞

σn
λn

= 0.

Theorem 3.1. If the Assumptions (S1)–(S5) are fulfilled then the sequences induced by the
Algorithm 3.1 converge strongly to s? ∈ ∆ ∩ Λ, which solve the following variational inequality:

〈k(s?) − s?, y − s?〉 ≤ 0, ∀ y ∈ ∆ ∩ Λ. (3.1)

Algorithm 3.1. Viscosity-type inertial iterative method-I (VIIM-I)

Let β ∈ [0, 1) and µn > 0 are given. Choose arbitrary points s0 and s1 and set n = 0.
Iterative step. For iterates sn, and sn−1, for n ≥ 1, select 0 < βn < β̄n, where

β̄n =

{
min

{ σn
‖sn−sn−1‖

, β
}
, if sn , sn−1,

β, otherwise,
(3.2)

compute

un = λnk(sn) + (1 − λn)
[
T (sn) + βn(sn − sn−1)

]
, (3.3)

0 ∈ Q(un) + G(sn+1) +
sn+1 − un

µn
. (3.4)

If sn+1 = un, then stop. If not, set n = n + 1 and proceed to the iterative step.

Remark 3.1. From (3.2), we have βn ≤
σn

‖sn−sn−1‖
. Since βn > 0 and σn satisfies

∞∑
n=1

σn < ∞, we obtain

lim
n→∞

βn‖sn − sn−1‖ = 0 and lim
n→∞

βn‖sn−sn−1‖

λn
≤ lim

n→∞

σn
λn

= 0.

Proof. Let s? ∈ ∆ ∩ Λ, then −Q(s?) ∈ G(s?) and using (3.4), we have un−sn+1
µn
− Q(un) ∈ G(sn+1). Since

G is monotone, we get 〈un − sn+1

µn
− Q(un) + Q(s?), sn+1 − s?

〉
≥ 0. (3.5)

Since Q is strongly monotone with constant δ > 0, we have〈
Q(sn+1) − Q(s?), sn+1 − s?

〉
≥ δ‖sn+1 − s?‖2. (3.6)
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By adding (3.5) and (3.6), we get〈un − sn+1

µn
+ Q(sn+1) − Q(un), sn+1 − s?

〉
≥ δ‖sn+1 − s?‖2 (3.7)

or

1
µn

〈
un − sn+1, sn+1 − s?

〉
+

〈
Q(sn+1) − Q(un), sn+1 − s?

〉
≥ δ‖sn+1 − s?‖2. (3.8)

By using the Cauchy Schwartz inequality and Lipschitz continuity of Q, we have〈
Q(sn+1) − Q(un), sn+1 − s?

〉
≤ ‖Q(sn+1) − Q(un)‖‖sn+1 − s?‖

≤ κ‖sn+1 − un‖‖sn+1 − s?‖

=
κ

2
{
‖sn+1 − un‖

2 + ‖sn+1 − s?‖2
}
. (3.9)

By using (2.1), we have

‖un − s?‖2 = ‖un − sn+1 + sn+1 − s?‖2 = ‖un − sn+1‖
2 + ‖sn+1 − s?‖2 + 2〈un − sn+1, sn+1 − s?〉. (3.10)

Considering (3.8)–(3.10), we get

‖sn+1 − s?‖2 ≤ ‖un − s?‖2 − ‖un − sn+1‖
2 + µnκ

{
‖sn+1 − un‖

2 + ‖sn+1 − s?‖2
}
− 2µnδ‖sn+1 − s?‖2. (3.11)

Since κ ≤ 2δ, we have

‖sn+1 − s?‖2 ≤ ‖un − s?‖2 − (1 − 2δµn)‖sn+1 − un‖
2 (3.12)

or

‖sn+1 − s?‖2 ≤ ‖un − s?‖2. (3.13)

Since lim
n→∞

βn‖sn−sn−1‖

λn
= 0 (Remark 3.1), there exists K1 > 0 such that βn‖sn−sn−1‖

λn
≤ K1, that is βn‖sn −

sn−1‖ ≤ λnK1. By using (3.13) and mathematical induction, bearing in mind that k is a contraction and
T is nonexpansive, it follows from (3.3) that

