We consider the class of functions $ u\in C^2((0, \infty)) $ satisfying second-order differential inequalities in the form $ u''(x)+\frac{k}{x^2}u(x)\geq 0 $ for all $ x > 0 $. For this class of functions, we establish Hermite-Hadamard-type inequalities in both cases ($ k=\frac{1}{4} $ and $ 0 < k < \frac{1}{4} $). We next extend our obtained results to the two-dimensional case. In the limit case $ k\rightarrow 0^+ $ we deriver some existing results from the literature that are related to convex functions and convex functions on the coordinates. In our approach, we make use of some tools from ordinary differential equations.
Citation: Hassen Aydi, Bessem Samet, Manuel De la Sen. On Hermite-Hadamard-type inequalities for second order differential inequalities with inverse-square potential[J]. AIMS Mathematics, 2024, 9(7): 17955-17970. doi: 10.3934/math.2024874
We consider the class of functions $ u\in C^2((0, \infty)) $ satisfying second-order differential inequalities in the form $ u''(x)+\frac{k}{x^2}u(x)\geq 0 $ for all $ x > 0 $. For this class of functions, we establish Hermite-Hadamard-type inequalities in both cases ($ k=\frac{1}{4} $ and $ 0 < k < \frac{1}{4} $). We next extend our obtained results to the two-dimensional case. In the limit case $ k\rightarrow 0^+ $ we deriver some existing results from the literature that are related to convex functions and convex functions on the coordinates. In our approach, we make use of some tools from ordinary differential equations.
[1] | M. S. S. Ali, On certain properties of trigonometrically $\rho$-convex functions, Adv. Pure Math. , 2 (2012), 337–340. |
[2] | M. S. S. Ali, On certain properties for two classes of generalized convex functions, Abstr. Appl. Anal. , 2016 (2016), 4652038. https://doi.org/10.1155/2016/4652038 doi: 10.1155/2016/4652038 |
[3] | M. A. Ali, J. Soontharanon, H. Budak, T. Sitthiwirattham, M. Fečkon, Fractional Hermite-Hadamard inequality and error estimates for Simpson's formula through convexity with respect to pair of functions, Miskolc Math. Notes, 24 (2023), 553–568. https://doi.org/10.18514/MMN.2023.4214 doi: 10.18514/MMN.2023.4214 |
[4] | M. A. Ali, F. Wannalookkhee, H. Budak, S. Etemad, S. Rezapour, New Hermite-Hadamard and Ostrowski-type inequalities for newly introduced co-ordinated convexity with respect to a pair of functions, Mathematics, 10 (2022), 3469. https://doi.org/10.3390/math10193469 doi: 10.3390/math10193469 |
[5] | S. S. Dragomir, Hermite-Hadamard type inequalities for generalized Riemann-Liouville fractional integrals of $h$-convex functions, Math. Meth. Appl. Sci. , 44 (2021), 2364–2380. https://doi.org/10.1002/mma.5893 doi: 10.1002/mma.5893 |
[6] | S. S. Dragomir, On the Hadamard's inequality for convex functions on the co-ordinates in a rectangle from the plane, Taiwan. J. Math. , 4 (2001), 775–788. |
[7] | S. S. Dragomir, On some new inequalities of Hermite-Hadamard type for $m$-convex functions, Tamkang J. Math. , 3 (2002), 45–56. https://doi.org/10.5556/j.tkjm.33.2002.304 doi: 10.5556/j.tkjm.33.2002.304 |
[8] | S. S. Dragomir, Some inequalities of Hermite-Hadamard type for trigonometrically $\rho$-convex functions, Preprints, 21 (2018), 2018020059. https://doi.org/10.20944/preprints201802.0059.v1 doi: 10.20944/preprints201802.0059.v1 |
[9] | S. S. Dragomir, Some inequalities of Hermite-Hadamard type for hyperbolic $p$-convex functions, Preprints, 21 (2018), 2018020136. https://doi.org/10.20944/preprints201802.0136.v1 doi: 10.20944/preprints201802.0136.v1 |