‖un − s?‖ = ‖λnk(sn) + (1 − λn)
[
T (sn) + βn(sn − sn−1‖

]
− s?‖

= λn‖k(sn) − s?‖ + (1 − λn)
[
‖(T (sn) − s? + βn(sn − sn−1)‖

]
≤ λn‖k(sn) − k(s?)‖ + λn‖k(s?) − s?‖ + (1 − λn)

[
‖T (sn) − s?‖ + βn‖sn − sn−1‖

]
≤ λnτ‖sn − s?‖ + λn‖k(s?) − s?‖ + (1 − λn)‖sn − s?‖ + λnK1

≤ [1 − λn(1 − τ)]‖sn − s?‖ + λn(1 − τ)
‖k(s?) − s?‖ + K1

1 − τ

≤ max
{
‖sn − s?‖,

‖k(s?) − s?‖ + K1

1 − τ

}
≤ max

{
‖un−1 − s?‖,

‖k(s?) − s?‖ + K1

1 − τ

}
...
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≤ max
{
‖u0 − s?‖,

‖k(s?) − s?‖ + K1

1 − τ

}
,

meaning that {un} is bounded and hence {sn} is also bounded. Let vn = T (sn) + βn(sn − sn−1). Note that
vn is also bounded. By using (3.3), we get

‖un − s?‖2 = ‖λnk(sn) + (1 − λn)vn − s?‖2

= λ2
n‖k(sn) − s?‖2 + (1 − λn)2‖vn − s?‖2 + 2λn(1 − λn)〈k(sn) − s?, vn − s?〉. (3.14)

Now, we need to calculate

‖vn − s?‖2 = ‖T (sn) + βn(sn − sn−1) − s?‖2

= ‖T (sn) − s?‖2 + 2βn〈sn − sn−1, vn − s?〉

≤ ‖T (sn) − s?‖2 + 2βn‖sn − sn−1‖‖vn − s?‖

≤ ‖sn − s?‖2 + 2Θn‖vn − s?‖, (3.15)

where Θn = βn‖zn − zn−1‖, and

〈k(sn) − s?, vn − s?〉 = 〈k(sn) − k(s?), vn − s?〉 + 〈k(s?) − s?, vn − s?〉

≤ ‖k(sn) − k(s?‖‖vn − s?‖ + 〈k(s?) − s?, vn − s?〉

≤
1
2
{
τ2‖sn − s?‖2 + ‖vn − s?‖2

}
+ 〈k(s?) − s?, vn − s?〉 (3.16)

and

〈k(s?) − s?, vn − s?〉 = 〈k(s?) − s?, T (sn) + βn(sn − sn−1) − s?〉

≤ 〈k(s?) − s?, T (sn) − s?〉 + 〈k(s?) − s?, βn(sn − sn−1)〉
≤ 〈k(s?) − s?, T (sn) − s?〉 + βn‖k(s?) − s?‖‖sn − sn−1‖

≤ 〈k(s?) − s?, T (sn) − s?〉 + Θn‖k(s?) − s?‖. (3.17)

By using (3.14)–(3.17), we get

‖un − s?‖2 ≤ λ2
n‖k(sn) − s?‖2 + (1 − λn)2

{
‖sn − s?‖2 + 2Θn‖vn − s?‖

}
+λn(1 − λn)τ2‖sn − s?‖2 + λn(1 − λn)‖vn − s?‖2

+2λn(1 − λn)〈k(s?) − s?, T (sn) − s?〉 + 2λn(1 − λn)Θn‖k(s?) − s?‖

≤ [1 − λn(1 − τ2)]‖sn − s?‖2‖

+λn

{
λn‖k(sn) − s?‖2 + 2(1 − λn)〈k(s?) − s?, T (sn) − s?〉

+Θn‖k(s?) − s?‖ +
2Θn

λn
‖vn − s?‖

}
. (3.18)

Let γn = λn(1 − τ2). Then it follows from (3.12) and (3.18) that

‖sn+1 − s?‖2 ≤ (1 − γn)‖sn − s?‖2 + γnUn − (1 − 2δµn)‖sn+1 − un‖
2, (3.19)
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where

Un =
λn‖k(sn) − s?‖2 + 2(1 − λn)〈k(s?) − s?, T (sn) − s?〉 + Θn‖k(s?) − s?‖ + 2Θn

λn
‖vn − s?‖

1 − τ2 . (3.20)

Now, we continue the proof in the following two cases:
Case I: If {‖sn − s?‖} is monotonically decreasing then there exists a number N1 such that ‖sn+1 − s?‖ ≤
‖sn − s?‖ for all n ≥ N1. Hence, boundedness of {‖sn − s?‖} implies that {‖sn − s?‖} is convergent.
Therefore, using (3.19), we have

(1 − 2δµn)‖sn+1 − un‖
2 ≤ ‖sn+1 − s?‖2 + ‖sn − s?‖2 − γn‖sn − s?‖2 + γnUn. (3.21)

Since 2δµn < 1 and lim
n→∞

γn = 0, we obtained

lim
n→∞
‖sn+1 − un‖ = 0. (3.22)

By using (3.22) and Remark 3.1, we get

lim
n→∞
‖vn − T (sn)‖ = lim

n→∞
βn‖sn − sn−1‖ = 0. (3.23)

Boundedness of {sn} and {vn} implies that there exist M1 and M2 such that ‖sn − s?‖ ≤ M1 and ‖k(s?) −
vn‖ ≤ M2, hence

‖un − vn‖ = λn‖k(sn) − vn‖

≤ λn
[
‖k(sn) − k(s?)‖ + ‖k(s?) − vn‖

]
≤ λn

[
τ‖sn − s?‖ + ‖k(s?) − vn‖

]
≤ λn

[
τM1 + M2

]
→ 0 as n→ ∞. (3.24)

The following can be obtained easily by using (3.22) and (3.23):

lim
n→∞
‖T sn − sn‖ = lim

n→∞
‖sn − vn‖ = 0. (3.25)

Since {sn} is bounded, it guarantees the existence of subsequence {snk} of {sn} such that snk ⇀ s̄. As
a consequence, from (3.22) and (3.25), it follows that unk ⇀ s̄ and vnk ⇀ s̄. Now, we will show that
s̄ ∈ ∆ ∩ Λ. Since T is nonexpansive, hence by (3.25), we obtain s̄ ∈ Fix(T ). From (3.4), we have

znk =
unk − snk+1

µnk

− Q(unk) ∈ G(snk+1). (3.26)

Since 0 < µ̄ < µn < µ and from (3.22), we have ‖snk+1 − unk‖ → 0 and by the Lipschitz continuity of Q,
we get

znk → −Q(ȳ) as k → ∞. (3.27)

Taking k → ∞, since the graph of the maximal monotone operator is weakly-strongly closed, we get
−Q(s̄) ∈ G(s̄), that is 0 ∈ Q(s̄) + G(s̄). Thus s̄ ∈ ∆ ∩ Λ.
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Next, we show that {sn} strongly converges to s?. From (3.19), it immediately follows that

‖sn+1 − s?‖2 ≤ (1 − γn)‖‖sn − s?‖2‖ + γnUn (3.28)

and

lim sup
n→∞

Un

= lim sup
n→∞

λn‖k(sn) − s?‖2 + 2(1 − λn)〈k(s?) − s?, T (sn) − s?〉 + Θn‖k(s?) − s?‖ + 2Θn
λn
‖vn − s?‖

1 − τ2

= 〈k(s?) − s?, s̄ − s?〉 ≤ 0.