[10] | S. S. Dragomir, G. Toader, Some inequalities for $m$-convex functions, Stud. U. Babeş-Bol. Mat. , 38 (1993), 21–28. |
[11] | T. S. Du, Y. Peng, Hermite-Hadamard type inequalities for multiplicative Riemann-Liouville fractional integrals, J. Comput. Appl. Math. , 440 (2024), 115582. https://doi.org/10.1016/j.cam.2023.115582 doi: 10.1016/j.cam.2023.115582 |
[12] | G. Gulshan, H. Budak, R. Hussain, K. Nonlaopon, Some new quantum Hermite-Hadamard type inequalities for $s$-convex functions, Symmetry, 14 (2022), 870. https://doi.org/10.3390/sym14050870 doi: 10.3390/sym14050870 |
[13] | J. Hadamard, Étude sur les propriétés des fonctions entières et en particulier d'une fonction considérée par Riemann, J. Math. Pures Appl. , 58 (1893), 171–215. |
[14] | C. Hermite, Sur deux limites d'une intégrale défine, Mathesis, 3 (1983), 1–82. |
[15] | R. Hussain, A. Ali, A. Latif, G. Gulshan, Co-ordinated convex function of three variables and some analogues inequalities with applications, J. Comput. Anal. Appl. , 29 (2021), 505–517. |
[16] | M. Jleli, B. Samet, On Hermite-Hadamard-type inequalities for subharmonic functions over circular ring domains, Numer. Funct. Anal. Optim. , 44 (2023), 1395–1408. https://doi.org/10.1080/01630563.2023.2259198 doi: 10.1080/01630563.2023.2259198 |
[17] | M. Khan, Y. M. Chu, T. Khan, J. Khan, Some new inequalities of Hermite-Hadamard type for $s$-convex functions with applications, Open Math. , 15 (2017), 1414–1430. https://doi.org/10.1515/math-2017-0121 doi: 10.1515/math-2017-0121 |
[18] | M. A. Latif, Hermite-Hadamard-type inequalities for coordinated convex functions using fuzzy integrals, Mathematics, 11 (2023), 2432. https://doi.org/10.3390/math11112432 doi: 10.3390/math11112432 |
[19] | M. A. Latif, S. S. Dragomir, E. Momoniat, On Hermite-Hadamard type integral inequalities for $n$-times differentiable $m$-and-logarithmically convex functions, Filomat, 30 (2016), 3101–3114. https://doi.org/10.2298/FIL1611101L doi: 10.2298/FIL1611101L |
[20] | M. A. Noor, Hermite-Hadamard integral inequalities for $\log$-preinvex functions, J. Math. Anal. Approx. Theory. , 2 (2007), 126–131. |
[21] | B. Samet, A convexity concept with respect to a pair of functions, Numer. Funct. Anal. Optim. , 43 (2022), 522–540. https://doi.org/10.1080/01630563.2022.2050753 doi: 10.1080/01630563.2022.2050753 |
[22] | M. Z. Sarikaya, M. E. Kiris, Some new inequalities of Hermite-Hadamard type for $s$-convex functions, Miskolc Math. Notes, 16 (2015), 491–501. https://doi.org/10.18514/MMN.2015.1099 doi: 10.18514/MMN.2015.1099 |
[23] | M. Z. Sarikaya, A. Saglam, H. Yildrim, On some Hadamard-Type inequalities for $h$-convex functions, J. Math. Inequal. , 2 (2008), 335–341. https://doi.org/10.7153/jmi-02-30 doi: 10.7153/jmi-02-30 |
[24] | S. Varoanec, On $h$-convexity, J. Math. Anal. Appl. , 326 (2007), 303–311. https://doi.org/10.1016/j.jmaa.2006.02.086 doi: 10.1016/j.jmaa.2006.02.086 |
[25] | B. Y. Xi, R. F. Bai, F. Qi, Hermite-Hadamard type inequalities for the $m$-and $(\alpha, m)$-geometrically convex functions, Aequationes Math. , 84 (2012), 261–269. |
[26] | B. Y. Xi, F. Qi, Some integral inequalities of Hermite-Hadamard type for $s$-$\log$ convex functions, Acta Math. Sci. Ser. A (Chin. Ed. ), 35 (2015), 515–524. |
[27] | S. H. Wang, F. Qi, Hermite-Hadamard type inequalities for $s$-convex functions via Riemann-Liouville fractional integrals, J. Comput. Anal. Appl. , 22 (2017), 1124–1134. |
[28] | L. L. Zhang, Y. Peng, T. S. Du, On multiplicative Hermite-Hadamard and Newton-type inequalities for multiplicatively $(P, m)$-convex functions, J. Math. Anal. Appl. , 534 (2024), 128117. |