By using Lemma 2.1, we deduce that {sn} converges strongly to s?, where s? is the solution to the
variational inequality (3.1). Further, it follows that ‖sn − un‖ → 0, un ⇀ ȳ ∈ ∆ ∩ Λ, and sn → s? as
n→ ∞, thus ȳ = s?. This completes the proof.
Case II: If Case I is false, then the function ρ : N :→ N defined by ρ(n) = max{n ≥ m : ‖sm − s?‖ ≤
‖sm+1 − s?‖} is an increasing sequence and ρ(n)→ ∞ as n→ ∞ and

0 ≤ ‖sρ(n) − s?‖ ≤ ‖sρ(n)+1 − s?‖, ∀ n ≥ m. (3.29)

For the same reasons as in the proof of Case I, we obtain ‖sρ(n) − s?‖ → 0 and ‖sρ(n) − uρ(n)‖ → 0 as
n→ ∞. By using (3.19) and (3.29), we obtain

0 ≤ ‖sρ(n) − s?‖ ≤ Un. (3.30)

Thus, we get ‖sρ(n) − s?‖ → 0 as n→ ∞. Keeping in mind Lemma 2.2, we have

0 ≤ ‖sn − s?‖ ≤ max
{
‖sn − s?‖, ‖sρ(n) − s?‖

}
≤ ‖sρ(n)+1 − s?‖. (3.31)

Consequently, from (3.31), ‖sn − s?‖ → 0 as n → ∞. Therefore, sn → s? as n → ∞, where s? is a
solution of the variational inequality (3.1). �

Theorem 3.2. If the Assumptions (S1)–(S5) are satisfied then the sequences induced by the
Algorithm 3.2 converge strongly to s? ∈ Λ ∩ ∆, which solves the following variational inequality:

〈k(s?) − s?, w − s?〉 ≤ 0, ∀ w ∈ Λ ∩ ∆.

Algorithm 3.2. Viscosity-type inertial iterative method-II (VIIM-II)

Let β ∈ [0, 1) and µn > 0 are given. Choose arbitrary points s0 and s1 and set n = 0.
Iterative step. For iterates sn, and sn−1, for n ≥ 1, select 0 < βn < β̄n, where

β̄n =

{
min

{ σn
‖sn−sn−1‖

, β
}
, if sn , sn−1,

β, otherwise,
(3.32)

compute

un = λnk(sn) + (1 − λn)T (sn) + βn(sn − sn−1), (3.33)

0 ∈ Q(un) + G(sn+1) +
sn+1 − un

µn
. (3.34)

If sn+1 = un, then stop. If not, set n = n + 1 and go back to the iterative step.
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Proof. Let s? ∈ Λ ∩ ∆, then by using (3.33), we obtain

‖un − s?‖ = ‖λnk(sn) + (1 − λn)T (sn) + βn(sn − sn−1) − s?‖

≤ λn‖k(sn) − s?‖ + (1 − λn)‖T (sn) − s?‖ + βn‖sn − sn−1‖

≤ λn‖k(sn) − k(s?)‖ + λn‖k(s?) − s?‖ + (1 − λn)‖sn − s?‖ + βn‖sn − sn−1‖

= λn
[
τ‖sn − s?‖ + ‖k(s?) − s?‖ +

βn

λn
‖sn − sn−1‖

]
+ (1 − λn)‖sn − s?‖

=
[
1 − λn(1 − τ)

]
‖sn − s?‖ + λn(1 − τ)

‖k(s?) − s?‖ + M1

1 − τ

≤ max
{
‖sn − s?‖,

‖k(s?) − s?‖ + M1

1 − τ

}
≤ max

{
‖un−1 − s?‖,

‖k(s?) − s?‖ + M1

1 − τ

}
...

≤ max
{
‖u0 − s?‖,

‖k(s?) − s?‖ + M1

1 − τ

}
, (3.35)

implying that {un} is bounded and so is {sn}. Let xn = λnk(sn) + (1 − λn)T (sn), then by using (2.1), we
get

‖un − s?‖2 = ‖xn + βn(sn − sn−1) − s?‖2

= ‖xn − s?‖2 + 2〈xn − s?, βn(sn − sn−1)〉 + β2
n‖sn − sn−1‖

2, (3.36)

and

‖xn − s?‖2 = ‖λnk(sn) + (1 − λn)T (sn) − s?‖2

= λ2
n‖k(sn) − s?‖2 + 2λn(1 − λn)〈k(sn) − s?,T (sn) − s?〉

+(1 − λn)2‖T (sn) − s?‖2

= λ2
n‖k(sn) − s?‖2 + 2λn(1 − λn)〈k(sn) − k(s?),T (sn) − s?〉

+2λn(1 − λn)〈k(s?) − s?,T (sn) − s?〉 + (1 − λn)2‖T (sn) − s?‖2

≤ λ2
n‖k(sn) − s?‖2 + (1 − λn)2‖T (sn) − s?‖2 + 2λn〈k(sn) − k(s?),T (sn) − s?〉

+2λn〈k(s?) − s?,T (sn) − s?〉 + 2λ2
n〈k(s?) − s?,T (sn) − s?〉

≤ λ2
n‖k(sn) − s?‖2 + (1 − λn)2‖sn − s?‖2 + 2λnτ‖sn − s?‖‖sn − s?‖

+2λn〈k(s?) − s?,T (sn) − s?〉 + 2λ2
n‖k(s?) − s?‖‖sn − s?‖

≤ [1 − 2λn(1 − τ)]‖sn − s?‖2 + λn

{
λn‖k(sn) − s?‖2 + λn‖sn − s?‖2

+2λn‖k(sn) − s?‖‖sn − s?‖ + 2〈k(s?) − s?,T (sn) − s?〉
}

(3.37)

and

〈xn − s?, βn(sn − sn−1)〉 = 〈λnk(sn) + (1 − λn)T (sn) − s?, βn(sn − sn−1)〉
= λn〈k(sn) − s?, βn(sn − sn−1)〉

+(1 − λn)〈T (sn) − s?, βn(sn − sn−1)〉
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≤ λn‖k(sn) − s?‖ βn‖sn − sn−1‖

+(1 − λn)‖T (sn) − s?‖ βn‖sn − sn−1‖

≤ βn‖sn − sn−1‖
{
‖k(sn) − s?‖ + ‖sn − s?‖

}
. (3.38)

From (3.36)–(3.38), we get

‖un − s?‖2 ≤ [1 − λn(1 − τ)]‖sn − s?‖2 + λn

{
λn‖k(sn) − s?‖2 + λn‖sn − s?‖2

+2λn‖k(sn) − s?‖‖sn − s?‖ + 2〈k(s?) − s?,T (sn) − s?〉

+
2βn

λn
‖sn − sn−1‖

(
‖k(sn) − s?‖ + ‖sn − s?‖

)
+
β2

n‖sn − sn−1‖
2

λn

}
or

‖un − s?‖2 ≤ (1 − ςn)‖sn − s?‖2 + ςnVn, (3.39)

where ςn = λn(1 − τ) and

Vn =
1

(1 − τ)

[
λn‖k(sn) − s?‖2 + λn‖sn − s?‖2 + 2λn‖k(sn) − s?‖‖sn − s?‖

+2〈k(s?) − s?,T (sn) − s?〉 +
2βn

λn
‖sn − sn−1‖

(
‖k(sn) − s?‖ + ‖sn − s?‖

)
+
β2

n‖sn − sn−1‖
2

λn

]
.

By taking together (3.12) and (3.39), we obtain

‖sn+1 − s?‖2 ≤ (1 − ςn)‖sn − s?‖2 + ςnVn − (1 − 2δµn)‖sn+1 − un‖
2.

We obtain the intended outcomes by following the same procedures as in the proof of Theorem 3.1. �

4. Consequences

Some Halpern-type inertial iterative methods for VIsPs and FPPs are the consequences of our
suggested methods.

Corollary 4.1. Suppose that the assumptions (S2)–(S5) hold. The sequence {sn} induced by
Algorithm 4.1 converges strongly to y? = PΛ∩∆(z).

Algorithm 4.1. Halpern-type inertial iteration method-1

Let β ∈ [0, 1) and µn > 0 are given. Choose arbitrary points s0 and s1, and z ∈ E for n = 0.
Iterative step. For iterates sn, and sn−1, for n ≥ 1, select 0 < βn < β̄n, where

β̄n =

{
min

{ σn
‖sn−sn−1‖

, β
}
, if sn , sn−1,

β, otherwise,

compute

un = λnz + (1 − λn)[T (sn) + βn(sn − sn−1)],

0 ∈ Q(un) + G(sn+1) +
sn+1 − un

µn
.

If sn+1 = un, then stop. If not, set n = n + 1 and go back to the iterative step.
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Proof. By replacing k(y) by z in Algorithm 3.1 and following the proof of Theorem 3.1, we get the
desired result. �

Corollary 4.2. Suppose that the assumptions (S2)–(S5) hold. The sequence {sn} induced by
Algorithm 4.2 converges strongly to y? = PΛ∩∆(z).

Algorithm 4.2. Halpern-type inertial iteration method-2

Let β ∈ [0, 1) and µn > 0 are given. Choose arbitrary points s0, s1, and z ∈ E for n = 0.
Iterative step. For iterates sn, and sn−1, for n ≥ 1, select 0 < βn < β̄n, where

β̄n =

{
min

{ σn
‖sn−sn−1‖

, β
}
, if sn , sn−1,

β, otherwise,

compute

un = λnz + (1 − λn)T (sn) + βn(sn − sn−1),

0 ∈ Q(un) + G(sn+1) +
sn+1 − un

µn
.

If sn+1 = un, then stop. If not, set n = n + 1 and go back to the iterative step.

Proof. By replacing k(y) by z in Algorithm 3.2 and following the proof of Theorem 3.2, we get the
result. �

5. Applications

Now, we present some theoretical applications of our methods for solving variational inequality and
optimization problems together with the fixed point problem.

5.1. Variational inequality problem

Let Ω ⊆ E and Q : E → E be a monotone operator. The variational inequality problem (VItP) is to
find s? ∈ E such that

〈Q(s?), w − s?〉 ≥ 0, ∀ w ∈ Ω. (5.1)

The normal cone to Ω at z is defined by

NΩ(z) = {u ∈ E : 〈u,w − z〉 ≤ 0, ∀ w ∈ Ω}. (5.2)

It is know to us that s? solves (VItP) if and only if

0 ∈ Q(s?) + NΩ(s?). (5.3)

The indicator function of Ω is defined by

IΩ(w) =

{
0, if w ∈ Ω,

+∞, if w < Ω.
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Since IΩ is a proper lower semicontinuous convex function on E, the subdifferential of IΩ is defined as

∂IΩ(z) = {z ∈ E : 〈u,w − z〉 ≤ 0, ∀ w ∈ Ω}, (5.4)

which is maximal monotone (see [26]). From (5.2) and (5.4), we can write (5.3) as

0 ∈ Q(s?) + ∂IΩ(s?).

By replacing G by ∂IΩ in Algorithms 3.1 and 3.2, we get viscosity-type inertial iteration methods for
common solutions to VIsPs and FPPs.

5.2. Optimization problem

Let Ω ⊆ E be a nonempty closed convex subset and f1, f2 be proper, lower semicontinuous
functions. Assume that f1 is differentiable and ∇ f1 is δ-strongly monotone (hence, monotone) and
κ-Lipschitz continuous. The subdifferential of f2 is defined by

∂ f2(y) = {z ∈ Ω : f2(y) − f1(w) ≥ 〈y − w, z〉,∀w ∈ E}

and is maximal monotone [25]. The following convex minimization problem (COP) is taken into
consideration:

min
w∈Ω
{F(y)} = min

y∈Ω
{ f1(y) + f2(y)}.

Therefore, by taking Q = ∇ f1 and G = ∂ f2 in Algorithms 3.1 and 3.2, we get two viscosity-type inertial
iteration methods for common solutions to COPs and FPPs.

6. Numerical experiments

Example 6.1. Let E = R3. For s = (s1, s2, s3) and w = (w1,w2,w3) ∈ R3, the usual inner product is
defined by 〈s, w〉 = s1w1 + s2w2 + s3w3 and ‖w‖2 = |w1|

2 + |w2|
2 + |w3|

2. We define the operators Q and
G by

Q


w1

w2

w3

 =


1/2 0 0
0 1/3 0
0 0 1/4



w1

w2

w3

 and G


w1

w2

w3

 =


1/6 0 0
0 1/5 0
0 0 1/4



w1

w2

w3

 .
It is trivial to show that the mapping Q is η-inverse strongly monotone with η = 2, δ-strongly monotone
(hence monotone) with δ = 1

4 , and κ-Lipschitz continuous with κ = 1
2 . The mapping G is maximal

monotone. We define the mappings T and k as follows:

T


w1

w2

w3

 =


1 0 0
0 1 0
0 0 1



w1

w2

w3

 and k


w1

w2

w3

 =


1/6 0 0
0 1/6 0
0 0 1/6



w1

w2

w3

 .
The mapping T is nonexpansive and k is s τ-contraction with τ = 1/6. For Algorithms 3.1 and 3.2, we
choose β = 0.3, λn = 1

√
100+n

, σn = 1
(1+n)2 , µn = 3

2 −
1

10+n , βn is selected randomly from (0, β̄n), and β̄n is
calculated by (3.2). For Algorithm 1.1, we choose θ = 0.5 and θn = 1

(1+n)2 ∈ (0, θ), λ = 0.5 ∈ (0, 2η)
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and ψn = 1
(10+n)0.1 . We compute the results of Algorithms 3.1 and 3.2 and then compare them with

Algorithm 1.1. The stopping criteria for our calculation is Toln < 10−15, where Toln = ‖sn+1 − sn‖. We
select some different cases of initial values as given below:
Case (a): w0 = (1, 7,−9) w1 = (1,−3, 4);
Case (b): w0 = (30, 53, 91) w1 = (1/2,−3/4,−4/11);
Case (c): w0 = (1/2,−14, 0) w1 = (0,−23, 1/4);
Case (d): w0 = (0.1,−10, 200) w1 = (100,−2, 1/4).

The experimental findings are shown in Table 1 and Figures 1–4.

Table 1. Comparison table of VIIM-1, VIIM-2, and VIM by using Cases (a)–(d).

Case VIIM-1 VIIM-2 VIM
(a) Iterations 22 22 31

Time in seconds 8.7e-006 1.3e-005 1.06e-005
(b) Iterations 21 23 31

Time in seconds 8.6e-006 8.9e-006 8.1e-006
(c) Iterations 17 19 28

Time in seconds 8.9e-006 1.22e-005 1.08e-005
(d) Iterations 23 26 35

Time in seconds 8.8e-006 9.5e-006 1.08e-005

5 10 15 20 25 30 35 40 45 50
10

-20

10
-15

10
-10

10
-5

10
0

10
5

 

 
VIIM-1
VIIM-2
VIM

Figure 1. Graphical behavior of ‖sn+1 − sn‖ from VIIM-1, VIIM-2, and VIM by choosing
Case (a).
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Figure 2. Graphical behavior of ‖sn+1 − sn‖ from VIIM-1, VIIM-2, and VIM by choosing
Case (b).
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Figure 3. Graphical behavior of ‖sn+1 − sn‖ from VIIM-1, VIIM-2, and VIM by choosing
Case (c).
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Figure 4. Graphical behavior of ‖sn+1 − sn‖ from VIIM-1, VIIM-2, and VIM by choosing
Case (d).

Example 6.2. Let us consider the infinite dimensional real Hilbert space E1 = E2 = l2 :=
{
u :=

(u1, u2, u3, · · · , un, · · · ), un ∈ R :
∞∑

n=1
|un| < ∞

}
with inner product 〈u, v〉 =

∞∑
n=1

unvn and the norm is given

by ‖u‖ =
( ∞∑

n=1
|un|

2
)1/2

. We define the monotone mappings by Q(u) := u
5 = ( u1

5 ,
u2
5 ,

u3
5 , · · · ,

un
5 , · · · ) and

G(u) := u = (u1, u2, u3, · · · , un, · · · ). Let k(u) := u
15 be the contraction and the nonexpansive map T is

defined by T (u) := u
3 = ( u1

3 ,
u2
3 ,

u3
3 , · · · ,

un
3 , · · · ).

It can be seen that Q is δ-strongly monotone with δ = 1
5 and κ-Lipschitz continuous with κ = 1

5
and also η-inverse strongly monotone with η = 5; G is maximal monotone; k be the τ-contraction with
τ = 1

15 . We choose β = 0.4, λn = 1
(n+200)0.25 , σn = 1

(10+n)3 , µn = 4
3 −

1
n+50 , βn is selected randomly, and β̄n

by (3.2). We choose θ = 0.4 and θn = 1
(10+n)3 ∈ (0, θ), λ = 0.7 ∈ (0, 2η), and ψn = 1

(200+n)0.25 . We compute
the results of Algorithms 3.1 and 3.2, then compare with Algorithm 1.1. The stopping criteria for our
computation is Toln < 10−15, where Toln = 1

2‖sn+1 − sn‖. We compute the results of the Algorithms 3.1
and 3.2, and then compare them with Algorithm 1.1. We consider the following four cases of initial
values:

Case (a’): w0 =
{

1
n

}∞
n=1
, w1 =

{
1

1+n2

}∞
n=0

;

Case (b’): w0 =

{ 1
n+1 , i f n is odd,
0, i f n is even,

w1 =
{

1
1+n3

}∞
n=1

;

Case (c’): w0 = (0, 0, 0, 0, · · · ), w1 = (1, 2, 3, 4, 0, 0, 0, · · · );

Case (d’): w0 =
{

(−1)n

n

}∞
n=1
, w1 =

{
0, i f n is odd,
1
n2 , i f n is even.

The experimental findings are shown in Table 2 and Figures 5–8.
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Table 2. Comparison table of VIIM-1, VIIM-2, and VIM by using Case (a′)–Case (d′).

Case VIIM-1 VIIM-2 VIM
(a′) Iterations 37 40 90

Time in seconds 9.4e-006 1.2e-005 8.5e-006
(b′) Iterations 36 39 90

Time in seconds 1.39e-005 1.02e-005 1.06e-005
(c′) Iterations 32 34 39

Time in seconds 9.6e-006 9.7e-006 1.66e-005
(d′) Iterations 22 32 50

Time in seconds 1.35e-005 2.1e-005 1.41e-005
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Figure 5. Graphical behavior of ‖sn+1 − sn‖ from VIIM-1, VIIM-2, and VIM by choosing
Case (a′).
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Figure 6. Graphical behavior of ‖sn+1 − sn‖ from VIIM-1, VIIM-2, and VIM by choosing
Case (b′).
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Figure 7. Graphical behavior of ‖sn+1 − sn‖ from VIIM-1, VIIM-2, and VIM by choosing
Case (c′).
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Figure 8. Graphical behavior of ‖sn+1 − sn‖ from VIIM-1, VIIM-2, and VIM by choosing
Case (d′).

7. Conclusions

We suggested two viscosity-type inertial iteration methods for solving VIsP and FPP in Hilbert
spaces. Our methods calculated the viscosity approximation, fixed point iteration, and inertial
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extrapolation simultaneously at the beginning of each iteration. We proved the strong convergence
of the proposed methods without calculating the resolvent of the associated monotone operators. Some
consequences and theoretical applications were also discussed. Finally, we illustrated the proposed
methods by using some suitable numerical examples. It has been deduced from the numerical examples
that our algorithms performed well in the sense of time acquired by the CPU and the number of
iterations.
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